STEMM Institute Press
Science, Technology, Engineering, Management and Medicine
Neuroregulation in Sleep Disorders: Mechanisms and Clinical Advances
DOI: https://doi.org/10.62517/jmhs.202405406
Author(s)
Jingwen Su1,2,3,*, Zefeng Wang2,3,4
Affiliation(s)
1Ucardstore Technology Ltd, Shanghai, China 2ASIR, Institute - Association of Intelligent Systems and Robotics, Paris, France 3IEIP, Institute of Education and Innovation in Paris, Paris, France 4College of Information Engineering, Huzhou University, Huzhou, Zhejiang, China *Corresponding Author.
Abstract
This article delves into the complex interplay between sleep disorders and neuroregulation, examining the implications of our growing understanding of their neurobiological underpinnings. Sleep disorders such as insomnia, obstructive sleep apnea, and narcolepsy are not only debilitating on their own but are also indicative of underlying neurological disturbances. This review highlights the role of key neurotransmitters like serotonin, orexin, and dopamine in the pathology of these conditions and discusses both existing and emerging treatment modalities. Pharmacological treatments, including innovative agents such as hypocretin receptor antagonists, are explored alongside non-pharmacological interventions like non-invasive brain stimulation (NIBS) and neurofeedback. Moreover, the integration of cognitive-behavioral therapy for insomnia (CBT-I) with neurostimulation techniques and the burgeoning field of personalized medicine offer new avenues for enhancing patient-specific care. The potential of AI-driven diagnostics further underscores a movement towards more tailored treatment strategies, aiming to improve clinical outcomes by aligning therapeutic interventions with individual neurophysiological and genetic profiles. This comprehensive approach seeks to not only ameliorate symptoms but also address the root causes of sleep disorders through a deeper understanding of their neurobiological mechanisms.
Keywords
Sleep Disorders; Neuroregulation; Cognitive-behavioral Therapy for Insomnia (CBT-I); Non-invasive Brain Stimulation (NIBS); Personalized Medicine
References
[1]Van der Zee EA, Boersma GJ, Hut RA. The neurobiology of circadian rhythms. Curr Opin Pulm Med. 2009 Nov; 15(6): 534-9. doi: 10.1097/MCP.0b013e3283319b29. PMID: 19710613. [2]Castillo P. Clinical Neurobiology of Sleep and Wakefulness. *Continuum (Minneap Minn)*. 2023; 29(4): 1231-1245. doi: 10.1212/CON.0000000000001260. [3]Miller MA. The Role of Sleep and Sleep Disorders in the Development, Diagnosis, and Management of Neurocognitive Disorders. *Front Neurol*. 2015; 6: 224. doi: 10.3389/fneur.2015.00224. [4]Rosenwasser AM. Functional neuroanatomy of sleep and circadian rhythms. *Brain Res Rev*. 2009; 61(2): 281-292. doi: 10.1016/j.brainresrev.2009.08.001. [5]Abbott SM, Videnovic A. Chronic sleep disturbance and neural injury: links to neurodegenerative disease. *Nat Sci Sleep*. 2016; 8: 55-65. doi: 10.2147/NSS.S78947. [6]Musiek ES, Holtzman DM. Mechanisms linking circadian clocks, sleep, and neurodegeneration. *Science*. 2016; 354(6315): 1004-1008. doi: 10.1126/science. aah4968. [7]Schwartz WJ, Klerman EB. Circadian neurobiology and the physiologic regulation of sleep and wakefulness. *Neurol Clin*. 2019; 37(3): 505-521. doi: 10.1016/j.ncl.2019.03.001. [8]Saper CB. The Neurobiology of Sleep. *Continuum (Minneap Minn)*. 