Comparison of Classical Gene Therapy and Mrna Drug Therapy
DOI: https://doi.org/10.62517/jmhs.202405403
Author(s)
Xie Xinyu
Affiliation(s)
Henan University of Technology, Zhengzhou, China
Abstract
Classical gene therapy, as a new therapeutic means acting on the genome, has become the frontier hot spot and research focus in the field of biotechnology and medicine. Its basic principle is to repair or replace defective genes in the body by directly delivering foreign genes to human cells, so as to achieve the purpose of treating diseases.With the deepening of the research of classical gene therapy, mRNA drug therapy has gradually been summarized as a new type of gene therapy, and occupies an important position.Different from classical gene therapy, mRNA drug therapy is more focused on directly manipulating mRNA molecules to achieve protein production to complete the treatment.Due to the increasing investment in research and application of mRNA drug therapy, classical gene therapy and mRNA drug therapy have become more selective in the treatment of diseases. This article will deeply discuss the differences in development, principle and application direction of the two, explore their respective advantages, and provide ideas and basis for the optimal selection of disease treatment programs in the future.
Keywords
(Classical) Gene Therapy; mRNA Drug Therapy; Delivery Systems; Clinical Applications
References
[1] Wirth T, Parker N, Yla-Herttuala S. History of gene therapy. Gene. 2013 Aug 10;525 (2) : 162-9. Doi: 10.1016 / j.g. Ene 2013.03.137. Epub 2013 Apr 23. PMID: 23618815
[2] Friedmann T. A brief history of gene therapy. Nat Genet. 1992 Oct;2(2):93-8. doi: 10.1038/ ng1092-93.PMID: 1303270.
[3] Athanasopoulos T, Munye MM, Yanez - Munoz RJ. Nonintegrating Gene Therapy Vectors. Hematol Oncol Clin North Am. 2017 Oct;31 (5) : 753-770. The doi: 10.1016 / j.h oc 2017.06.007. PMID: 28895845.
[4] FAN Wen‐chao, SHI Xin‐chang, ZHOU Yong. 2022. Mainly the key technologies in the development of mRNA drugs, DOI: 10.13200 / j.carol carroll nki CJB. 003744
[5] BRENNER S, JACOB F, MESELSON M. An unstable intermediate carrying information from genes to ribosomes for protein synthesis [J]. Nature, 1961, 190:576-581.
[6] Kim YK. RNA therapy: rich history, various applications and unlimited future prospects. Exp Mol Med.2022 Apr;54(4):455-465. doi: 10.1038/ s12276-022-00757-5.Epub 2022 Apr 19.PMID: 35440755; PMCID: PMC9016686.
[7] Xu S, Yang K, Li R, Zhang L. mRNA Vaccine Era-Mechanisms, Drug Platform and Clinical Prospection. Int J Mol Sci. 2020 Sep 9;21(18):6582. doi: 10.3390/ijms21186582. PMID: 32916818; PMCID: PMC7554980.
[8] Sahin U, Kariko K, Tureci O. mRNA-based therapeutics--developing a new class of drugs. Nat Rev Drug Discov. 2014 Oct;13(10):759-80. doi: 10.1038/ nrd4278.Epub 2014 Sep 19.PMID: 25233993.
[9] DE BEUCKELAER A, GROOTEN J, DE KOKER S. Type I in‐terferons modulate CD8 (+) T cell immunity to mRNA vaccines
[10] VAN LINT S, RENMANS D, BROOS K, et al. The ReNAis‐sanCe of mRNA-based cancer therapy [J]. Expert Rev Vaccin, 2015, 14 (2) : 235 ‐ 251.
[11] Weng Y, Li C, Yang T, Hu B, Zhang M, Guo S, Xiao H, Liang XJ, Huang Y. The challenge and prospect of mRNA therapeutics landscape. Biotechnol Adv. 2020 May-Jun;Spoken 7534. Doi: 10.1016 / j.b iotechadv. 2020.107534. Epub 2020 Feb 21. PMID: 32088327.
[12] Zu H, Gao D. Non-viral Vectors in Gene Therapy: Recent Development, Challenges, and Prospects. AAPS J. 2021 Jun 2;23(4):78. doi: 10.1208/s12248-021-00608-7. PMID: 34076797; PMCID: PMC8171234.
[13] Kaufmann KB, Buning H, Galy A, Schambach A, Grez M. Gene therapy on the move. EMBO Mol Med. 2013 Nov;5(11):1642-61. doi: 10.1002/ emmm.201202287.Epub 2013 Sep 17. PMID: 24106209; PMCID: PMC3840483.
[14] Jenks S (2000) Gene therapy death–"everyone has to share in the guilt". J Natl Cancer Inst 92:98–100.https://doi.org/10.1093/jnci/92.2.98
[15] Vaishnaw AK, Gollob J, Gamba-Vitalo C, Hutabarat R, Sah D, Meyers R, de Fougerolles T, Maraganore J (2010) A sta-tusreport on RNAi therapeutics. Silence 1:14. https://doi.org/10.1186/1758-907X-1-14.
[16] Mingozzi F, Maus MV, Hui DJ, Sabatino DE, Murphy SL, Rasko JEJ, Ragni MV, Manno CS, Sommer J, Jiang HY, Pierce GF, Ertl HCJ, High KA (2007) CD8+ T-cell responses to adeno-associated virus capsid in humans. Nat Med 13:419–422. https://doi.org/10.1038/nm1549.