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Abstract: Processing experimental data
with uncertainty is a huge challenge for
robust regression modeling and
high-accuracy data forecasting. The
objective of the present study is the
development of a robust support vector
regression model for processing observed
data of independent variables containing
polyhedral perturbation and achievement of
high forecasting precision. Firstly, the
conception of the data collection of
polyhedral perturbation is given and
analyzed. Secondly, a novel robust support
vector regression model is constructed by
replacing the original independent variables
in a linear support vector regression model
with the independent variables containing
polyhedral perturbation. Thirdly, the novel
robust linear support vector regression
method is also expanded to the non-linear
regression model. Both the two models are
validated by the linear and nonlinear
numerical regression experiments.
Comparison of the experimental results
show that the proposed method provide
more accurate predictions than the
traditional regression method for processing
data with polyhedral perturbation.
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1. Introduction
Regression analysis is a numerical modeling
and analysis technique for estimating the
quantitative relationship between one
dependent variable and single independent
variable or multiple independent variables. In
recent years, it has became the best-known and
most important data processing method owing
to the increased importance of data prediction

in engineering fields. However, poor and
insecure prediction precision of the traditional
regression algorithms has limited the
development of the data processing methods
for a long time. Some machine learning
modeling methods such as least squares
regression, decision tree learning, the Bayesian
method, support vector regression (SVR),
artificial neural networking and deep learning
have been developed to improve their
forecasting accuracy [1]. SVR is particularly a
powerful tool for solving small-sample
learning problems, and is used for data
prediction and optimization of process
parameters in engineering applications.
Nevertheless, the regression hyperplane of the
traditional support vector machine is sensitive
to noise. In addition, the uncertainty of the
independent variables has always been ignored.
Only few previous studies considered the
effect of the perturbed independent variables
on the existence and optimality of the solution
of the regression model [2]. It thus becomes
necessary to develop a robust regression
modeling technique that could be used to
process observed data of the independent
variables containing noise and possesses
favourable and stable prediction precision.
Many researchers have put great attentions on
development of novel support vector machine
for processing data with perturbation. In Luo’s
study [3], a kernel-free quadratic surface
support vector regression model based on
optimal margin distribution was built. It
minimizes the variance of the functional
margins of all data points to achieve better
generalization capability. When the data points
exhibit uncertainty, the covariance information
of noise is employed to construct a robust
model which ensures its worst-case
performance. The probabilistic constraints in
the proposed model were proven to be
equivalently reformulated as second-order
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cone constraints for efficient implementation.
A new relaxed support vector regression is
constructed by Panagopoulos [4] based on the
concept of constraint relaxation which leads to
increased robustness in datasets with outliers.
The model is formulated using both linear and
quadratic loss functions. Numeric experiments
proved that the novel method achieves better
overall performance than support vector
regression. Alzalg [5] derived an infeasible
interior-point algorithm for the same stochastic
optimization problem by utilizing the
deterministic symmetric cone programs. It was
showed that the infeasible interior-point
algorithm has less complexity and more
efficiency than that of the homogeneous
self-dual algorithm. A novel second-order cone
programming formulation is proposed by Dong
[6] for the soft-margin support vector machine.
Actually, all the modeling and solving issues
of the robust support vector machines are the
programming problems in mathematics. The
rapid development of robust optimization
tecnology was independently promoted by
Robert W. Hanks, Mir Saman Pishvaee,
Mhammadreza Chamanbaz, Milan Hladík, and
Julio López [7–11]. The works of these
researchers focused on the need for the
execution of more complex computations in
robust second-order cone programming
(SOCP), robust semi-definite programming
(SDP) and non-deterministic polynomial-time
(NP) hard problems, which were respectively
derived from robust linear programming (LP),
SOCP and SDP through the introduction of the
conception of general perturbed data set
[12–15]. Ye [16] established
explicit formulas for the proximal, regular and
limiting normal cone of
the second-order cone complementarity set.
The second-order optimality conditions for the
mathematical program with semidefinite cone
complementarity constraints were researched
by Liu Yulan [17]. By using generalized
differential tools of second-order variational
analysis, Hang [18] formulated the
corresponding version
of second-order sufficiency and gave the
uniform second-order growth condition for the
augmented Lagrangian. A sensitivity result for
quadratic second-order cone programming
under the weak form of second-order sufficient
condition was present in Zhao Qi’s research
[19]. Xu Zhijun [20] proposed a enhanced

