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Abstract: In machine vision, point cloud
registration is one of the core elements,
which has been applied to many fields such
as robot localisation, medical image
processing, and autonomous driving. The
main problem solved by point cloud
registration is to solve the rotation matrix
and translation vectors from one point
cloud to another. This paper proposes a
point cloud registration network based on
EdgeConv with spatial attention mechanism.
EdgeConv can dynamically construct graph
structure and build topological
relationships within the point cloud, so that
each point can obtain multi-level feature
representation; the attention mechanism
can capture contextual information and
improve the accuracy of the registration.
Experimental results show that EANet has
higher registration accuracy, stronger
generalisation ability and robustness
compared to ICP, Go ICP, FGR, PCRNet
and PointNetLK.
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1. Introduction
In the realm of machine vision, whose
applications include 3D reconstruction,
workpiece inspection, and robot material
handling, point cloud alignment is a crucial
component. The underlying idea behind point
cloud alignment in the context of machine
vision is that the source point cloud is acquired
by the camera, the collected source point cloud
and the pre-existing template point cloud are
rotated and translated by the point cloud
alignment algorithm, and the two point clouds
are united under the same coordinate system,
resulting in an error value of the two pieces of
the point cloud that is less than the

predetermined threshold value under the given
error evaluation.
Researchers from all over the world have
acknowledged a variety of deep learning
techniques, such as autoencoder, recurrent
neural networks, convolutional neural
networks and so on. in the field of 2D photos,
but they encounter particular difficulties while
processing 3D point cloud data. Because 3D
point clouds differ from 2D images in that they
include replacement invariance and rotational
invariance, neural networks—which are
typically employed to analyse 2D
images—will encounter significant difficulties
while processing point cloud data. Therefore,
it has become a popular area for research into
how to efficiently analyze 3D point cloud data
using neural networks. Researchers typically
use the point cloud voxelisation approach to
address this problem, which transforms point
cloud data into normal voxel grids and feeds
them into convolutional neural networks for
processing. This method, however, results in
more computing work and sparser data. A
significant development in the field of point
cloud deep learning and a solution to the issue
of the mismatch between neural networks and
point cloud data were brought about by the
emergence of PointNet in 2016.The central
concept of PointNet is the implementation of
rotational invariance of point clouds through
T-Net and the insertion of symmetric functions
to achieve substitution invariance of point
clouds. The first widely adopted deep learning
network model for analyzing point cloud data
is called PointNet. Later, a number of variation
models based on PointNet, such PointNet++
and PointCNN, etc., appeared. A great variety
of point cloud alignment techniques based on
PointNet have developed as a result of the
introduction of PointNet to the field of point
cloud deep learning, including PointNetLK[1]

and PCRNet[2] suggested in 2019. All of the
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aforementioned models move the point cloud
data to a high-dimensional space to extract
features using the MLP in the PointNet
model.To apply the optical flow LK algorithm,
which is frequently used for image alignment,
to the field of point cloud alignment,
PointNetLK will treat PointNet as an imaging
function.By analyzing the feature differences
between two point clouds, it determines the
rigid body motion parameters of a point cloud
to achieve point cloud alignment. PCRNet
employs PointNet to extract global features
from the source and target point clouds, unlike
PointNetLK, which treats PointNet as a feature
extractor. Using the fully linked layer of
PCRNet, the global features that were
extracted using PointNet are directly fused.
This results in the generation of a 1x7 feature
vector.The last 3 bits of this feature vector
represent the translation vector, and the first 4
bits represent the quaternion of the bit-pose
transformation between two point clouds.The
distinguishing feature of PCRNet is that it
quickly aligns point clouds in this
straightforward but effective manner, and it is
significantly more resilient than
PointNetLK.Through the use of PointNet,
PCRNet recovers the global features and
integrates them with the feature vectors
produced by the FC layer. In order to
accomplish correct point cloud alignment, this
alignment concept may precisely estimate the
positional transformation parameters between
the source point cloud and the template point
cloud.This approach has the advantage of
avoiding the difficult iterative procedure and
achieving an efficient alignment process by
establishing the relationship between two point
clouds directly from the feature space.
Furthermore, PCRNet's robustness is a
significant advantage in point cloud alignment,
as it can handle point cloud data in
complicated situations with noise, occlusion,
and shape change. However, PCRNet mainly
concentrates on the global features of the point
cloud and overlooks the local features of the
point cloud, resulting in PCRNet's inability to
depict point clouds with complicated
geometric features, and hence the alignment
accuracy needs to be enhanced further.
To improve the registration accuracy of
PCRNet, this paper proposes EANET, a novel
point cloud registration network. To extract
point cloud features, EANET employs the

EdgeConv (DGCNN)[3]. EdgeConv can
directly process point cloud data using this
technique by considering it as graph-structured
data and dynamically modifying the graph
structure after each convolution operation.
EANET successfully captures local properties
of the point cloud while retaining replacement
invariance by employing EdgeConv. EANET
also has an attention mechanism in the feature
fusion module. This addition considerably
enhances the model's performance, resulting in
improved registration accuracy for point
clouds.
The following are our primary contributions:
Propose a new EdgeConv-based point cloud
registration model that performs higher-level
point cloud feature extraction by stacking
EdgeConv modules to extract local point cloud
features and employs the attention mechanism
to increase model performance and registration
accuracy.
Demonstrate the superior performance of the
proposed model by comparing it with existing
mainstream point cloud registration algorithms
on a publicly available dataset and its data
after adding noise.

