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Abstract: The modernization of agricultural
technology holds an important position in
achieving sustainable agricultural
development. Practice has shown that
greenhouse agriculture will play a
significant role in future agricultural
development. This study utilized data
envelopment analysis (DEA) to evaluate the
production efficiency of greenhouse
vegetable cultivation. An efficiency
evaluation model was established with
greenhouse temperature and light radiation
intensity as input indicators, and fruit yield,
soluble solids content, lycopene content, and
sugar-to-acid ratio as output indicators.
Based on the environmental and production
data collected from the greenhouse, the
DEAFrontier software was used to calculate
planting efficiency. The optimal production
input was determined through result
analysis to achieve the highest planting
efficiency. Furthermore, optimization was
conducted for production methods with
lower efficiency, providing reference and
basis for technological innovation in
greenhouse agriculture.
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1. Introduction
As one of the most populous countries in the
world, agriculture in China plays a crucial role
in national food security and economic
stability. Large connected greenhouses are vital
facilities in modern agriculture and horticulture
[1]. Typically composed of a series of
interconnected greenhouse modules, they are
primarily used for cultivating vegetables, fruits,
and other crops [2]. the integrated operation of
connected greenhouse modules allows for
controlled environmental conditions, including
temperature, humidity, light, and ventilation,

enabling growers to cultivate a variety of fruits
and vegetables throughout the year without
being constrained by seasonal weather.
Simultaneously, environmental control within
the greenhouse optimizes crop growth
conditions, increasing yields and improving
the quality and taste of agricultural products,
aiming at achieving efficient agricultural
production.
In recent years, large connected greenhouses
have flourished in China, with continuously
expanding newly constructed areas, and
greenhouse technologies becoming
increasingly mature. However, greenhouse
agriculture faces challenges during its
development, notably the issue of energy costs.
Maintaining constant environmental conditions
within the greenhouse often requires a
significant amount of energy [3], particularly
in the northern regions of China where winter
heating demands are substantial. Therefore,
high energy costs may render greenhouse
agriculture economically unviable, and the
associated energy emissions could pose
sustainability challenges. Considering the
advantages and disadvantages of connected
greenhouse agriculture, achieving high-quality
and high-yield crops with minimal energy
consumption is a developmental goal.
Consequently, scientifically evaluating the
production efficiency of greenhouse
agriculture and providing valuable insights for
the development of large connected
greenhouses have significant research value.
DEA (Data Envelopment Analysis) was first
proposed by eminent scholars in the field of
operations research, including Charnes, Cooper,
and Rhodes, in 1978. It is a method for
measuring the relative efficiency of decision-
making involving multiple inputs and outputs
[4, 5]. Its primary computational basis lies in
mathematical programming from the field of
operations research [6]. As a non-parametric
method, DEA does not require knowledge of
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the functional relationships between inputs and
outputs within the evaluated decision-making
units but rather allows the "data to speak for
themselves" [7].
Today, data envelopment analysis has been
widely applied in various fields for efficiency
evaluation and decision analysis, continuously
expanding and improving in its applications.
Lu Shuai et al. [8] used a two-stage DEA
method to evaluate fund performance. Quan
Wei et al. [9] employed a DEA model to
evaluate the efficiency of resource allocation in
grassroots healthcare in Chongqing. Li-Jun
Sun et al. [10] used DEA to assess the
efficiency of corporate financing. In the field
of agriculture, Ai-Jun Li et al. [11] studied the
efficiency of agricultural supply chains using
the DEAmethod. Xu Qiuyan and Han Hao [12]
conducted research on the production
efficiency of garlic cultivation in China using a
DEAmodel.
From the current research status, it is evident
that most scholars employ DEA models to
study the production efficiency of agriculture
or specific agricultural products from a macro
perspective. Therefore, conducting research on
the input-output efficiency of specific
vegetable varieties in connected greenhouse
cultivation is of significant importance for
improving the economic viability of
greenhouse agriculture.

2. Theoretical Model and Data Sources
The Data Envelopment Analysis (DEA)
method originates from the interdisciplinary
fields of operations research, mathematical
economics, and management science. the
fundamental idea behind measuring efficiency
is that if a group of homogeneous decision-
making units collectively defines a production
possibility set, determining the effectiveness of
a decision unit is based on whether it lies on
the "production frontier" of this set. the
production frontier is an extension in
economics of the production function to a
multi-output context.
Efficiency for decision units is generally
defined as 1 for those on the frontier, while the
efficiency measure for inefficient decision
units is defined as their relative distance from
the frontier. Due to DEA's inherent economic
background, models established from input
and output data based on DEA theory can be
directly utilized for economic analysis. The

classical DEA models primarily fall into two
categories. One assumes constant returns to
scale, known as the CCR model, and the other
allows for variable returns to scale, known as
the BCC model.