second order cone programming relaxation
using the simultaneous matrix diagonalization
technique for the linearly constrained quadratic
fractional programming problem. To overcome
the difficulty of obtaining the exact solutions
of the subproblems, a proximal alternating
direction method of multipliers whose
regularization matrix in the proximal term is
generated by BFGS at every iteration was
proposed by Mu Xuewen [21]. By establishing
an abstract result on second-order optimality
conditions for a multi-objective mathematical
programming problem, Toan [22] derive
second-order necessary and sufficient
optimality conditions for a multi-objective
discrete optimal control problem. Generic
non-convex quadratic ε-insensitive loss
function was proposed by Ye Yafen [23].
Support vector regression method with this
loss was proved with robustness and
generalization ability. In order to reduce the
influence of noise or outliers on the
performance of TSVR, Anagha [24] gave a
novel robust twin support vector regression
with smooth truncated loss function. A
concave-convex programming was employed
to solve the nonconvex optimization problem
in the primal space. In addition, the
convergence of the squared pinball twin
support vector regression is also proved. The
effectiveness, convergence and robustness of
the proposed method were verified by the
experiments based on some artificial datasets
and UCI datasets with noise and without noise.
Some scholars also investigated the fabric
characteristics of the perturbed data sets and
researched on calculation of the generalized
SVR model for particular structural data. For
example, a new correlated polyhedral
uncertainty set is developed by Jalilvand [25].
In his study, the robust counterpart of a LP
problem is developed under the proposed
uncertainty set. The application of this method
for solving sample robust problems are
discussed. Qui [26] studied on solution
stability of generalized equations over
polyhedral convex sets. An exact formula for
computing the Mordukhovich coderivative of
normal cone operators to nonlinearly perturbed
polyhedral convex sets is established based on
a chain rule for the partial second-order
subdifferential. This formula leads to a
sufficient condition for the local Lipschitz-like
property of the solution maps of the
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generalized equations under nonlinear
perturbations [27]. However, there is no report
on development and application of specialized
SVR model which is built for resolving the
challenging problem of the optimal hyperplane
with consideration of the influence of the
polyhedral convex data sets.
In the present study, the structural features of
the polyhedral perturbation of the independent
variables were analyzed. The objective of this
paper was to develop a robust support vector
regression modeling technique for processing
observed data of the independent variables
with polyhedral perturbation specifically. The
proposed modeling technique is intended for
data prediction in engineering applications.

2. Materials and Methods
The key problem of modeling of support

vector regression (SVR) is how to obtain an
optimal hyper-plane that is the nearest to all
the sample data. As discussed in this section,
the process of obtaining this hyper-plane
comprises three steps: (1) Setting the training
data collection and its polyhedral perturbation
collection. (2) Defining the original
optimization problem. (3) Giving the linear
and nonlinear robust regression algorithm
procedures.

2.1. Training Data Collection and
Polyhedral Perturbation
Training data is used to train learning machine
and search for the optimal parameters of the
regression model that define the optimal
hyper-plane. Here, the training data collection
T is described as following formula:

T = �1, �1 , �2, �2 , ⋯, ��, �� , ⋯, ��, �� , � = 1,2,⋯,�, (1)
The independent variables �� are determined
by the perturbation centers �� �, the

perturbation amplitude ∆�� � and the
parameter Ω, as follows:

χ� = {��� �� � � = �� � + ∆�� � ∙ �� �, � = 1,2,⋯, �,
�� = �� 1, ⋯, �� �, ⋯, �� �

�, �� 1 ≤ �}, ��, ∆�����,
(2)

where
χ denotes the independent
variables �1, �2, ⋯, ��, ⋯, �� , referred to as
the input data of the training collection;
y denotes the dependent
variables �1, �2, ⋯, ��, ⋯, �� , referred to as
the output data of the training collection;
�� �, denotes the perturbation center of the
input data point ��;
∆�� �, denotes the perturbation amplitude of
the input data point ��;
Ω is a weight factor, which is a given real
number, used to adjust the region size of the
perturbation (generally, Ω=1);
�� � denotes the components of the weight
factor Ω, where z is an n×m matrix, with the
1-norm of the column vector �� less than or
equal to Ω;
m is the number of training data in the
collection T;
n is the dimensionality of the independent
variables �� , namely, the number of
independent variables.
The sufficient and necessary conditions for
�� �ϵ�� is

�=1
� ��� �− �� �

∆�� �
≤ �� (3)