2. Point Cloud Registration Algorithms

2.1 Traditional Point Cloud Registration
Algorithms
Traditional point cloud registration algorithms
usually consist of two steps: one is coarse, the
other is fine registration. For coarse
registration, the goal is to roughly align two
sets of point clouds in order to provide an
initial rotation matrix and translation vectors
for the subsequent fine registration. Coarse
registration methods can be classified into two
main types: one is global search methods and
the other is geometric feature description
methods. Between them, global search
methods, represented by the RANSAC
algorithm and the 4PCS algorithm, align the
two sets of point clouds by searching for a
subset of possible matches in the point clouds
to find the best rigid-body transformation
model. Geometric feature description methods,
represented by the FPFH algorithm, use
geometric feature descriptors in coarse
registration to quantify the similarity between
point clouds.The FPFH algorithm is based on
normal estimation of the point clouds and local
feature histogram computation, and performs
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the registration by comparing the similarity of
the feature descriptors.
The Iterative Nearest Point (ICP) algorithm is
a traditional method for fine-tuning point
clouds. The technique finds the nearest point
pairings between two pair of point clouds and
iteratively updates the transformation matrix to
minimize the distance between matched points.
However, because the ICP algorithm is a
non-convex optimisation problem, it is easily
trapped in local minima, resulting in
registration failure. Furthermore, the ICP
algorithm is extremely sensitive to noise and
outlier points, and it lacks resilience. Many
scholars have enhanced the ICP algorithm to
address the aforementioned issues. The
Go-ICP[4] algorithm, which effectively
overcomes the local minimum problem by
introducing the branch-and-bound approach
and the ICP algorithm alternately, is one of the
significant advancements. However, it also
lengthens the registration process. Furthermore,
the Go-ICP algorithm is still affected by the
beginning position of the point cloud.

2.2 Point Cloud Registration Algorithm
Based on Deep Learning
Approaches for registering point clouds using
deep learning are categorized into two groups:
global feature-based approaches and point
feature-point feature-based methods. The
major distinction between these two
approaches and conventional point cloud
registration techniques is in the manner in
which point characteristics are extracted.
Neural networks are used to extract features
from the point cloud and use those features in
the matching process in point feature-point
feature based registration approaches.This
method is more expressive than conventional
point cloud registration algorithms since it
automatically learns point features using
neural networks as opposed to other
algorithms' proprietary feature extraction
method. For instance, 3DMatch network,
which uses a 3D convolutional network to
extract local descriptors from input voxelised
point cloud data. Another illustration is the
DCP network. It solves 3D rigid body
transformations using singular value
decomposition (SVD) and uses DGCNN to
extract point features.
In terms of algorithmic concepts, the global
feature-based registration approach differs

somewhat from the point feature-point
feature-based registration method. The global
feature-based registration technique extracts
the global features of the point cloud through a
neural network and solves the 3D rigid-body
transform directly, as opposed to explicitly
computing the correspondence between pairs
of points. Through feature fusion and other
techniques, this method registers the object.
The first international feature-based
registration technique is the PointNetLK
network put forth by Aoki et al. in 2019.
Through the use of a neural network to extract
the point cloud's global features, this technique
uses the classic LK algorithm to solve the 3D
rigid-body transformation and perform point
cloud registration. The global-feature based
registration approach, in contrast to the
point-feature-point-feature based registration
method, executes the registration by collecting
the global features of the point cloud rather
than using an explicit point-pair matching
process. The computational complexity is
decreased and this method is more effective at
handling large-scale point cloud data.

3. EANet Method
In this section, we will describe the EANet
network topology and discuss the purpose of
EdgeConv in point cloud registration networks,
as well as its concepts.