2.1 CCRModel
Assuming there are n decision-making units
(DMUs), each DMU having m types of inputs
(resource consumption) and s types of outputs
(benefits of production), the expression for the
CCR programming model is as follows:
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Assuming there are n decision-making units
(DMUs), each DMU having m types of inputs
(resource consumption) and s types of outputs
(benefits of production), the expression for the
CCR programming model is as follows:
Here,

jX and
jY represent the input and output

vectors of the decision-making unit,
respectively, is known data obtained through
statistics. j is the weight vector for inputs and

outputs, S  is a slack variable, S  is a residual
variable, and  is an infinitesimal quantity
according to Archimedean property.  is the
efficiency evaluation index, with a maximum
value not exceeding 1. the economic
significance of the efficiency evaluation index
is as follows: when 1  , it indicates that the
decision-making unit is efficient, maintaining
the current input while achieving optimal
output; when 1  , it indicates that the
decision-making unit is inefficient, suggesting
the existence of input redundancy or
insufficient output. For inefficient decision-
making units, the closer the efficiency
evaluation index is to 1, the relatively higher
the production efficiency.
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2.2 BCC Model
In CCR model, there is an assumption that
scale returns remain constant, meaning the
ratio of output increase to input increase
remains constant. In actual production, scale
effects often vary with changes in input and
output scales. To address this, operations
researchers such as Banker, Charnes, and
Cooper extended the CCR model to establish
the BCC model, which allows for variable
returns to scale. the programming expression
for the BCC model is as follows:
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In BCC model, the definition of the
effectiveness of decision-making units aligns
with the CCR model. the efficiency value of
the same decision-making unit in the BCC
model is lower than in the CCR model.
Therefore, decision-making units deemed
efficient in the BCC model are also efficient in
the CCR model. the BCC model represents an
enhancement of the CCR model, offering a
more flexible consideration of scale elasticity
and different input-output orientations while
focusing on efficiency assessment. This
enables better adaptation in evaluating
efficiency across different production scales.

2.3 Data Sources and Indicator Selection
Using the connected greenhouse located in the
Daguanyuan area of Xiaotangshan, Beijing, as

the experimental site, and focusing on
greenhouse tomatoes as the research subject,
over ten greenhouses were selected as
observation points in each of the six regions.
Environmental data, including temperature,
humidity, and effective radiation inside the
greenhouse, were collected. Growth data, such
as yield, quality, and plant development
indicators of long-season cultivated tomatoes,
were measured. In total, 85 decision-making
units were formed.
In conjunction with the research by Han Zequn
[13] on identification indicators and screening
methods for processing tomato quality traits,
soluble solid content, tomato lycopene content,
and the sugar-acid ratio were chosen as output
indicators for fruit quality. Temperature and
effective radiation were selected as input
indicators for production. the average values of
these indicators within the same observation
point were taken as a set of production
decision-making units. Data collection for the
greenhouse environment in Region 1 is
presented in Table 1.

3 Empirical Analysis

3.1 CCRModel
To analyze the environmental conditions for
the efficient production of high-quality and
high-yield tomatoes, greenhouse
environmental indicators are used as inputs,
and fruit yield indicators are used as outputs.
the DEAFrontier software is employed, and
through an input-oriented CCR model, the
production efficiency of each greenhouse
collection point is calculated. Partial
calculation results are shown in Table 2.

Table 1. Greenhouse Environment and Tomato Growth Data (Region 1)