To define the polyhedral perturbation problem,
the case of a two-dimensional perturbed

polyhedron, which is actually a rhombus, is
shown in figure 1. Here,
�1 1, �1 2 , �2 1, �2 2 , and
�3 1, �3 2 , are respectively the coordinates

of the perturbation center points of the
observed values of the independent variables
�1 , �2 and �3 , while
∆�1 1, ∆�1 2 , ∆�2 1, ∆�2 2 , and
∆�3 1, ∆�3 2 are the corresponding

perturbation amplitudes of the observed values.
�1 and �2 are given real numbers, where
�1 > �2; �1and �2 are respectively the areas
of the perturbed rhombuses of the independent
variables �1 and �2.
Figure 1 shows that: (1) When �1 > �2 , then
�1> �1 . This indicates that the given real
number Ω, which is related to the measurement
precision of the independent variables,
determines the area of the rhombus which is
formed as a result of data perturbation. (2) If
the perturbation amplitude ∆�1 1 in the
direction of the �1 axis is larger than the
amplitude �1 2 in the direction of the �1
axis, the rhombus would be horizontal.
However, if the perturbation amplitude ∆�3 1
in the direction of the �1 axis is smaller than
the amplitude ∆�3 2 in the direction of the
�1 axis, the rhombus would be vertical.
Obviously, the ratio of the perturbation
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amplitude of one independent variable to the
amplitude of the other independent variable is

the key determinant of the direction of the
rhombus.

Figure 1. Polyhedral Perturbation

2.2. Robust Regression Algorithm
2.2.1. Linear robust regression algorithm
Based on the mathematics model of the robust
support vector regression (RSVR) for
processing input data with polyhedral
perturbation, the specific algorithm flow of the
process is as follows:
The training data is provided in the form of
equations (1) and (2).
The mathematical model of support vector
regression for processing polyhedral perturbed
data proposed in this paper is constructed as
follow:

����,�,��,���
1
2
� 2 + � ∙ �=1

� �� + ��� ,� `(4)
s. t. � ∙ �� � + ∆�� � ∙ �� � + � − �� ≤ ε + ��,(5)

�� − � ∙ �� � + ∆�� � ∙ �� � + � ≤ � + ���,(6)
��, ��� ≥ 0, �� 1 ≤ �, � = 1,2,⋯,�, ��� � = 1,2, ⋯, �, (7)

where
w is the line normal to the regression
hyperplane;
b is the intercept of the regression hyperplane;
�� and ��� are slack variables;
C is the penalty parameter;
ε is the ε-band of the regression hyperplane.
The solution �∗, �∗ to the model (4)–(7)
can be expressed as

�∗ = �∗∙ �=1
� ��∙ ��

∗−��
∗�

�=1
� ��∙ ��

∗+��
∗ −�∗�

(8)

A component ��∗ is sequentially selected from
the data set �∗.
If 0 < ��∗ < �,

�1�∗ =
��−�∗∙ �=1

� ��∙�� ∙ ��
∗−��

∗�

�=1
� ��∙ ��

∗+��
∗ −�∗�

+Ψ� ∙ �∗ + �, � = 1,2,⋯,�, (9)

else, �1�∗ = 0.
A component ��∗ is sequentially selected from

the data set �∗.
If 0 < ��∗ < �,

�2�∗ =
��−�∗∙ �=1

� ��∙�� ∙ ��
∗−��

∗�

�=1
� ��∙ ��

∗+��
∗ −�∗�

−Ψ� ∙ �∗ − �, � = 1,2,⋯,�, (10)

else, �2�∗ = 0; and
�∗ = �=1

� �1�
∗� + �=1

� �2�
∗�

�1+�2
, � = 1,2,⋯,�, (11)

Here, �1is the number of the components ��∗
that satisfy the condition 0 < ��∗ < �; and �2

is the number of the components ��∗ that
satisfy the condition 0 < ��∗ < �.
The regression function is established as
follows:

� � = �∗∙ �=1
� ��∙� ∙ ��

∗−��
∗�

�=1
� ��∙ ��

∗+��
∗ −�∗�

+ �∗, � = 1,2,⋯,�, (12)

2.2.2. Nonlinear robust regression algorithm
Using the kernel function, the linear robust
regression algorithm can be easily converted
into a nonlinear algorithm, as follows:
The inner products �� ∙ �� and �� ∙ � in
equations (8)–(12) are replaced with the kernel

functions K �� ∙ �� and K �� ∙ � .
The variables �� in equations (8)–(12) are
replaced with ��.
According to equation (2),

