STEMM Institute Press
Science, Technology, Engineering, Management and Medicine
Transformer Fault Detection Based on IAHA Optimized BP Neural Network
DOI: https://doi.org/10.62517/jbdc.202501106
Author(s)
Zhaohui Liu*
Affiliation(s)
Inner Mongolia Power (Group) Co., Ltd., Hohhot Power Supply Branch, Hohhot, Inner Mongolia, China *Corresponding Author.
Abstract
In view of the shortcomings of artificial hummingbird algorithm (AHA) and BP neural network algorithm in the process of fault detection, this paper improves the AHA by introducing the chaotic sequence of tent map, and proposes an improved AHA (IAHA), which makes the initialization of hummingbird population more uniform. To test the effectiveness of the IAHA, using IAHA to optimize the BP neural network model, and is applied to fault detection together with AHA-BP model, SSA-BP model and GWO-BP model. The results show that the fault detection accuracy of the proposed IAHA-BP model is 97.5%, AHA-BP model is 92.5%, SSA-BP model is 90%, GWO-BP model is 92.5%. It shows that the proposed IAHA-BP model has higher accuracy in the field of transformer fault detection.
Keywords
Improved Artificial Hummingbird Algorithm; BP Neural Network; Tent Mapping; Transformer; Fault Detection
References
[1]Shah A M, Bhalja B R .Fault discrimination scheme for power transformer using random forest technique. Iet Generation Transmission & Distribution, 2016, 10(6):1431-1439.DOI:10.1049/iet-gtd.2015.0955. [2]Li Z , Jin L , Liu B ,et al. Experiment and Simulation Study of Nano-SnO 2 for Dissolved Fault Gases Analysis of Power Transformer. Science of Advanced Materials, 2017, 9(11): 1888-1894. DOI:10.1166/sam.2017.3243. [3]Li H , Yao Q , Li X .Voiceprint Fault Diagnosis of Converter Transformer under Load Influence Based on Multi-Strategy Improved Mel-Frequency Spectrum Coefficient and Temporal Convolutional Network. Sensors, 2024, 24(3):24.DOI:10.3390/s24030757. [4]Zhong H, Wang R, Zhang L, et al. Life Estimation Correction Model for Offshore Wind Power Transformer Based on Fault Tree Theory. Journal of Electrical Engineering & Technology, 2024(3):19. [5]Su Z, Luo L .Research on inter‐turn short‐circuit fault of power transformer by using third harmonic. IET Renewable Power Generation, 2023.DOI:10.1049/rpg2.12791. [6]Zhang X, Li H .A Probabilistic Calculation Method of Transformer Temperature Fault Based on Photoelectric Infrared Sensor. IEEE Sensors Journal, 2021, PP(99):1-1.DOI:10.1109/JSEN.2021.3099213. [7]Alghamdi A S, Muhamad N A, Suleiman A A .DGA Interpretation of Oil Filled Transformer Condition Diagnosis. Transactions on Electrical and Electronic Materials, 2012, 13(5):229-232.DOI:10.4313/TEEM.2012.13.5.229. [8]Tang W H, Wu Q H .Transformer Condition Assessment Using Dissolved Gas Analysis. Springer London, 2011. DOI:10.1007/978-0-85729-052-6_6. [9]Alamuru V, Pessapaty S R C M .Hybrid diagnosing techniques for analyzing dissolved gases in power transformers. Academic Journals, 2015.DOI:10.5897/JETR2014.0531. [10]Sakini A R S, Bilal A G, Sadiq T A, et al. Dissolved Gas Analysis for Fault Prediction in Power Transformers Using Machine Learning Techniques. Applied Sciences, 2024, 15 (1): 118-118. [11]Naganathan G S, Senthilkumar M, Aiswariya S, et al. Internal fault diagnosis of power transformer using artificial neural network. Materials Today: Proceedings, 2021(3).DOI:10.1016/j.matpr.2021.02.206. [12]Han X, Ma S, Shi Z, et