Region 1
CollectPoint

Input Output
Temperature
/℃

Radiation/
2 2mol m s   

Yield/k
g

Soluble
Solid/%

lycopene
mg/100g

SugarAcidRa
tio

CollectPoint 1 21.18 128.09 623.88 5.25 9.06 9.28
CollectPoint 2 20.10 99.98 914.70 5.45 8.79 8.58
CollectPoint 3 18.69 133.14 657.42 5.15 8.91 7.63
CollectPoint 4 21.39 98.18 777.23 5.29 9.28 6.92
CollectPoint 5 21.43 105.65 527.07 5.18 7.51 7.61
CollectPoint 6 20.60 114.95 664.92 4.95 6.65 8.13
CollectPoint 7 21.26 103.65 528.34 5.96 9.63 7.53
CollectPoint 8 21.43 90.88 515.80 5.29 8.96 8.48
CollectPoint 9 20.83 107.97 1441.12 5.45 8.23 7.60
CollectPoint 10 28.90 123.19 1429.68 3.24 4.70 7.09
CollectPoint 11 26.02 220.05 1591.93 3.21 3.87 6.42
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CollectPoint 12 27.12 133.52 1574.92 3.40 5.27 9.73
CollectPoint 13 21.76 91.19 1422.83 3.68 4.69 5.08
CollectPoint 14 21.71 109.10 1200.62 3.72 4.82 6.72
CollectPoint 15 20.77 96.41 1062.43 3.69 4.84 7.70
CollectPoint 16 20.90 120.30 1312.27 3.69 5.13 8.74

Table 2. CCR Model Result(Region 2)

CollectPoint(Regio
n-Point)

Efficienc
y

Optimal Multiplier
Temperature/
℃

Radiation/
2 2mol m s    Yield /kg Soluble

Solid/%
Lycopen
mg/100g

SugarAcid
Ratio

CollectPoint 2-1 1.0000 0.00000 0.01369 0.00091 0.00000 0.00000 0.00000
CollectPoint 2-2 1.0000 0.04002 0.00218 0.00000 0.00000 0.12888 0.00000
CollectPoint 2-3 1.0000 0.05050 0.00000 0.00000 0.12213 0.06649 0.00000
CollectPoint 2-4 0.9451 0.04570 0.0000 0.00006 0.00000 0.11372 0.00000
CollectPoint 2-5 0.9632 0.04575 0.00000 0.00006 0.00000 0.11383 0.00000
CollectPoint 2-6 1.0000 0.03551 0.00244 0.00002 0.22405 0.00000 0.00000
CollectPoint 2-7 1.0000 0.00000 0.00983 0.00000 0.00000 0.01227 0.09502
CollectPoint 2-8 0.8708 0.04713 0.00000 0.00000 0.00000 0.09140 0.03812
CollectPoint 2-9 1.0000 0.02622 0.00492 0.00081 0.00000 0.00000 0.00000
CollectPoint 2-10 0.9551 0.04829 0.00000 0.00020 0.15094 0.00000 0.02441
CollectPoint 2-11 0.8320 0.04710 0.00000 0.00042 0.02817 0.00000 0.05713
CollectPoint 2-12 0.9912 0.03833 0.00220 0.00000 0.20853 0.00000 0.01727
CollectPoint 2-13 0.9350 0.04728 0.00000 0.00000 0.16499 0.00000 0.03173
Table 2 presents the production efficiency and
indicator weights for each data collection point
in Region 2. In the second column of the table,
the production efficiency of each decision-
making unit is displayed. Six sets of input
combinations achieve optimal production
efficiency, while the remaining seven decision-
making units have efficiencies less than 1. This
suggests that, for these seven decision-making
units, there is room for improvement in both
fruit yield and quality at their current input
levels. Alternatively, it could indicate that
environmental input should be reduced given
the current levels of yield and fruit quality.
Columns three to five of the table represent the
weights for each indicator. These weights are
determined to maximize the production
efficiency of the current decision-making unit.
the magnitude of these weights reflects the
relative importance of each indicator,
providing insights into or aligning with
decision-makers' preferences for each indicator.
For instance, Collection Points 2-1 and 2-2
both achieve optimal production efficiency. the
difference lies in the output aspect: for
Collection Point 2-1, the yield weight is the
highest, while for Collection Point 2-2, the
lycopene weight is the highest. Therefore, if
the grower leans towards increasing yield, the
input combination for Collection Point 2-1 is
more favorable. Conversely, if the focus is on

increasing the lycopene content in fruit quality,
the input combination for Collection Point 2-2
is more favorable.
Similarly, Collection Points 2-3 and 2-7 both
achieve optimal production efficiency. In terms
of input, Collection Point 2-3 has a higher
temperature weight, while Collection Point 2-7
has a higher effective radiation weight.
Consequently, if the cost of maintaining
greenhouse temperature is higher, the input
combination for Collection Point 2-3 is more
favorable. If the cost of radiant energy is
higher, then the input combination for
Collection Point 2-7 is more favorable.
To comprehensively analyze the characteristics
of multiple input combinations across data
collection points in each region, the decision-
making units that achieve optimal production
efficiency and their indicator weights are
summarized in Table 3.
Table 3 presents the decision units from each
data collection point with a production
efficiency of 1 (optimal efficiency). It lists the
weights of input data and output indicators for
each unit. Combining the results allows for a
comprehensive analysis:
(1)From Table 3, it can be observed that when
the greenhouse temperature is maintained
between 20℃ and 22℃:

If the grower prioritizes increasing
fruit yield, the optimal production efficiency is
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achieved with an average photosynthetic
radiation intensity of around 73 2 2mol m s    .