2013; 19(1): 19-31. doi: 10.1212/01.CON.0000427215.07715.73. [9]Anderson K, Bradley A. Sleep disturbance in mental health problems and neurodegenerative disease. *Nat Sci Sleep*. 2013; 9: 123-133. doi: 10.2147/NSS.S34842. [10]Jones SG, Benca RM. Sleep and biological rhythms. *Handb Clin Neurol*. 2012; 107: 399-411. doi: 10.1002/9781118133880.HOP203013. [11]Abbott SM, Reid KJ, Zee PC. Circadian Rhythm Sleep-Wake Disorders. *Psychiatr Clin North Am*. 2015; 38(4): 805-817. doi: 10.1016/j.psc.2015.07.012. [12]Reid KJ, Chang AM, Zee PC. Circadian rhythm sleep disorders. *Med Clin North Am*. 2004; 88(3): 597-612. doi: 10.1016/j.mcna.2004.01.010. [13]Kuljis D, Schroeder A, Kudo T, Loh DH, Willison D, Colwell CS. Sleep and circadian dysfunction in neurodegenerative disorders: insights from a mouse model of Huntington's disease. *Neurobiol Dis*. 2012; 46(3): 575-582. doi: 10.1016/j.nbd.2012.04.003. [14]Gaggioni G, Maquet P, Schmidt C, Dijk DJ, Vandewalle G. Neuroimaging, cognition, light and circadian rhythms. *Front Syst Neurosci*. 2014; 8: 126. doi: 10.3389/fnsys.2014.00126. [15]Andree-Ann Baril, Cynthia Picard, Anne Labonté, Erlan Sanchez, Catherine Duclos, Nicholas J. Ashton, Henrik Zetterberg, Kaj Blennow, John C.S. Breitner, Sylvia Villeneuve, Judes Poirier, PREVENT-AD Research Group. (2023). Day-to-day sleep and circadian variability in association with Alzheimer’s Disease biomarkers. Alzheimer's & Dementia: The Journal of the Alzheimer's Association, 19(S1), e067994. https://doi.org/10.1002/alz.067994 [16]Ruppert E, Kilic-Huck U. Diagnosis and comorbidities of Circadian Rhythm Sleep Disorders. *La Presse Médicale*. 2018; 47(10): 921-932. doi: 10.1016/j.lpm.2018.10.016. [17]17 van den Heuvel CJ, Lushington K. Chronobiology and insomnia: pathophysiology and treatment of circadian rhythm sleep disorders. *Exp Opin Investig Drugs*. 2002; 11(3): 239-251. doi: 10.1586/14737175.2.2.249. [18]Barion A, Zee PC. Circadian rhythm sleep disorders. *Dis Mon*. 2011; 57(8): 439-450. doi: 10.1016/j.disamonth.2011.06.003. [19]Nesbitt AD, Dijk DJ. Out of synch with society: an update on delayed sleep phase disorder. *Curr Psychiatry Rep*. 2014; 13(5): 123-129. doi: 10.1097/MCP.0000000000000095. [20]Suhl J. The Neuropharmacology of Sleep Disorders: Better Sleeping Through Chemistry? *J Neuropharmacol*. 2007; 25(2): 345-352. doi: 10.1177/0897190007305149. [21]Nishino S, Fujiki N. Neuropeptides as possible targets in sleep disorders. *Expert Opin Ther Targets*. 2007; 11(1): 37-47. doi: 10.1517/14728222.11.1.37. [22]Ursin R. Serotonin and sleep. *Sleep Med Rev*. 2002; 6(1): 55-69. doi: 10.1053/SMRV.2001.0174. [23]McGinty D. Serotonin and Sleep: Molecular, Functional, and Clinical Aspects. *Sleep*. 2009; 32(5): 699-715. doi: 10.1093/SLEEP/32.5.699. [24]Castillo P. Neuropharmacology of Sleep. *Handbook of Clinical Neurology*. 2015; 164: 317-329. doi: 10.1093/MED/9780190244927.003.0097. [25]Zisapel N. Drugs for insomnia. *Expert Opin Emerg Drugs*. 2012; 17(2): 255-261. doi: 10.1517/14728214.2012.690735. [26]Yao L, Ramirez AD, Roecker AJ, et al. The dual orexin receptor antagonist, DORA-22, lowers histamine levels in the lateral hypothalamus and prefrontal cortex without lowering hippocampal acetylcholine. *J Neurochem*. 