STEMM Institute Press
Science, Technology, Engineering, Management and Medicine
The Application of Thermal Energy Storage in Electricity System
DOI: https://doi.org/10.62517/jes.202502402
Author(s)
Haochen Tang
Affiliation(s)
North China University of Science and Technology, Tangshan, Hebei, China
Abstract
Against the backdrop of the "dual-carbon" goals, China is actively advancing energy structure transformation and the rational application of energy. As an important energy storage technology, thermal storage technology holds broad application prospects in addressing the contradictions between the fluctuation of renewable energy and power grid peak regulation, as well as issues such as its spatial and temporal imbalance. This paper will introduce the relevant principles of thermal storage technology and elaborate on its applications in the electricity system, including grid power peak shaving, thermal storage materials for Concentrated Solar Power, and other fields such as renewable energy consumption and waste heat recovery. Among these, emphasis will be placed on its application in power peak regulation and the application of hybrid energy storage technology coupled with thermal storage during peak regulation. Finally, summaries and prospects will be provided to contribute to the early realization of the "dual-carbon" goals.
Keywords
Thermal Energy Storage; Peak Shaving; Energy Storage
References
[1] Davenport, J., & Wayth, N. (2023). Statistical review of world energy. Energy Institute. [2] Tao, Y. M. (2025). Optimizing the internal audit system to assist the digital and intelligent transformation of state-owned enterprises in the energy industry. China Business, (09), 94-96. [3] China Energy Data Report(2025) https://solar.in-en.com/html/solar-2451554.shtml [4] Liu, C., Zhuo, J. K., Zhao, D. M., Li, S. Q., Chen, J. S., Wang, J. X., & Yao, Q. (2020). Review on research of flexible and safe operation of renewable energy microgrids using energy storage systems. Proceedings of the CSEE, 40(1), 1-18+369. https://doi.org/10.13334/j.0258-8013.pcsee.190212. [5] Zou, C. N., Li, S. X., Xiong, B., Yang, Z., Liu, H. L., Zhang, G. S., ... & Wang, Z. H. (2025). Connotation, path and significance of building a "strong energy country" in China. Petroleum Exploration and Development, 52(2), 463-477. [6] Shi, W. H., Qu, J. X., Luo, K., Li, Q. M., He, Y. J., & Wang, W. S. (2022). Research on the development of high-proportion new energy grid connection and operation. Strategic Study of CAE, 24(6), 52-63. [7] Fan, W., Zhou, Z. B., & Li, Y. H. (2025). Current status and prospects of thermal energy storage technology development. Coal Quality Technology, 40(1), 1-8. [8] Li, S. K., Lin, Y., & Pan, F. (2022). Progress and prospect of thermal energy storage and conversion technologies. Energy Storage Science and Technology, 11(5), 1551-1562. https://doi.org/10.19799/j.cnki.2095-4239.2021.0530 [9] Ali, H. M., Rehman, T. U., Arıcı, M., Said, Z., Duraković, B., Mohammed, H. I., ... & Teggar, M. (2024). Advances in thermal energy storage: Fundamentals and applications. Progress in Energy and Combustion Science, 100, 101109. [10] Zhang, J., Tang, J. R., Niu, C., Wang, H. H., & Yin, W. F. (2024). Research status and development trend of latent heat storage technology. Energy Research and Management, 16(1), 16-26. https://doi.org/10.16056/j.2096-7705.2024.01.003. [11] Liu, W., Li, Z. M., Liu, M. Y., Yang, C. Y., Mei, C., & Li, Y. (2023). Research progress in preparation and application of high-temperature phase change thermal storage materials. Energy Storage Science and Technology, 12(2), 398-430. https://doi.org/10.19799/j.cnki.2095-4239.2022.0521. [12] Li, Z., Lu, Y., Huang, R., Chang, J., Yu, X., Jiang, R., ... & Roskilly, A. P. (2021). Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage. Applied Energy, 283, 116277. [13] Guo, X. B., Fan, L. C., Xu, Z. J., Li, Y., Lin, J., & Chen, L. (2023). Research and application progress of phase change thermal storage materials contributing to energy conservation and carbon reduction. Power Generation Technology, 44(2), 201-212. [14] Yang, R., Qiao, Y., Zhou, Y. K., Zhang, Y. X., Wang, C., Zhao, X. M., & Zhe, X. H. Research progress on preparation of thermochemical energy storage materials and their application in interseasonal energy storage. Energy Storage Science and Technology, 1-24. https://doi.org/10.19799/j.cnki.2095-4239.2025.0381. [15] Chen, J. Z. (2025). Analysis on safe operation of thermal power units under deep peak shaving conditions. Electric Power Safety Technology, 27(4), 74-78. [16] Zhang, S. Q., Sun, C. Y., Yu, L. H., Fan, X. M., Pan, D. J., Wei, S. Z., & Zhou, X. (2023). Review on research progress of flexibility retrofitting of coal-fired power units. Southern Energy Construction, 10(2), 48-54. [17] Zhang, X. R., Xu, Y. J., Yang, L. J., Li, L. X., Chen, H. S., & Zhou, X. Z. (2021). Performance analysis and comparison of multi-type thermal power-thermal storage coupling systems. Energy Storage Science and Technology, 10(5), 1565. [18] Gao, S. (2025). Brief analysis on application of molten salt thermal storage technology. Mechanical and Electrical Information, (7), 86-88. https://doi.org/10.19514/j.cnki.cn32-1628/tm.2025.07.022. [19] Miao, L., Liu, M., Zhang, K. Z., Zhao, Y. L., & Yan, J. J. (2023). Research on thermal performance of coal-fired power generation system integrated with electric heating molten salt thermal storage. Journal of Engineering Thermophysics, 44(11), 2999-3007. [20] Fang, L. J., Gao, Z. F., Zhang, S., & Liu, C. K. Research on peak shaving characteristics of ultra-supercritical thermal power unit coupled with molten salt thermal storage system. Journal of North China Electric Power University (Natural Science Edition), 1-9. [21] Wang, H., Li, J., Zhu, P. W., Wang, J., & Zhang, C. L. (2021). 100 MW-class molten salt energy storage technology applied to deep peak shaving of thermal power units. Energy Storage Science and Technology, 10(5), 1760. [22] Yin, Q. Y., Li, D. B., Fang, L. J., Yu, F. J., Chai, Y. Q., Jin, F. C., & Chen, Z. L. (2025). Simulation study on peak shaving characteristics of coal-fired power plant coupled with molten salt thermal storage. Electric Power Science and Technology for Environmental Protection, 41(2), 240-251. https://doi.org/10.19944/j.eptep.1674-8069.2025.02.007. [23] Chen, X., Chen, Z. Q., Zhou, K., Sheng, K., Zhu, G. M., & Liu, M. (2025). Configuration analysis of 1000 MW coal-fired unit coupled with molten salt thermal storage system. Thermal Power Generation, 54(4), 33-41. https://doi.org/10.19666/j.rlfd.202406199. [24] Zhang, Y. Y., Xiong, Y. X., Chen, Y. H., Quan, R. X., Cheng, G. G., Zhao, Y. Q., & Ding, Y. L. (2023). Research and application progress of phase change packed bed thermal storage systems. Energy Storage Science and Technology, 12(12), 3852. [25] Ma, L. S., Xie, B. S., & Li, C. C. Research progress of medium and low temperature phase change packed bed thermal storage systems. Clean Coal Technology, 1-18. [26] Zhang, C. F., Zhu, Y. L., Hu, D. Z., Fu, Z. Y., Xu, Y. J., Shen, G. Q., ... & Chen, H. S. (2024). Comprehensive economic analysis of deep peak shaving for thermal-storage coupling systems. Energy Storage Science and Technology, 13(10), 3693-3705. https://doi.org/10.19799/j.cnki.2095-4239.2024.0250. [27] Liu, X., Li, H., Lv, L., Wei, L., & Zhou, H. (2025). Experimental study on single-unit solid particle packed bed for thermal energy storage of extracted steam from thermal power plant to consume more renewable energy. Particuology, 97, 99-116. [28] Zhang, Y. J., Chen, J. Y., Li, J. Q., & Dai, Y. J. (2024). China's Thermal Energy Storage Industry Development Report (2024): Industrial Technology, Development Status and Typical Demonstrations. Energy Storage Science and Technology, 13(12), 4452. [29] Zhang, X. R., Xu, Y. J., Yang, L. J., Li, L. X., Chen, H. S., & Zhou, X. Z. (2021). Performance analysis and comparison of multi-type thermal power-thermal storage coupling systems. Energy Storage Science and Technology, 10(5), 1565. [30] Zheng, B. G., Chen, Q., Cui, Y., & Xia, M. Q. (2025). Progress and future prospects of new energy storage technologies. Science and Technology in China, (05), 67-74. [31] Chen, H. S., Li, H., Xu, Y. J., Xu, D. H., Wang, L., Zhou, X. Z., ... & Mei, W. X. (2025). Research progress of energy storage technologies in China in 2024. Energy Storage Science and Technology, 14(6), 2149-2192. https://doi.org/10.19799/j.cnki.2095-4239.2025.0553. [32] Liu, H. C. (2025). Research and application of new energy development and hybrid energy storage technology. China Strategic Emerging Industry, (15), 98-100. [33] Yao, M. J. (2024, December 9). Hybrid energy storage on the horizon. China Energy News, p. 