If the primary goal is to enhance fruit
quality (soluble solids content and lycopene
content), the optimal production efficiency is
attained with a photosynthetic radiation
intensity of approximately 129 2 2mol m s    .

If the focus is on improving fruit
texture (sugar-acid ratio), the optimal
production efficiency is achieved with a
photosynthetic radiation intensity of around
128, 2 2mol m s    and the temperature is
controlled at approximately 21°C.
(2)From Table 3, it can be observed that when
the greenhouse temperature is maintained
between 23℃ and 26℃:

If the primary goal is to increase fruit
yield, the optimal production efficiency is
achieved with a photosynthetic radiation
intensity of approximately 96 2 2mol m s    ,
and the temperature is controlled at around

25°C. Original production data indicates that at
this point, the yield is approximately twice that
of the input combination at 20°C with a
radiation intensity of 73 2 2mol m s    .

If the focus is on improving taste, the
optimal production efficiency is attained with a
photosynthetic radiation intensity of about
151 2 2mol m s    , and the temperature is
controlled at around 25°C. Production data
shows that at this point, the sugar-acid ratio is
approximately 1.7 times that of the input
combination at 21°C with a radiation intensity
of 128 2 2mol m s    .

If the main objective is to enhance
fruit quality, the optimal production efficiency
is achieved with a photosynthetic radiation
intensity of around 113 2 2mol m s    , and the
temperature is controlled at approximately
23°C. Additionally, at this level of production
input, the fruit's taste is significantly improved.

Table 3. Optimal DMU in CCR Model

CollectPoint
(Region-Point)

Input Output

Temperature/℃
Radiation/

2 2mol m s    Yield /kg Soluble
Solid/%

lycopene
mg/100g SugarAcidRatio

CollectPoint 1-1 21.18 128.09 0.00000 0.00000 0.00000 0.10772
CollectPoint 1-9 20.83 107.97 0.00046 0.00000 0.04151 0.00000
CollectPoint 1-13 21.76 91.19 0.00070 0.00000 0.00000 0.00000
CollectPoint 2-1 20.30 73.06 0.00091 0.00000 0.00000 0.00000
CollectPoint 2-2 20.17 88.53 0.00000 0.00000 0.12888 0.00000
CollectPoint 2-3 19.80 129.55 0.00000 0.12213 0.06649 0.00000
CollectPoint 2-6 20.75 107.74 0.00002 0.22405 0.00000 0.00000
CollectPoint 2-7 20.73 101.71 0.00000 0.00000 0.01227 0.09502
CollectPoint 3-4 23.23 113.69 0.00000 0.00000 0.08852 0.04071
CollectPoint 3-5 23.98 106.29 0.00000 0.00000 0.12537 0.00000
CollectPoint 4-4 26.19 144.17 0.00000 0.00000 0.03404 0.00000
CollectPoint 4-6 25.27 151.68 0.00000 0.00000 0.00000 0.05917
CollectPoint 4-10 25.04 96.26 0.00047 0.00000 0.00000 0.00000
CollectPoint 4-18 26.83 105.79 0.00029 0.00000 0.00000 0.03976
CollectPoint 5-7 27.03 202.90 0.00021 0.11980 0.00000 0.01132
CollectPoint 5-8 27.27 203.19 0.00027 0.00000 0.02606 0.03861
CollectPoint 5-17 28.63 145.10 0.00048 0.00000 0.00000 0.00000
CollectPoint 5-18 27.55 114.16 0.00052 0.00000 0.04379 0.00000
CollectPoint 3-13 28.17 105.99 0.00077 0.00000 0.00000 0.00000
CollectPoint 3-2 23.11 99.16 0.00016 0.15399 0.02951 0.02763
CollectPoint 5-1 28.92 201.65 0.00005 0.13037 0.00920 0.00582
(3) According to Table 3, the input
combination of 23.11°C and
99.16 2 2mol m s    at Collection Point 3-2,
under relatively low input conditions, exhibits
positive weights for all output indicators. This

indicates that when growers seek a balanced
improvement in both yield and quality without
excessively emphasizing a single indicator, the
production efficiency is optimal under these
environmental conditions. Therefore, the
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analysis of production efficiency can serve as a
reference for production decisions under
different types and levels of requirements.