��� − �� = Δ�� � ∙ �� � ≤ ��, (13)
It is thus obvious that

Φ ��� −Φ �� 2 = Φ ��� −Φ �� ∙ Φ �� � −Φ ��
= K ��� ∙ �� � − 2� �� � ∙ �� + � �� ∙ �� (14)

= F ��� − �� ≤ ��2

Hence, �� = � ��
1 2

, where F is a function of the kernel function. In the
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determination of �� , the transformation from
the linear area to the nonlinear area is denoted
by X = Φ � .
3. Experimental Results and Discussion
3.1. Linear Regression Experiment
To validate the robust linear support vector
regression model proposed in section 2.4.1,
linear function (y = 0.1 χ + 1) was considered
as the objective function with the input
variable χ which was a two-dimensional vector.
Based on equation (2), the input set was
described as χ� = ��� = �� � 1 +
�� � 2 ��� 1= �� 1 + ∆�� 1 ∙
�� 1, ��� 2= �� 2 + ∆�� 2 ∙ �� 2 , � =
1,2,⋯, 25 , where i is an index indicating the
data-sample number. The center of the
disturbed input data comprised a 25 × 2 matrix
x = [1 2 … 25; 1 2 … 25]T. The disturbing
quantity ∆x ∙ z was also a 25 × 2 matrix. The
value of ∆�� � was determined to be a
random number in [-1 1] while the value of
�� � was a random number in [0 1], so �� 1 ≤

Ω. The variable ψ was calculated by using the
following inequality ∆�� � ∙ �� � ≤ ψ . The
Gaussian kernel function was given by K � ∙
� = ��� − �−� 2 2�2, where Q=0.6.
Based on the standard linear support vector
regression method and the novel robust linear
support vector regression method, two
different linear regression models were
constructed and implemented using MATLAB
(MathWorks, Inc., USA). For evaluating the
prediction accuracy of those two models, a
5-fold cross-validation method was employed,
and the same five sets of validation data are
listed separately in Tables 1 and 2, wherein
values of optimal parameters C and e of the
robust regression model were listed. After
running the computer programs of the two
linear regression models on a computer, errors
between the predicted results and the actual
results as well as the corresponding mean
absolute value (MAV) of predicted errors were
obtained and listed in Tables 1 and 2.

Table 1. Prediction Errors of Linear RSVR

Table 2. Prediction Errors of Linear SVR
No. Validation Data NO. Parameters Prediction Errors MAV
1 1, 3, 5, 7, 9 C=1014,e=5×10-5 -1.2493, 0.0532, -0.0363, -0.0038, -0.0108 0.2707
2 11, 13, 15, 17, 19 C=104,e=5×10-7 -0.0635, 0.0048, 0.0262, 0.0417, 0.1573 0.0587
3 21, 23, 25, 2, 4 C=104,e=5×10-9 0.1595, 0.0341, 1.3103, -0.0340, -0.1594 0.3395
4 6, 8, 10, 12, 14 C=104,e=5×10-11 -0.1451, -0.0550, -0.0366, -0.0145, 0.0438 0.0590
5 16, 18, 20, 22, 24 C=104,e=5×10-3 0.0001, 0.0174, -0.0237, 0.0708, -0.1618 0.0548

Total 0.1565
As can be seen in Tables 1 and 2, using the
5-fold cross-validation methods, 10 sets of
prediction errors in the RSVR and the SVR
linear regression tests are listed. Furthermore,
MAV of the 10 sets of prediction errors have
also been calculated and presented. A
comparison between MAV listed in Tables 1
and 2 clearly demonstrates that MAV of the
prediction errors for RSVR method are smaller
than MAV of the prediction errors for SVR
method, even the same training data sets and
validation data sets were employed in the
prediction tests for RSVR method and SVR
method.

