STEMM Institute Press
Science, Technology, Engineering, Management and Medicine
Current Research Directions of Sodium-Ion Battery Materials
DOI: https://doi.org/10.62517/jes.202402313
Author(s)
Huang Chong
Affiliation(s)
Xiamen University Malaysia, New Energy Science and Engineering, Malaysia
Abstract
The requirement for batteries has been steadily rising in recent years due to the advancement of electric vehicles and the growth of the energy storage industry. Sodium-ion batteries have attracted attention due to their inexpensive cost, wide distribution, and resemblance to lithium-ion batteries. The cathode material, anode material, and electrolyte system—the three main material technologies of sodium-ion batteries—are reviewed in this study along with a brief overview of the problems and developments in these areas of research.
Keywords
Sodium-Ion Batteries; Anode Materials; Cathode Materials; Electrolyte
References
[1] Chen, X., & Zhang, Y. (2021). The main problems and solutions in practical application of anode materials for sodium ion batteries and the latest research progress. International Journal of Energy Research, 45(7), 9753–9779. https://doi.org/10.1002/er.6500 [2] Ahsan, Z., Cai, Z., Wang, S., et al. (2024). Recent Development of Phosphate Based Polyanion Cathode Materials for Sodium‐Ion Batteries. Advanced Energy Materials, 14(27), 2400373. https://doi.org/10.1002/aenm.202400373 [3] Mamoor, M., Li, Y., Wang, L., et al. (2023). Recent progress on advanced high energy electrode materials for sodium ion batteries. Green Energy and Resources, 1(3), 100033. https://doi.org/10.1016/j.gerr.2023.100033 [4] Lin, C., Liu, H.., Kang, J., et al. (2022). In-situ X-ray studies of high-entropy layered oxide cathode for sodium-ion batteries. Energy Storage Materials, 51, 159–171. https://doi.org/10.1016/j.ensm.2022.06.035 [5] Li, N., Wang, S., Zhao, E., et al. (2022). Tailoring interphase structure to enable high-rate, durable sodium-ion battery cathode. Journal of Energy Chemistry, 68, 564–571. https://doi.org/10.1016/j.jechem.2021.12.018 [6] Jung, K.-N., Choi, J.-Y., Shin, H.-S., Huu, H. T., Im, W. B., & Lee, J.-W. (2020). Mg-doped Na[Ni1/3Fe1/3Mn1/3]O2 with enhanced cycle stability as a cathode material for sodium-ion batteries. Solid State Sciences, 106, 106334. [7] Wang, D., Xu, S., Wang, J., et al. (2022). P2-Na0.55 [Mg0.25Mn0.75]O2: An SEI-free anode for long-life and high-rate Na-ion batteries. Energy Storage Materials, 45, 92–100. https://doi.org/10.1016/j.ensm.2021.11.031 [8] Liang, X., Yu, T., Ryu, H. (2022). Hierarchical O3/P2 heterostructured cathode materials for advanced sodium-ion batteries. Energy Storage Materials, 47, 515–525. https://doi.org/10.1016/j.ensm.2022.02.043 [9] Yan Q., Lan Y., Yao W., et al. (2021).Recent development of polyanionic cathodes for second ion batteries.Energy Storage Science and Technology,2095-4239(2021)03-872-15 [10]Le Poul, N. (2003). Development of potentiometric ion sensors based on insertion materials as sensitive element. Solid State Ionics, 159(1–2), 149–158. https://doi.org/10.1016/S0167-2738(02)00921-9 [11] Tripathi, R., Wood, S. M., Islam., et al. (2013). Na-ion mobility in layered Na2FePO4F and olivine Na [Fe,Mn]PO4. Energy & Environmental Science, 6(8), 2257. https://doi.org/10.1039/c3ee40914g [12] Hu, P., Zhu, T., Wang, X., et al. (2019). Aqueous Zn//Zn(CF3SO3)2//Na3V2(PO4)3 batteries with simultaneous Zn2+/Na+ intercalation/de-intercalation. Nano Energy, 58, 492–498. https://doi.org/10.1016/j.nanoen.2019.01.068 [13] Liang, K., Wu, D., Ren, Y., et al. (2023). Research progress on Na3V2(PO4)2F3-based cathode materials for sodium-ion batteries. Chinese Chemical Letters, 34(6), 107978. https://doi.org/10.1016/j.cclet.2022.107978 [14] Li, W., Chou, S., Wang, J., et al. (2015). Facile Method To Synthesize Na-Enriched Na 1+ x FeFe(CN) 6 Frameworks as Cathode with Superior Electrochemical Performance for Sodium-Ion Batteries. Chemistry of Materials, 27(6), 1997–2003. https://doi.org/10.1021/cm504091z [15] Song, J., Wang, L., Lu, Y., et al. (2015). Removal of Interstitial H 2 O in Hexacyanometallates for a Superior Cathode of a Sodium-Ion Battery. Journal of the American Chemical Society, 137(7), 2658–2664. https://doi.org/10.1021/ja512383b [16] Qiao, Y., Guo, S., Zhu, K., et al. (2018). Reversible anionic redox activity in Na 3 RuO 4 cathodes: A prototype Na-rich layered oxide. Energy & Environmental Science, 11(2), 299–305. https://doi.org/10.1039/C7EE03554C [17] Kim, H., Hong, J., Yoon, G., et al. (2015). Sodium intercalation chemistry in graphite. Energy & Environmental Science, 8(10), 2963–2969. https://doi.org/10.1039/C5EE02051D [18]Jing, W., Wang, M., Li, Y., et al. (2021). Pore structure engineering of wood-derived hard carbon enables their high-capacity and cycle-stable sodium storage properties. Electrochimica Acta, 391, 139000. https://doi.org/10.1016/j.electacta.2021.139000 [19] Rudola, A., Saravanan, K., Mason, C. W., & Balaya, P. (2013). Na2Ti3O7: An intercalation based anode for sodium-ion battery applications. Journal of Materials Chemistry A, 1(7), 2653. https://doi.org/10.1039/c2ta01057g [10] Nagulapati, V. M., Lee, J. H., Kim, H. S., et al. (2020). Novel hybrid binder mixture tailored to enhance the electrochemical performance of SbTe bi-metallic anode for sodium ion batteries. Journal of Electroanalytical Chemistry, 865, 114160. https://doi.org/10.1016/j.jelechem.2020.114160 [21] Tsiamtsouri, M. A., Allan, P. K., Pell, A. J., et al. (2018). Exfoliation of Layered Na-Ion Anode Material Na 2 Ti 3 O 7 for Enhanced Capacity and Cyclability. Chemistry of Materials, 30(5), 1505–1516. https://doi.org/10.1021/acs.chemmater.7b03753 [22] Hou, X., Li, T., Qiu, Y., et al. (2024). Interfacial Chemistry of Perfluorinated-Anion Additives Deciphering Ether-Based Electrolytes for Sodium-Ion Batteries. ACS Energy Letters, 9(2), 461–467. https: //doi.org /10.1021/ acsenergylett. 3c02811
Copyright @ 2020-2035 STEMM Institute Press All Rights Reserved