3.2 BCC Model
In the results of the CCR model, multiple
decision units achieve optimal production
efficiency. To further optimize efficiency and
increase output, decision units with a larger
sum of output indicator weights are selected.
Using fruit yield as the output, an input-
oriented BCC model with variable returns to
scale is employed for production efficiency
calculation. the discussion revolves around
how to allocate inputs reasonably to achieve
efficiency optimization without reducing
output.
Table 4 presents the effective input
combinations within the BCC model's efficient
decision units, which also happen to be

effective input combinations in the CCR model
with fruit yield as output. These decision units,
while ensuring that fruit yield remains
unchanged, already operate at the most energy-
efficient levels of input, representing the
optimal environmental input levels
corresponding to different yield goals. This is
also referred to as Pareto optimality.

Table 4. Optimal DMU in BCCModel

CollectPoint
(Region-Point)

Input Output
Tempera
ture/℃

Radiation
/ 2 2mol m s   

Yield/k
g

CollectPoint 1-2 20.10 99.98 914.70
CollectPoint 1-9 20.83 107.97 1441.12
CollectPoint 6-14 24.95 158.42 2287.37
CollectPoint 4-10 25.04 96.26 2136.83
CollectPoint 4-11 24.69 97.20 1703.24
CollectPoint 2-1 20.30 73.06 1104.95

Table 5. BCC Model Result

CollectPoint
(Region-Point)

Efficienc
y

Input Target Virtual Unit
Tempera
ture/℃

Radiation/
2 2mol m s   

Bench
mark-1 Share Benchmark-2 Share Benchma

rk-3 Share

CollectPoint 1-13 0.98363 21.41 89.69 1-9 0.347 4-10 0.195 2-1 0.458
CollectPoint 1-17 0.97534 20.25 79.08 1-2 0.224 2-1 0.766 —— ——
CollectPoint 1-18 0.98701 20.62 94.59 1-9 0.617 2-1 0.383 —— ——
CollectPoint 6-2 0.93153 20.47 84.10 1-9 0.316 2-1 0.684 —— ——
CollectPoint 6-6 0.89874 20.14 93.83 1-2 0.772 2-1 0.228 —— ——
CollectPoint 6-11 0.97457 23.27 55.60 4-11 0.677 2-1 0.323 —— ——
CollectPoint 6-13 0.96121 22.98 83.22 4-10 0.507 4-11 0.062 2-1 0.431
CollectPoint 5-6 0.78980 20.10 99.98 1-2 1.000 —— —— —— ——
CollectPoint 5-8 0.74084 20.20 86.50 1-2 0.499 2-1 0.501 —— ——
CollectPoint 5-17 0.85294 24.42 123.76 1-9 0.138 6-14 0.416 4-10 0.446
CollectPoint 5-18 0.78739 21.69 89.89 1-9 0.310 4-10 0.259 2-1 0.431
CollectPoint 4-18 0.82425 22.11 87.19 1-9 0.162 4-10 0.365 2-1 0.473
CollectPoint 3-13 0.74940 21.11 79.43 1-9 0.074 4-10 0.163 2-1 0.763
CollectPoint 2-13 0.96439 20.52 86.71 1-9 0.389 4-10 0.004 2-1 0.608
According to Table 5, the 14 effective decision
units in the C2R model are considered
ineffective in the BC2 model. This is because,
under variable returns to scale conditions,
these decision units can consume fewer
environmental inputs while maintaining their
output. In other words, there is input
redundancy. the reference baseline for
optimizing input to achieve maximum
production efficiency is represented by the
effective decision units in the BC2 model, as
listed in Table 4. These six input-output
combinations collectively form the "production
frontier" of a data envelopment model, also
known as the data envelopment surface. It

provides a direction for improvement for
ineffective decision units.
For instance, the decision unit corresponding
to Collection Point 5-18 has a production
efficiency of approximately 78.7% in the BC2

