
Convolutional Neural Networks and Cluster Analysis for Heart
Rate Data Analysis and Monitoring

Jiaqiang Peng, Zhiyun Li, Rongrong Huang, Yan Liang*
School of Science, Guangdong University of Petrochemical Technology, Maoming, Guangdong, China

*Corresponding Author.

Abstract: Heart rate variation is a dynamic
process that requires real-time monitoring
and timely diagnostic categorization in
clinical settings. Addressing the challenge of
reducing manual workload while ensuring
diagnostic accuracy through intelligent
diagnostic technologies is a crucial concern
in clinical practice. Frequency domain
analysis of heart rate time series can reflect
the operation of the autonomic nervous
system, thereby enhancing the sensitivity
and accuracy of heart rate variation
monitoring. In this study, through the
fusion of temporal and time-frequency
domain features in electrocardiogram (ECG)
data using Convolutional Neural Networks
(CNN), and based on inter-sample
clustering analysis and Short-Time Fourier
Transform (STFT) evaluation of heart rate
variability, a model for heart rate changes
in a normal population is established.
Following the analysis and processing of
selected heart rate data, this model provides
a foundational approach for predicting
abnormal heart rate conditions and health
management. The use and introduction of
data analysis techniques in this paper serve
as an important reference for medical and
health management research. Continuous
experimentation with related algorithms to
minimize errors will enhance the accuracy
and comprehensiveness of mathematical-
based heart rate monitoring and analysis
methods, thereby promoting their
widespread application in relevant fields.

Keywords: Convolutional Neural Networks;
Cluster Analysis; Short-time Fourier
Transform; Heart Rate Monitoring

1. Introduction
Heart rate is one of the most fundamental
vital signs of the human body, reflecting
both physiological and psychological states

[1]. With the advancement of biomedical
technology and wearable devices, heart rate
monitoring has become more convenient
and is widely used in the fields of medicine,
health management, and social research. In
medicine, continuous monitoring of heart
rate changes can detect early signs of many
diseases, facilitating early treatment. In the
management of chronic diseases and health,
heart rate is extensively used to monitor the
stability of the condition and the
effectiveness of drug treatments. In social
research, heart rate, as a physiological
indicator, can assess an individual's
psychological state, providing auxiliary
means for cognitive and social
psychological research. Real-time
monitoring systems have been used to
record dynamic changes in athletes' heart
rate [2]. At present, with the rapid
development of artificial intelligence and
deep Xi, convolutional neural networks
(CNNs) have achieved great success in the
field of medical image segmentation [3].
However, current research on heart rate
monitoring faces the following issues.: The
first one is insufficient depth in heart rate
feature extraction and analysis. Existing
research is mainly limited to time and
frequency domain analysis, without fully
utilizing new perspectives proposed by
statistical methods and complex network
theories. The information contained in heart
rate data has not been deeply explored. The
second one is inadequate evaluation of
clinical application effectiveness. Most
current studies on heart rate monitoring data
analysis remain at the theoretical stage,
with relatively limited clinical validation
and effectiveness evaluation.
This paper addresses these issues by
collecting, cleaning, and analyzing data.
The obtained power spectral density data
are classified using algorithms such as k-
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means and feature vector analysis for visual
ECG cluster data analysis results.
Additionally, CNN and Short-Time Fourier
Transform are employed for risk level
assessment, providing reference for heart
rate monitoring.

2. Data Collection and Preprocessing
The dataset used in this study comes from
the MIT-BIH Arrhythmia Database,
recorded by the Massachusetts Institute of
Technology and Beth Israel Hospital from
1975 to 1979. The dataset comprises 48
ECG recordings from 47 subjects, each
lasting 30 minutes, including over 116,000
heartbeat data and annotated positions and
categories for each heartbeat. This study
focuses on five types of heartbeats: normal
(N), atrial premature beat (A), ventricular
premature beat (V), left bundle branch
block (L), and right bundle branch block
(R).
In the original dataset, the distribution of
data for each type of heartbeat is uneven,
with the proportion of normal heartbeats
being much larger than other arrhythmia
heartbeat types. This imbalance can affect
the training effectiveness of the network.
Therefore, the SMOTE algorithm is used to
oversample abnormal heartbeat data,
augmenting it to match the quantity of
normal heartbeat samples. The distribution
of training sample data before and after
processing is shown in Table 1.
Table 1. Sample Size Distribution Unit: pcs
Sample
source

N A V L R

Training set
(before
equilibrium)