002. https://doi.org/10.28693/n.cnki.nshca.2024.001593. [34] Wang, L. X., Wei, M. Y., Liu, Y. T., Wang, X. T., & Hou, Z. X. Hybrid energy storage selection method for power grid peak shaving and frequency modulation based on set pair analysis. High Voltage Engineering, 1-16. https://doi.org/10.13336/j.1003-6520.hve.20250094. [35] Zhang, C., Feng, Z. N., Deng, S. P., Jia, C. J., & Lu, S. (2021). Coordinated peak-shaving and valley-filling strategy for multi-energy complementation considering electric-thermal hybrid energy storage. Transactions of China Electrotechnical Society, 36(S1), 191-199. [36] Yuan, Z. W., & Yang, Y. F. (2024). Research status and development trend of compressed air energy storage technology. Southern Energy Construction, 11(2), 146-153. [37] China Solar Thermal Alliance.(2024)Shandong Feicheng international first set of 300MW advanced compressed air energy storage national demonstration project array type thermal storage device installation completed[EB/OL].http://www.cnste.org/html/xiangmu/2024/0131/12249.html. [38] Hayat, M. B., Ali, D., Monyake, K. C., Alagha, L., & Ahmed, N. (2019). Solar energy—A look into power generation, challenges, and a solar‐powered future. International journal of energy research, 43(3), 1049-1067. [39] Khan, M. I., Asfand, F., & Al-Ghamdi, S. G. (2022). Progress in research and technological advancements of thermal energy storage systems for concentrated solar power. Journal of Energy Storage, 55, 105860. [40] Sun, L. P., Song, Z. H., Ma, J., Zhang, J. M., & Chi, M. B. (2025). A review of solar thermal power generation technology in China. Southern Energy Construction. [41] Li, H., Yu, G., Xu, E. S., Liao, Z. R., Wang, Q., Chen, C., & Xing, Y. P. (2025). Research on dynamic modeling and simulation of thermal storage system for solar thermal power generation. Energy Storage Science and Technology, 14(3), 1234-1246. https://doi.org/10.19799/j.cnki.2095-4239.2024.1160. [42] Ong, T. C., Sarvghad, M., Bell, S., Will, G., Steinberg, T. A., Yin, Y., ... & Lewis, D. (2024). Review on the challenges of salt phase change materials for energy storage in concentrated solar power facilities. Applied Thermal Engineering, 238, 122034. [43] Ci, J. C. Engineering application progress of molten salt thermal storage technology in the field of solar thermal power generation. Southern Energy Construction, 1-15. https://doi.org/10.16516/j.ceec.2024-407. [44] Li, G., Fu, Y. C., Yu, H. C., Yang, P. H., Wei, Y., La, P. Q., & Gu, Y. F. (2025). Research progress of molten salt for energy storage in solar thermal power generation. Materials Reports, 39(4), 10-19. [45] Wang, J., Cao, J. J., Zhang, L. Y., Liu, Y. Q., Ling, H. S., Xu, Y. J., ... & Chen, H. S. (2020). Application status of cold and thermal storage technologies based on distributed energy systems. Energy Storage Science and Technology, 9(6), 1847-1857. https://doi.org/10.19799/j.cnki.2095-4239.2020.0129. [46] Ren, Q. Y., Wang, X., Jia, J., Tian, Q., & Yin, L. Y. Research on optimization and operation strategy of integrated heating system with air-source heat pump and thermal storage for wind power accommodation. Journal of Taiyuan University of Technology, 1-8. [47] Liu, J. (2022). Economic analysis of energy storage technologies adapting to renewable energy accommodation. Energy Storage Science and Technology, 11(1), 397. [48] Feng, Q., Wu, X. Y., Cheng, C. T., Huang, S., & Wei, X. C. Peak shaving optimization method for pumped storage power station group considering cumulative error of wind and solar output prediction. Proceedings of the CSEE, 1-13. [49] Li, Z., Lu, Y., Huang, R., Chang, J., Yu, X., Jiang, R., ... & Roskilly, A. P. (2021). Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage. Applied Energy, 283, 116277. [50] Guo, P. W., Peng, Y., Deng, J. M., Li, B. F., Zhou, X., Hu, J., ... & Wang, J. X. (2021). Feasibility study on coupled application of flue gas waste heat recovery and energy storage technology. Huadian Technology, 43(9), 62-68. [51] Li, M. J., Yao, K. Y., Li, M. J., & Liu, Z. B. (2025). Optimal design of cascade phase change packed bed thermal storage system for efficient recovery of nuclear power waste heat. Journal of Xi'an Jiaotong University, 59(3), 46-56. [52] Ahmad, S., Shafiullah, M., Ahmed, C. B., & Alowaifeer, M. (2023). A review of microgrid energy management and control strategies. IEEE Access, 11, 21729-21757.
Copyright @ 2020-2035 STEMM Institute Press All Rights Reserved