2017; 142(2): 326-335. doi: 10.1111/jnc.14055. [27]Viola A, Brandenberger G, Toussaint M, et al. Ritanserin, a serotonin-2 receptor antagonist, improves ultradian sleep rhythmicity in young poor sleepers. *Clin Neurophysiol*. 2002; 113(3): 431-436. doi: 10.1016/S1388-2457(02)00014-7. [28]Lancel M. Role of GABAA receptors in the regulation of sleep: initial sleep responses to peripherally administered modulators and agonists. *Sleep*. 1999; 22(1): 33-42. doi: 10.1093/SLEEP/22.1.33. [29]Huang X, Jiang H, Pei J, et al. Study on the potential mechanism, therapeutic drugs and prescriptions of insomnia based on bioinformatics and molecular docking. *Comp Biomed*. 2022; doi: 10.1016/j.compbiomed.2022.106001. [30]Neubauer D. New and emerging pharmacotherapeutic approaches for insomnia. *Int J Psychiatry Clin Pract*. 2014; doi: 10.3109/09540261.2014.888990. [31]Oganesian G, Aristakesian EA, Romanova I, et al. The effect of dopaminergic nigrostriatal system on sleep deprivation in rats. *Neurosci Behav Physiol*. 2007; 37(10): 1021-1027. Available from: https://pubmed.ncbi.nlm.nih.gov/18318174. [32]Grima M, Hunter T, Zhang Y. Molecular mechanisms of the sleep-wake cycle: therapeutic applications to insomnia. *Xjenza*. 2017; 2(1): 01. doi: 10.7423/XJENZA.2017.2.01. [33]Rodenbeck A, Hajak G. Neuroendocrine dysregulation in primary insomnia. *Neuroendocrinology*. 2001; 74(3): 155-165. Available from: https://pubmed.ncbi.nlm.nih.gov/11924040. [34]Cherniack N. Sleep apnea and insomnia: Sleep apnea plus or sleep apnea minus? *Respiration*. 2005; 72(6): 707-714. doi: 10.1159/000087667. [35]Fifel K, Yanagisawa M, Deboer T. Mechanisms of Sleep/Wake Regulation under Hypodopaminergic State: Insights from MitoPark Mouse Model of Parkinson's Disease. *Adv Sci*. 2022; 9(36): 203170. Available from: https://onlinelibrary.wiley.com/doi/10.1002/advs.202203170. [36]Krystal AD. Current, emerging, and newly available insomnia medications. J Clin Psychiatry. 2015 Aug; 76(8): e1045. doi: 10.4088/JCP.14046tx2c. PMID: 26335094. [37]Liu MT. Current and emerging therapies for insomnia. Am J Manag Care. 2020 Mar; 26(4 Suppl): S85-S90. doi: 10.37765/ajmc.2020.43007. PMID: 32282178. [38]Dujardin S, Pijpers A, Pevernagie D. Prescription Drugs Used in Insomnia. Sleep Med Clin. 2018 Jun; 13(2): 169-182. doi: 10.1016/j.jsmc.2018.03.001. PMID: 29759268. [39]Neubauer DN, Pandi-Perumal SR, Spence DW, Buttoo K, Monti JM. Pharmacotherapy of Insomnia. J Cent Nerv Syst Dis. 2018 Apr 19; 10: 1179573518770672. doi: 10.1177/1179573518770672. PMID: 29881321; PMCID: PMC5987897. [40]Pagel JF, Parnes BL. Medications for the Treatment of Sleep Disorders: An Overview. Prim Care Companion J Clin Psychiatry. 2001 Jun; 3(3): 118-125. doi: 10.4088/pcc.v03n0303. PMID: 15014609; PMCID: PMC181172. [41]Cheung JMY, Ji XW, Morin CM. Cognitive Behavioral Therapies for Insomnia and Hypnotic Medications: Considerations and Controversies. Sleep Med Clin. 2019 Jun; 14(2): 253-265. doi: 10.1016/j.jsmc.2019.01.006. Epub 2019 Mar 29. PMID: 31029191.0.1016/j.jsmc.2019.01.006. [42]Disanto G, Zecca C, MacLachlan S, Sacco R, Handunnetthi L, Meier UC, Simpson A, McDonald L, Rossi A, Benkert P, Kuhle J, Ramagopalan SV, Gobbi C. Prodromal symptoms of multiple sclerosis in primary care. Ann Neurol. 2018 Jun; 83(6): 1162-1173. doi: 10.1002/ana.25247. Epub 2018 May 30. PMID: 29740872. [43]Melson AT, McClelland CM, Lee MS. Ocular myasthenia gravis: updates on an elusive target. Curr Opin Neurol. 