501661357 4909 4636 3467

Training set
(after
equilibrium)

50166501665016650166 50166

Validation
set

4334 105 403 408 281

Test set 17244467 1634 1589 1191

3. Heart Rate Monitoring Technical Route
Based on the existing classification of
arrhythmias, common types of arrhythmias and
diagnostic criteria are as follows:
A) Premature Atrial Contraction (PAC)
Diagnostic Criteria: Premature occurrence of

heartbeats, originating from the
atrioventricular node, leading to shortened
conduction time. Identification is based on the
electrocardiogram (ECG) to determine the
origin of heartbeats and the shortened interbeat
interval.
B) Premature Ventricular Contraction (PVC)
Diagnostic Criteria: Premature occurrence of
heartbeats, originating from the ventricular
wall without involvement of the
atrioventricular node, leading to prolonged
cardiac cycles. Identification is similar to PAC
but requires determining the origin of
heartbeats from the ventricular wall, with a
longer RR interval following.
C) Bradycardia
Diagnostic Criteria: Heart rate less than 60
beats per minute. Causes may include
sinoatrial node dysfunction or atrioventricular
conduction block. Diagnosis of bradycardia
and its causes must be confirmed through an
electrocardiogram.
D)Tachycardia
Diagnostic Criteria: Heart rate exceeding 100
beats per minute. It may originate from the
sinoatrial node or ventricular tachycardia.
Electrocardiogram analysis is necessary to
determine the source and type of tachycardia.
E) Ventricular Fibrillation
Diagnostic Criteria: Completely disordered
cardiac activity, rapid and uncoordinated
excitations occurring simultaneously in
different parts of the ventricular wall,
rendering the heart ineffective in contracting.
The electrocardiogram shows baseline-free
negative deflections, losing the normal cardiac
cycle pattern.
F) Ventricular Flutter
Diagnostic Criteria: Rapid and organized
excitations occurring in the ventricular wall,
with a heart rate exceeding 250 beats per
minute but still exhibiting periodicity. The
electrocardiogram displays sawtooth-like rapid
waves, more organized than ventricular
fibrillation but similarly affecting cardiac
contraction. These diagnostic criteria are based
on ECG manifestations and are commonly
used methods for identifying arrhythmias
clinically. The physiological principle involves
analyzing the origin, frequency, and regularity
of cardiac activity to identify abnormalities in
myocardial excitation and conduction. To
apply them to monitoring devices, they need to
be complemented with electrocardiographic
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detection methods to achieve accurate
arrhythmia diagnosis.

4 Data Processing

4.1 Data Processing and Analysis
Techniques Introduction
A) Convolutional Neural Network (CNN):
CNN is a deep learning model widely used
in image recognition and signal processing.
In heart rate monitoring, CNN can be used
for feature extraction from time-series heart
rate data. The ECG signal is a one-
dimensional time-series signal, and the
time-domain wave is different from the
heartbeat type [4]. The time-domain
features of the heart beat can be extracted
through CNN. Through a combination of
convolutional layers, pooling layers, and
fully connected layers, CNN can
automatically learn and recognize important
patterns and features in heart rate data. This
includes frequency domain features, time
domain features, and variability, enabling
CNN to comprehensively and automatically
analyze heart rate data, providing more
accurate information for medical diagnosis
and health management.
B) Cluster Analysis:
Cluster analysis is commonly used in heart
rate monitoring to identify different patterns
of heart rate changes, aiding in personalized
health management and disease prediction.
By clustering heart rate data, similar heart
rate patterns can be grouped together,
revealing abnormal patterns or
characteristic patterns of specific diseases.
This forms the basis for customized
treatment plans and personalized health
recommendations. Cluster analysis allows
medical teams to better understand the
physiological state of patients, providing
support for precision medicine.
C) Short-Time Fourier Transform (STFT):
STFT is a time-frequency analysis method
commonly used to analyze the variation of
signals over time. In heart rate monitoring,
STFT can be used to transform time-series
heart rate data from the time domain to the
frequency domain, allowing the analysis of
changes in different frequency components. By
integrating convolutional neural networks,
clustering analysis, and short-time Fourier
transform, personalized and precise diagnosis

and treatment plans can be provided,
improving treatment efficacy Automatic
analysis is achieved by continuously recording
ECG data [5]. This helps reveal heart rate
variability, assess the function of the
autonomic nervous system, and identify
frequency patterns associated with specific
physiological or pathological states. The
application of STFT broadens the
understanding of heart rate data, enhancing
the sensitivity and accuracy of monitoring.