model. Its reference baselines on the data
envelopment surface are Collection Points 1-9,
4-10, and 2-1, with benchmark shares of 0.31,
0.259, and 0.431, respectively. This means that
31% of the temperature data in the input
projection of Collection Point 5-18 comes
from the temperature of Collection Point 1-9,
25.9% from Collection Point 4-10, and 43.1%
from Collection Point 2-1. the calculation
method for the projection of light radiation
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intensity on the envelopment surface is similar.
the input projection obtained by combining
these three reference baselines through linear
combination for "joint production" is 21.69℃
and 89.89 2 2mol m s    . At this point, input
consumption is lower than the original data,
and production efficiency can be improved to
the optimal level. It is evident from the results
that Collection Points 1-9 and 2-1 appear more
frequently in the reference baselines of
ineffective decision units, reflecting their more
prominent efficiency levels in the CCR model
with fruit yield as the output indicator.
To compare the consumption of input
projections in the CCR model with the
consumption of original data from data
collection points, an environmental input
consumption indicator C is introduced. Its
value is the product of temperature value T and
light radiation intensity value R, i. e.
C T R  . Figure 1 displays the original
input consumption and the consumption of
input projections for the decision units as
shown in Table 5. From Figure 1, it is evident
that the consumption after projecting onto the
data envelopment surface is significantly lower
than the consumption of the original inputs.
Collection points 5-6 and 5-8, in particular,
show savings in input consumption of over
50%. This indicates that by using the optimal
reference baseline derived from the CCR
model to calculate the best benchmark shares,
input costs can be reduced while ensuring no
decrease in yield. This effectively enhances the
economic and sustainable aspects of crop
production.

Figure 1. Comparison of Original and
Target Input Indicator

4 Conclusion and Outlook
(1) Based on the data envelopment analysis
model, taking greenhouse tomatoes as an

example, and combining the selection
principles of fruit trait identification indicators,
we have established a large-scale continuous
greenhouse vegetable cultivation efficiency
evaluation model. This model utilizes
greenhouse environmental conditions as input
indicators and fruit yield and quality as output
indicators.
(2) Through CCR model calculations and
analysis of different greenhouses located in
Xiaotangshan, Beijing, the results indicate the
following optimal input combinations for
improving various aspects:

For increasing fruit yield, the optimal
planting efficiency is achieved with
temperature at 20°C and light radiation
intensity at 73 2 2mol m s    , as well as
temperature at 25°C and light radiation
intensity at 96 2 2mol m s    .

For enhancing fruit quality, the
optimal planting efficiency is attained with
temperature at 20°C and light radiation
intensity at 129 2 2mol m s    , as well as
temperature at 23°C and light radiation
intensity at 113 2 2mol m s    .

For improving fruit taste, the optimal
planting efficiency is observed with
temperature at 21°C and light radiation
intensity at 128 2 2mol m s    , as well as
temperature at 23°C and light radiation
intensity at 113 2 2mol m s    .
(3) In response to the optimal environmental
input combinations for planting efficiency in
the CCR model, further cultivation efficiency
calculations were conducted using the BCC
model, with fruit yield as the output indicator.
the results indicate that there are 6 sets of
temperature and light input combinations
where planting efficiency is optimal, while the
remaining combinations exhibit input
redundancy. the optimal 6 input combinations
for planting efficiency can serve as reference
benchmarks for other combinations. According
to the model results, input combinations
constructed based on the benchmark shares
derived from the model can reduce input costs
without decreasing the original yield, thereby
achieving optimal cultivation efficiency.
(4) Through the evaluation and analysis of
greenhouse cultivation efficiency, valuable
insights are provided for production decisions
in greenhouse agriculture. This aims to
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enhance agricultural supply capacity and meet
diverse food demands. Large continuous
greenhouses play an increasingly important
role in agricultural production, with potential
for further improvement in planting efficiency.
Analyzing the results of input-oriented data
envelopment analysis, one key pathway to
enhancing overall greenhouse planting
efficiency is by improving input redundancy.
From an input perspective, the results obtained
from the model calculations can offer targeted
guidance for greenhouse environmental control
at different cost levels, particularly in response
to fluctuations in the energy market. On the
other hand, planting efficiency also quantifies
output gaps, providing reference and scientific
basis for improving and optimizing resource
utilization. This, in turn, promotes innovation
in planting technologies and management
methods, thereby enhancing the stability and
economic viability of greenhouse agriculture.
In summary, establishing and refining the
greenhouse cultivation efficiency evaluation
mechanism is crucial for reducing costs,
increasing efficiency, driving agricultural
technological innovation, and achieving
sustainable agricultural development.
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