2020 Feb; 33(1): 55-61. doi: 10.1097/WCO.0000000000000775. PMID: 31789705. [44]Eckert DJ, Malhotra A. Serotonin modulation of upper airway motor control during sleep in obstructive sleep apnea. *Respir Physiol Neurobiol*. 2015; doi: 10.1016/j.resp.2015.02.001. [45]Demeyer H, Louvaris Z, Frei A, Rabinovich RA, de Jong C, Gimeno-Santos E, Loeckx M, Buttery SC, Rubio N, Van der Molen T, Hopkinson NS, Vogiatzis I, Puhan MA, Garcia-Aymerich J, Polkey MI, Troosters T; Mr Papp PROactive study group and the PROactive consortium. Physical activity is increased by a 12-week semiautomated telecoaching programme in patients with COPD: a multicentre randomised controlled trial. Thorax. 2017 May; 72(5): 415-423. doi: 10.1136/thoraxjnl-2016-209026. Epub 2017 Jan 30. PMID: 28137918; PMCID: PMC5520265. [46]Dooley, J. C., Sokoloff, G., & Blumberg, M. S. (2019). Behavioral States Modulate Sensory Processing in Early Development. *Current Sleep Medicine Reports, 5*(6), 1-6. DOI:10.1007/s40675-019-00144-z. [47]Sweetman, Alexander, et al. "Does comorbid obstructive sleep apnea impair the effectiveness of cognitive and behavioral therapy for insomnia?." Sleep Medicine 39 (2017): 38-46. [48]Halson S. Neurofeedback as a Potential Nonpharmacological Treatment for Insomnia. *J Neurosci Med*. 2017; 45(1): 8-15. doi: 10.5298/1081-5937-45.1.08. [49]Roniger DD, Lechuga YA, León E, González RO, Sánchez Ó, Terán GJ, Moctezuma J. Cognitive behavioral therapy for insomnia improves cognitive impairment. *Brazilian J Med Biol Res*. 2021; 63(4): 126-134. doi: 10.5935/1984-0063.20210026. [50]Burchakov, D. I. (2018). Doxylamine and melatonin in treatment of sleep disruption in gynecological practice. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova, (4), 67. https://doi.org/10.17116/jnevro20181804267 [51]Lee, Ki-Il and Ji Ho Choi. “Positional Therapy for Obstructive Sleep Apnea: Therapeutic Modalities and Clinical Effects.” Sleep Medicine Research (2023): n. pag. [52]Krone LB, Fehér KD, Rivero T, Omlin X. Brain stimulation techniques as novel treatment options for insomnia: A systematic review. J Sleep Res. 2023 Dec; 32(6): e13927. doi: 10.1111/jsr.13927. Epub 2023 May 18. PMID: 37202368; PMCID: PMC10909439. [53]Augedal, A. W., Hansen, K. S., Kronhaug, C. R., Harvey, A. G., & Pallesen, S. (2013). Randomized controlled trials of psychological and pharmacological treatments for nightmares: a meta-analysis. Sleep Medicine Reviews, 17(2), 143-152. [54]Song P, Suh S. Current and Emerging Pharmacotherapies in the Management of Insomnia in Adults. *Clin Invest*. 2012; 12(3): 137-145. doi: 10.4137/CMRT.S10265. [55]Scammell TE. The neurobiology and future of narcolepsy. *Ann Neurol*. 2018; 84(3): 306-316. doi: 10.1002/ana.25247. [56]Spicuzza L, Caruso D. Personalized treatment approaches in obstructive sleep apnea. *Lancet Respir Med*. 2017; 5(7): 556-567. doi: 10.1016/S2213-2600(16)30260-7. [57]Burman D. Sleep disorders: The role of telemedicine in future treatment. *J Telemed Telecare*. 2017; 23(7): 515-522. doi: 10.1177/1357633X17696782. [58]Tang X, Zhang Y. Co-occurrence of obstructive sleep apnea with insomnia: Implications for personalized therapy. *Chin Med J*. 2019; 132(14): 1719-1723. doi: 10.3760/cma.j.issn.0376-2491.2019.28.001.
Copyright @ 2020-2035 STEMM Institute Press All Rights Reserved