3.1 EdgeConv
EdgeConv is a graph convolution operation for
use in graph neural networks that enhances the
representation of node features by considering
edge information between nodes. Compared
with the traditional graph convolution
operation which only considers the connection
relationship between nodes, EdgeConv can
more fully utilize the neighbouring node
features and edge features of a node.The
computational procedure of EdgeConv is as
follows:
 For each node ip , obtain its set of
neighbouring nodes  ipN .
 Calculate the directed graph  V,EG ,
where V stands for the directed graph's
vertices and E for its individual edges, for each
neighbor node  ij pNp  .
 Denote the point feature of
node ip as ),(~

ijij:(i,ji pppYp   Θ)  and the
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edge feature of
node ip as 





  ijiij pppYe ,Θ ,

FFF RRRY :Θ , ΘY denotes a learnable
nonlinear function containing Θ parameters,
and  denotes the symmetric aggregation
operation.
 Assuming that the input to
layer t is F

n21
t R}p,,p{pP   , the directed

graph of layer t is defined as  ttt ,EVG ,the

edge features of
layer t are 






  i
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ij
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point features of
layer t are
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j:(i,j)i t
t 


 ΘεΨ~ .

 Repeat the above process to achieve the
construction of a dynamic graph structure and
thus dynamic graph convolution.
The EdgeConv implementation process is
shown in Figure 1.

Figure 1. The Diagram of EdgeConv

3.2 Attention Mechanisms
The Channel Attention Mechanism is a
technique for improving the performance of
deep neural networks. Each channel in neural
networks corresponds to a specific feature
information extraction. However, not all
channels are equally significant for the
ultimate goal, and certain channels have
characteristics that contribute more to the
model's performance. By learning the weights
of each channel, the channel attention
mechanism allows the model to automatically
focus on the channels that are more relevant to
the task.
The Spatial Attention mechanism is used to
improve the model's ability to attend to various
spatial places in the input data. The spatial link
between each point is critical during the point
cloud registration process for comprehending
the content and structure of the entire point
cloud. When processing a point cloud, the
Spatial Attention mechanism can assist the
model in automatically focusing on significant
spatial regions, enhancing model performance.

3.3 Network Structure

The EANet network topology corresponds to
PCRNet, and the detailed network structure is
depicted in Figure 2. Where the full name of
CA is channel attention, it means the channel
attention mechanism and the full name of SA
is spatial attention, it means the spatial
attention mechanism.
Suppose the source point cloud
is }R,n,|i{PP iSS 31   and the model point cloud

is }R,n,|i{PP iTT 31   . R means the
rotation matrix. T means the translation
matrix. Calculating )(3SOR0 and 0T is the
main purpose of point cloud registration. The
error between the source point
cloud }R,n,2,1|i{PP 3

SS i   and the model

point cloud }R,n,2,1|i{PP 3
TT i   will

eventually reach a predetermined value after
the rotation matrix )(3SOR 0 multiplied by
the stencil point cloud

}R,n,2,1|i{PP 3
TT i   , and the

translation vector 0T added.
To extract the point cloud features, EANet
uses the EdgeConv module. First, it extracts
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the features from the 3N  point cloud and
uses EdgeConv to integrate the point cloud's
dimensions to 64N  , and then it extracts the
features from the 64N  point cloud and uses
EdgeConv to integrate the dimensions
to 128N  ,and then take the point cloud's
features, increase the dimensions in
accordance with the aforementioned procedure,
the remaining dimensions

are 256N and 512N , respectively,stitch
the features extracted at each iteration together
to produce the point
cloud's 1024N  dimensional features, and
finally, by the Max pooling operation,
integrate 1024N  to 10241 to obtain the
1024 dimensional features of the point cloud

1024F .The precise formulas for extracting
point cloud features are as follows:

)E(F),FE(F),FE(F),FE(XF 256N512N128N256N64N128N3N64N   (1)
))),F,F,F,FCat(FMax(CAF 512N256N128N64N64N1024  ( (2)

Where 3NX  denotes the original point

cloud, 64NF  denotes the point cloud features
mapped from 3 dimensions to 64 dimensions
by

EdgeConv, 128NF  , 256NF  , 512NF  , 1024NF  deno
te the 128-dimensional, 256-dimensional,
512-dimensional, and 1024-dimensional point
cloud features, respectively, the

function )E(  denotes the EdgeConv module,

and the function )Max(  denotes the

maximum pooling. )CA(  denotes the
channel attention mechanism,

and )Cat(  denotes the point cloud feature
splicing.