al. Fault Diagnosis Method for Transformer Based on KPCA and SSA-SVM. 2022. DOI:10.1007/978-981-19-1532-1_110. [13]Yiiun Z, Lei S, Xiao O I, et al. Transformer fault detection based on enhanced gray wolf optimization VMD-DBN. Electrical Measurement & Instrumentation, 2024, 61(2). DOI:10.19753/j.issn1001-1390.2024.02.023. [14]Xu Y, Dai Z, Zhao Y, et al. Research on the HHO improved BP neural network fault prediction algorithm for distribution networks based on weather factors. Journal of Physics: Conference Series, 2024, 2831 (1): 012014-012014. [15]Xiao S, Zhang Z, Song M. Fault diagnosis method of gear based on lifting wavelet packet and combined optimization BP neural network. Vibroengineering PROCEDIA, 2019, 29 18-23. [16]Zhang K , Yuan F , Guo J ,et al.A Novel Neural Network Approach to Transformer Fault Diagnosis Based on Momentum-Embedded BP Neural Network Optimized by Genetic Algorithm and Fuzzy c-Means. Arabian Journal for Science & Engineering, 2016, 41(9):3451-3461.DOI:10.1007/s13369-015-2001-6. [17]Zhang, Qian H .BP Neural Network and its Improved Algorithm in the Power System Transformer Fault Diagnosis. Applied Mechanics & Materials, 2013, 418:200-204.DOI:10.4028/www.scientific.net/AMM.418.200. [18]Jin Y , Wu H , Zheng J ,et al.Power Transformer Fault Diagnosis Based on Improved BP Neural Network. Electronics (2079-9292), 2023, 12(16).DOI:10.3390/electronics12163526. [19]Verma S , Roy P K , Mandal B ,et al. Artificial Hummingbird Algorithm-based fault location optimization for transmission line. Journal of Engineering & Applied Science, 2024, 71(1).DOI:10.1186/s44147-024-00475-x. [20]Imtiaz S, Yang L, Azib Khan H M, et al. Wind‐assisted microgrid grid code compliance employing a hybrid Particle swarm optimization‐Artificial hummingbird algorithm optimizer‐tuned STATCOM. Wind Energy, 2024, 27(7).DOI:10.1002/we.2908. [21]Elzalabani M M, Atia D M , Eliwa A Y ,et al.Multijunction solar cell parameter estimation based on metaheuristic algorithms. Results in Engineering, 2025, 25.DOI:10.1016/j.rineng.2025.104287. [22]Jangir P, Ezugwu A E, Saleem K ,et al.A levy chaotic horizontal vertical crossover based artificial hummingbird algorithm for precise PEMFC parameter estimation. Scientific Reports, 2024, 14(1).DOI:10.1038/s41598-024-81168-6. [23]Wang Z, Zhao Y, Wang J, et al. Optimization strategy for load demand response of microgrid clusters based on improved artificial hummingbird algorithm. IOP Publishing Ltd, 2024.DOI:10.1088/1742-6596/2896/1/012070. [24]Callegari S, Setti G, Langlois P J .A CMOS tailed tent map for the generation of uniformly distributed chaotic sequences. IEEE, 2013.DOI:10.1109/ISCAS.1997.621829. [25]Liu L, Yang P, Zhang J , et al. Compressive Sensing with Tent Chaotic Sequence. Sensors & Transducers, 2014, 165(2):119-124. [26]Rosenhouse I, Weiss A J .Consistent Estimation of Symmetric Tent Chaotic Sequences With Coded Itineraries. IEEE Transactions on Signal Processing, 2008, 56(11):5580-5588. DOI:10.1109/TSP.2008.929669. [27]Yi-Yi Z, Guang-Yi W .Digital image encryption algorithm based on tent chaotic sequence. Modern Electronics Technique, 2014, 4(4). [28] Zhu M, Wang S J, Yang C L .BIST technique of digital circuits based on improved tent chaotic sequence. Harbin Gongye Daxue Xuebao/journal of Harbin Institute of Technology, 2010, 42(4):607-611.DOI:10.3724/SP.J.1146.2009.01622.
Copyright @ 2020-2035 STEMM Institute Press All Rights Reserved