After analyzing the prediction errors of the 25
validation data samples listed in Tables 1 and 2,
statistical results indicate that the range of
absolute values of prediction errors were
reduced by 51.6% (from [0.0001 1.2493] to
[0.0022 0.6072]) when the SVR method was
replaced with the RSVR method. Moreover, by
using the novel robust model, MAV of
prediction errors in the linear regression tests
was reduced by 18.5% (from 0.1565 to 0.1276)
as well as the variance of absolute values of
prediction errors decreased 78.7% (from
0.1585 to 0.0337). It is clear that the the MAV
and variance of the prediction errors represent

No. Validation Data NO. Parameters Prediction Errors MAV
1 1, 3, 5, 7, 9 C=109,e=5×10-14 -0.6072, 0.3409, 0.0223, 0.0361, -0.1773 0.2368
2 11, 13, 15, 17, 19 C=108,e=5×10-14 0.0272, 0.0492, 0.0540, 0.0551, 0.0873 0.0546
3 21, 23, 25, 2, 4 C=108,e=5×10-14 0.3308, -0.0709, 0.4894, 0.0709, -0.3308 0.2586
4 6, 8, 10, 12, 14 C=1010,e=5×10-18 -0.0053, -0.0022, -0.0336, -0.0585, -0.0734 0.0346
5 16, 18, 20, 22, 24 C=1010,e=5×10-22 0.0528, 0.0507, 0.0493, 0.0594, -0.0564 0.0537

Total 0.1276
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regression performance of the mathematical
model. Therefore, the comparison between the
linear regression tests for the RSVR method
and the SVR method demonstrate that the
RSVR algorithm possesses more advantages in
high prediction accuracy than the traditional
SVR algorithm.
For visually displaying the predicting
performance of the novel robust regression
model, the theoretical value of the linear
function (y = 0.1 χ + 1) and the predicting
results of the two different regression models
are depicted in Figure 2, wherein the black line
represents the theoretical values of the linear
function while red asterisks and blue circles
denote predictions of the SVR and the RSVR
algorithms respectively. As can be clearly
observed from the chart, similar high
predicting accuracy occurred at validation data
points of X coordination from X = 4 �1 1 =
2, �1 2 = 2 to X = 48 �25 1 =
24, �25 2 = 24 for the two models.
However, there were significant difference of

predicting results between the two models at
validation data points of X coordination of
X = 2 �1 1 = 1, �1 2 = 1 and X =
50 �25 1 = 25, �25 2 = 25 . In general,
forecasting performance of traditional
machine-learning model heavily relies on
empirical training datasets. So it is proved the
SVM has a high forecast precision only if the
prediction data fall in the training data sets.
The linear regression experiments also indicate
that the RSVM has better generalization ability
even the fresh prediction samples beyond the
training sample sets.
Blue circles are placed closer to the black line
compared to red stars at X = 2 �1 1 =
1, �1 2 = 1 and X = 50 �25 1 =
25, �25 2 = 25 . This indicates that the RSVR
algorithm demonstrates higher prediction
accuracy compared to the traditional SVR
algorithm for data validation outside the scope
of training data. This can be attributed to the
superiority of RSVR in processing data with
polyhedral perturbations.
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Figure 2. Linear Regression of RSVR and SVR
3.2. Nonlinear Regression Experiment
3.2.1 Aluminum alloy creep tests
It is widely known that the overwhelming
majority of metallic materials including
aluminium alloys intend to produce creep
deformation under the combined effect of
temperature, time and stress even as the load
exerted on the metals is far less than its yield
strength. To validate the present robust support
vector regression algorithm, a series of creep
tests for aluminum alloy 2124 were conducted
to acquire a set of experimental data. The
testing specimens and experimental equipment
are shown in figure 3 and figure 4. The
temperature measurement error is less than

±2℃, and the stress measurement accuracy is
higher than 0.1. The perturbation amplitude of
the independent variables are closely related to
the measurement accuracy of the creep test
equipment.

Figure 3. Test 2124 Aluminum Alloy
Specimen (Length Unit: mm)
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Figure 4. Creep Test Equipment
The primary processing parameters of the
creep test include the creep temperature, time,
and stress level. Some research revealed that
the influence of the fluctuation of the time
measurements on the creep deformation of

aluminium alloy 2124 was significantly
smaller than the fluctuation of creep
temperature and stress measurements. The
latter parameters were thus selected as the
independent variables, while the plastic
deformation was set as the dependent variable.
It is known that a phenomenon of creep
deformation of aluminum alloy 2124 occurs in
the temperature range of 140°C –200°C under
low stresses. As the yield strengthen of
aluminum alloy 2124 is equal or greater than
310MPa, then the corresponding experimental
scheme is designed and showed in Table 3.