The feature 1024XF is extracted from the source

point cloud 3NX  and the feature 1024YF is
extracted from the stencil point cloud 3Y ,

the 1024XF is fused with 1024YF using the
concatenate operation to get the incorporated
feature 2048F of the two point clouds,
the 2048F is processed using the spatial

attention mechanism (SA) to get the 2048SAF ,

and the 2048SAF is inputted into a fully
connected layer (FC) with dimensions of
( 1024, 1024, 512, 512, 256) fully connected
layer (FC) with dimension 7 and the output
layer for regression processing to obtain

the 71 vector q,tP .The specific formula for
the point cloud positional pose regression is as
follows:

))),((( 1024Y1024Xq,t FFeconcatenatSAFCP 
(3)

The first four bits of q,tP are the quaternion q ,
and the last three bits are the translation vector
t . Finally, the quaternion q is converted to the
rotation matrix )(3SOR0 , and the point cloud

is processed using )(3SOR0 and 0t to achieve
point cloud registration.The iterative process
of EANet is the same as that of PCRNet, and
will not be repeated here. The specific formula
for point cloud registration regression is as
follows:

0T0S tPRP  (4)

Figure 2. The Framework of the Network Model
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3.4 Loss
The specific formula for the loss function of
EANet is as follows:

2
yy

2
y

g
y

gttIRR xxxxLoss  
(5)

where yRx and ytx denote the predicted rotation
matrix and translation vectors,

y
gR x and yt x

g
denote the really rotation matrix

and translation vectors, and  is the translation
correction factor.

4. Experimental Results
Use ModelNet40 standard dataset to train the
network model, running under Ubuntu 20.04
environment with PyTorch 1.10.0 as the deep
learning framework. The Adam (Adaptive
Moment Estimation) gradient descent
optimiser was used with an initial learning rate
of 0.001 and the learning rate was multiplied
by 0.1 for every 50 epochs, with a batch_size
of 24 and 250 epochs for both the training and
test sets.For the hardware part, an NVIDIA
A40 with 48G of memory was used.
In this section, we conduct tests to compare
EANet to five well-known point cloud
techniques. The experiments make use of data
from[5] and. Performance is measured using the
metrics RMSE(R) and MAE(R) for rotation
error and RMSE(t) and MAE(t) for translation
error. These metrics allow us to properly
measure the discrepancy between the expected
values and the actual values.
The results of EANet's point cloud registration
are shown in Figure 3. The source point cloud
is shown in green, the model point cloud is

shown in red, and the registered point cloud is
shown in blue in the figure.

Figure 3. Registration Results

On the original dataset, Table 1 shows the
experimental results for our model and five
other widely used techniques using the
evaluation metrics. In terms of RMSE(t) and
MAE(t), where it performs much better than
the other approaches, our model exceeds them
in all four evaluation criteria. This shows that
our method effectively improves point cloud
registration accuracy while reducing
translation error.

Table 1. Results from the Original Dataset
Model RMSE(R) RMSE(R) RMSE(t) MAE(t)
ICP 29.914835 23.544817 0.290935 0.248755

Go-ICP 11.852313 2.588463 0.025665 0.007092
FGK 9.362772 1.999290 0.013939 0.002839

PointNetLK 15.095374 4.225304 0.022065 0.005404
PCRNet 4.177078 2.628245 0.015526 0.010579
Ours 2.642963 1.163153 0.004366 0.001428

Table 2 displays the experimental findings of
our model and the remaining five widely used
algorithms on the dataset with invisible
categories using the above evaluation
techniques. In all four evaluation methods, our
model produces the best results, but the results

of our MAE(R) are comparable to those of
FGK's MAE(R), and the results of this
RMSE(t), MAE(t), are significantly better than
those of the other five methods, indicating that
our method has a stronger capacity for
generalization.
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Table 2. Results for the Invisible Category Dataset
Model RMSE(R) MAE(R) RMSE(t) MAE(t)
ICP 29.876431 23.626110 0.293266 0.251916

Go-ICP 13.865736 2.914169 0.022154 0.006219
FGK 9.848997 1.445460 0.013503 0.002231

PointNetLK 17.502113 5.280545 0.028007 0.007203
PCRNet 4.281822 2.693274 0.013912 0.009988
Ours 2.771542 1.188554 0.005188 0.001991

Table 3 displays the experimental findings for
our model and the remaining five widely used
algorithms utilizing the Gaussian noise
datasets and the above evaluation techniques.
Though our MAE(R) and MAE(t) results do

not clearly distinguish us from the other
techniques, our model still produces the best
results using all four evaluation methods,
demonstrating the method's superior noise
immunity and robustness

Table 3. Results for Gaussian Noise Dataset
Model RMSE(R) MAE(R) RMSE(t) MAE(t)
ICP 29.707983 23.557217 0.290752 0.249092

Go-ICP 11.453493 2.534873 0.023051 0.004192
FGK 24.651468 10.055918 0.027393 0.002231

PointNetLK 16.004860 4.595617 0.021558 0.005652
PCRNet 4.219825 2.675704 0.015368 0.010528
Ours 2.693031 1.163334 0.004649 0.001974

5. Conclusions
EANet outperforms ICP, Go ICP, FGR,
PCRNet, and PointNetLK in terms of
registration accuracy, generalisation ability,
and resilience. This demonstrates that
combining EdgeConv with the spatial attention
mechanism can significantly increase model
performance, and it demonstrates that it is
viable and effective to include a module that
can extract local features during the point
cloud feature extraction process.
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