Table 3. Experimental Scheme

Test No. Temperature
/ °C

Stress Level
/ MPa Test No. Temperature

/ °C
Stress Level

/ MPa
1 140 100 19 180 200
2 150 100 20 190 200
3 160 100 21 200 200
4 170 100 22 140 250
5 180 100 23 150 250
6 190 100 24 160 250
7 200 100 25 170 250
8 140 150 26 180 250
9 150 150 27 190 250
10 160 150 28 200 250
11 170 150 29 140 300
12 180 150 30 150 300
13 190 150 31 160 300
14 200 150 32 170 300
15 140 200 33 180 300
16 150 200 34 190 300
17 160 200 35 200 300
18 170 200 / / /

For convenience of calculation and modelling,
the independent variables with various units
and values of different orders of magnitude
were normalized. The normalized temperature
and stress variables were respectively denoted
by �1 and �2 . And they were defined as

follows:
�1 =

�−120
20

(52)
�2 =

�
100

(53)
The normalized process parameters are present
in Table 4.

Table 4. Original Values and Normalized Values of the Process Parameters

Temperature Original Value/°C 140 150 160 170 180 190 200
Normalized Value 1 1.5 2 2.5 3 3.5 4

Stress level
Original Value/MPa 100 150 200 250 300 / /
Normalized Value 1 1.5 2 2.5 3 / /

The real values of the plastic deformation �0
for creep tests were observed by using strain
gauge device. Testing results indicate that only
few creep plastic deformation was measured at

temperatures below 150 °C. For this reason,
testing data marked as 1, 2, 8, 9, 15, 16, 22, 23,
29 and 30 were disregarded. The remaining 25
test data samples were used for modeling and
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validation of nonlinear SVR and nonlinear
RSVR.
3.2.2 Cross-validation of SVR and RSVR
Based on equation (2), the independent
variable set was denoted as χ� = ��� = �� � 1 +
�� � 2 ��� 1= �� 1 + ∆�� 1 ∙
�� 1, ��� 2= �� 2 + ∆�� 2 ∙ � =
�� 2, 1,2,⋯, 25 , where i is the index referring
to the data-sample number. The center of the
disturbed input data was a 25 × 2 matrix x = [2
2.5 3 3.5 4 2 2.5 3 3.5 4 2 2.5 3 3.5 4 2 2.5 3
3.5 4 2 2.5 3 3.5 4; 1 1 1 1 1 1.5 1.5 1.5 1.5 1.5
2 2 2 2 2 2.5 2.5 2.5 2.5 2.5 3 3 3 3 3]T, and the
disturbing quantity ∆x ∙ z was also represented

by a 25 × 2 matrix. The value of ∆�� � is a
random number in [-1 1] while the value of
�� � is a random number in [0 1], such
that �� 1 ≤ Ω . The variable ψ was calculated
using the equation ∆�� � ∙ �� � ≤ � . The
Gaussian kernel function was given by K �1 ∙
�2 = ��� − �1−�2 2 2�2 , where

 0.4Q .
Two procedures of the nonlinear SVR and the
nonlinear RSVR were compiled and run on
computer to analyze their regression property.
Errors between actual values and predictions
along with corresponding MAV of prediction
errors were listed in Table 5 and Table 6.

Table 5. Prediction Errors of Nonlinear RSVR
No. Validation Data NO. Parameters Prediction Errors MAV
1 3, 5, 7, 11, 13 C=1012,e=5×10-6 -0.0190, -0.0018, -0.0005, 0.0025, -0.0011 0.0050
2 17, 19, 21, 25, 27 C=1012,e=5×10-5 0.0039, -0.0055, -0.0008, 0.0013, -0.0046 0.0032
3 31, 33, 35, 4, 6 C=1012,e=5×10-13 0.0001, -0.0412, 0.0032, 0.0299, 0.0078 0.0164
4 10, 12, 14, 18, 20 C=1011,e=5×10-6 -0.0021, 0.0015, -0.0043, 0.0020, -0.0058 0.0031
5 24, 26, 28, 32, 34 C=105,e=5×10-6 0.0013, -0.0039, 0.0147, 0.0103, 0.0113 0.0083

Total 0.0072
Table 6. Prediction Errors of Nonlinear SVR

No. Validation Data NO. Parameters Prediction Errors MAV
1 3, 5, 7, 11, 13 C=104,e=5×10-5 -0.0197, -0.0027, 0.0005, 0.0025, 0.0029 0.0057
2 17, 19, 21, 25, 27 C=104,e=5×10-5 0.0032, -0.0030, 0.0036, -0.0032, 0.0082 0.0042
3 31, 33, 35, 4, 6 C=104,e=5×10-5 -0.0073, -0.0149, 0.0565, -0.0038, -0.0033 0.0172
4 10, 12, 14, 18, 20 C=104,e=5×10-4 -0.0097, 0.0014, -0.0025, 0.0017, -0.0045 0.0040
5 24, 26, 28, 32, 34 C=104,e=5×10-4 -0.0112, -0.0059, -0.0071, 0.0212, -0.0091 0.0109

Total 0.0084
Ten sets of prediction errors of validation data
for RSVR and SVR were listed in above tables
by using the 5-fold cross-validation method in
nonlinear regression experiments. Statistical
results of prediction errors listed in Table 5
and Table 6 demonstrate that 26.6% reduction
in the absolute-value range of prediction errors
(from [0.0005 0.0565] to [0.0001 0.0412]) was
realized by replacing the SVR with RSVR.
Furthermore, the novel model decreased the
MAV of the prediction errors by 14.3%
reduction (from 0.0084 to 0.0072) while the
variance in absolute values of prediction errors
was reduced by 30.8% (from 0.00013 to
0.00009). It is obvious that smaller mean
absolute value and variance absolute value of
prediction errors prove that the RSVR model
has the advantages of minor training sample
data and high prediction accuracy.
For visually present the prediction
performance of the novel model, testing data

and prediction data from the two different
regression models were showed in Figure 5,
wherein the gray surface represent the creep
deformation trend, the black nodes represent
experimental data of creep deformation, and
the blue short lines and the red short lines
represent output values from the SVR and the
RSVR respectively. In general, forecasting
performance of traditional machine-learning
model heavily relies on the training data
samples. So it is easy to find that prediction
points with large errors are entirely located on
the edges of the gray surface. That is because
those validation prediction points located on
the edges actually exceed the training range of
the machine learning model. Particularly, the
prediction of the SVR model with maximal
error is NO.35 validation sample which
beyond the training range of the stress
independent variable as well as the training
range of the temperature independent variable.
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In contrast, the RSVR has advantages in
processing data with polyhedral perturbations

and improving the generalization ability of the
regression model.

Figure 5. Nonlinear Regression of RSVR and SVR

4. Conclusions
(1) A robust support vector regression method
for processing data with polyhedral
perturbation was developed in this study. The
original optimization model of support vector
machine for processing experimental data with
polyhedral perturbation is a convex quadratic
program, and it shares its solution with the
second-order cone program transformed from
it. So, the convex quadratic program can be
resolved by solving its dual problem.
(2) A linear robust regression modelling
approach and a nonlinear robust regression
modelling approach were present. To validate
the proposed RSVR method, a linear
regression experiment and a nonlinear
regression experiment were performed. The
experimental results showed that the proposed
method has its advantages of high prediction
accuracy and strong generalization ability for
processing data with polyhedral perturbation.

Acknowledgements
This research was funded by the National
Natural Science Foundation of China (Grant
Number 52005399).

References
[1] Francisco. Pereira, Tom. Mitchell.

Machine learning classifiers and fMRI: A

tutorial overview. NEUROIMAGE 2009,
45, s199-s209.
10.1016/j.neuroimage.2008.11.007

[2] Vapnik V. N, Learning hidden information:
SVM+. IEEE International Conference on
Granular Computing, 2006.

[3] Luo Jian. Robust kernel-free support
vector regression based on optimal margin
distribution. KNOWL-BASED SYST
2022. 109477.
10.1016/j.knosys.2022.109477

[4] Panagopoulos; Orestis P. Relaxed support
vector regression. ANN OPER RES 2019.
191-210. 10.1007/s10479-018-2847-6

[5] Alzalg Baha, Khaled Badarneh. An
infeasible interior-point algorithm for
stochastic second-order cone optimization.
Journal of Optimization THEORY AND
APPLICATIONS 2019 324-346.
10.1007/s10957-018-1445-8

[6] Dong Guishan, Xuewen Mu. A novel
second-order cone programming support
vector machine model for binary data
classification. Journal of Intelligent &
Fuzzy Systems 39.3 2020, 4505-4513.
10.3233/JIFS-200467

[7] Robert. W. Hanks, Jeffery. D. Weir.
Robust goal programming using different
robustness echelons via norm-based and
ellipsoidal uncertainty sets. EUR J OPER
RES 2017, 262, 636-646.

Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 1 No. 3, 2023 81

Copyright @ STEMM Institute Press http://www.stemmpress.com



10.1016/j.ejor.2017.03.072
[8] Mir. Saman. Pishvaee, Mohamadreza.

Fazli. Khalaf. Novel robust fuzzy
mathematical programming methods.
APPL MATH MODEL 2016, 40, 407-418.
10.1016/j.apm.2015.04.054

[9] Mohammadreza. Chamanbaz,
Giuseppe.Notarstefano. Randomized
Constraints Consensus for Distributed
Robust Linear Programming.
IFAC-PapersOnLine 2017, 50, 4973-4978.
10.1109/TCNS.2020.3024483

[10] Milan. Hladík. Robust optimal solutions
in interval linear programming with
forall-exists quantifiers. EUR J OPER RES
2016, 254, 705-714.
10.1016/j.ejor.2016.04.032

[11] Julio. López, Sebastián. Maldonado.
Double regularization methods for robust
feature selection and SVM classification
via DC programming. INFORMATION
SCIENCES 2018, 429, 377-389.
10.1016/j.ins.2017.11.035

[12] Julio. López, Sebastián. Maldonado.
Group-penalized feature selection and
robust twin SVM classification via
second-order cone programming.
NEUROCOMPUTING 2017, 235, 112-121.
10.1016/j.neucom.2017.01.005

[13] Julio. López, Sebastián. Maldonado.
Multi-class second-order cone
programming support vector machines.
INFORMATION SCIENCES 2016, 330,
328-341. 10.1016/j.ins.2015.10.016

[14] Maryam. Babazadeh, Amin. Nobakhti.
Robust controllability assessment via
semi-definite programming. SYST
CONTROL LETT 2016, 98, December
2016, 1-7. 10.1016/j.sysconle.2016.10.001

[15] T. C. E. Cheng, Y. Shafransky. An
alternative approach for proving the
NP-hardness of optimization problems.
EUR J OPER RES 2016, 248, 52-58.
10.1016/j.ejor.2015.06.076

[16] Ye J J, Zhou J. Exact formulas for the
proximal/regular/limiting normal cone of
the second-order cone complementarity set.
Mathematical Programming, 2017, 162:
33-50. 10.1007/s10107-016-1027-1

[17] Liu Yulan, Shaohua Pan. Second-order
Optimality Conditions for Mathematical
Program with Semidefinite Cone
Complementarity Constraints and
Applications. Set-Valued and Variational

Analysis 30.2 2022, 373-395.
10.1007/s11228-021-00587-z

[18] Hang, Nguyen TV; Boris S.
Mordukhovich, and M. Ebrahim Sarabi.
Augmented Lagrangian method for
second-order cone programs under
second-order sufficiency. Journal of
Global Optimization 82.1 2022, 51-81.
10.1007/s10898-021-01068-1

[19] Zhao Qi; Wenhao Fu; Zhongwen Chen.
A sensitivity result for quadratic
second-order cone programming and its
application. Applications of Mathematics
66 2021, 413-436.
10.21136/AM.2020.0278-19

[20] Xu Zhijun; Jing Zhou. A global
optimization algorithm for solving linearly
constrained quadratic fractional problems.
Mathematics 9.22 2021, 2981.
10.3390/math9222981

[21] Mu Xuewen; Yaling Zhang. An
alternating directions method of
multipliers for convex quadratic
second-order cone programming. Pacific
Journal of Optimization 14.2 2018,
369-380.

[22] Toan; Nguyen Thi; et al. Second-order
KKT optimality conditions for
multiobjective discrete optimal control
problems. Journal of Global Optimization
79 2021, 203-231.
10.1007/s10898-020-00935-7

[23] Ye Yafen, et al. Robust support vector
regression with generic quadratic
nonconvex ε-insensitive loss. Applied
Mathematical Modelling 82 2020, 235-251.
10.1016/j.apm.2020.01.053

[24] Anagha P, S. Balasundaram, Yogendra
Meena. On robust twin support vector
regression in primal using squared pinball
loss. Journal of Intelligent & Fuzzy
Systems 35.5 2018, 5231-5239.
10.3233/JIFS-169807

[25] Jalilvand Nejad, Amir. Robust
optimization under correlated polyhedral
uncertainty set. COMPUT IND ENG 2016.
82-94. 10.1016/j.cie.2015.12.006

[26] Qui; Nguyen Thanh. Stability of
generalized equations under nonlinear
perturbations. OPTIM LETT 2018.
799-815. 10.1007/s11590-017-1147-4

[27] Bertsimas D, Sim M. The price of
robustness. Operations Research, 2004.
52(1): 35-53.

82 Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 1 No. 3, 2023

http://www.stemmpress.com Copyright @ STEMM Institute Press