4.2 Processing
First step, to calculate the energy ratio of
frequency bands. By extracting spectral
features from the electrocardiogram (ECG)
power data, calculate the proportion of each
frequency band in the total energy.

P f = X f 2 (1)
where P(f) is the power with frequency f
and X(f) is the value of the Fourier
transform with frequency f.
Second step, to calculate the Frequency
Power Ratio (FPR), which measures the
distribution change of energy between
different frequency bands. A higher FPR
indicates greater differences in energy
distribution between different frequency
bands, suggesting the presence of certain
disease states.

��� = ����� �������� ����� ����
= ����� �������� ����

=
Pre − positive and negative

All real negative (2)

=
FP

FP + TN
Third step, to calculate the Moving Average
(MA) and Standard Deviation (SD) for each
frequency band, which reflecting the
stability and variability of the ECG power
spectrum. The formula for calculating the
moving average is as follows.

EMAt =
y1 t = 1

αyt + 1 − α EMAt t > 1 (3)

where EMAt represents the moving average
at time t, yt represents the observed value at
time t, and � ∈ 0,1 represents the decay
rate of the weights. A larger "�" indicates
faster decay of past observed values. For
standard deviation, the following formula is
used:

S = i=1
n xi−x� 2�

n
(4)
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where S represents the standard deviation,
xi represents the ith observed value, and n
represents the number of observations.
Fourth, calculate the relationships between
frequency bands, such as compute the
correlation coefficient, covariance, etc.
These indicators reflect the relationships
between different frequency bands. The
equation are as Equation (5) and (6) shown.

Cov X, Y = E X − E X E Y − E Y (5)
ρXY = Cov X,Y

D X D Y
(6)

where Cov (X, Y) represents the covariance
between random variables X and Y, and
ρXY represents the correlation coefficient
between random variables X and Y. The
correlation coefficient standardizes
covariance, resulting in a value between -1
and 1, measuring the degree of linear
relationship between two variables.
Finally, to establish a detection model.
Based on the feature extraction above, use
the fitcsvm function to build a Support
Vector Machine (SVM) model with an RBF
kernel, and apply it to the detection and
diagnosis of ECG power spectrum feature
data.

max
i=1

m

αi� −
1
2

i=1

m

j=1

m

αiαjyiyj�� xixj

s. t. 0 ≤ αi ≤ C (7)

i=1

m

αi� yi

In this model, m represents the number of
training samples while αi mesns lagrange
multipliers of SVM corresponding to
training samples. yi and xi  are represent
labels of training samples, indicating
categories (+1 for positive class, -1 for
negative class), and feature vectors of
training samples, respectively. The upper
bound C means penalty parameter of SVM,
balancing classification errors and the
margin of the decision boundary. It is a
defined hyperparameter that can be adjusted
based on the nature of the problem.

4.3 Data Processing Algorithm Analysis
Based on the Short-Time Fourier Transform
(STFT) time-frequency features of ECG
signals as one-dimensional time series, if we
directly learn the original signal, we can only
express the temporal features of the signal. To

enrich the feature representation capability of
ECG signals, we can incorporate the frequency
domain information of the signal. Considering
that ECG signals are non-stationary, the
Fourier transform cannot be directly applied to
obtain frequency domain features. Therefore,
Short-Time Fourier Transform (STFT) is used
to transform a heartbeat signal from the time
domain to the time-frequency (TF) domain.
Then the results can be combined with
attention to extract features from the TF
spectrum of the heartbeat signal. The STFT
calculates the power spectrum of a signal over
a short-time window, while moving the
window function yields the entire time-
frequency spectrum of the signal [6].
� �, ω = �=−∞

�=∞ � �� � � − � �−�ω� (8)
In signal analysis, the variables and
functions X (n, ω), x(m), and w(n−m) play
crucial roles in unraveling the
characteristics of a signal. The outcome of
the short-time Fourier transform, denoted
by X at time n and frequency ω, serves as a
dynamic representation, disclosing how the
signal's spectrum evolves over different
time intervals. Concurrently, the time-
domain signal x at time m encapsulates the
raw amplitude or value of the signal at
specific instances, providing insights into
its temporal behavior. To enhance the
analysis of localized segments, the window
function w(n−m) is employed, extracting a
focused portion centered around time m.
Furthermore, the symbol ω signifies
frequency, measured in radians per second,
reflecting the rate of oscillation or cycles
per unit of time. Finally, the imaginary unit
j, employed in mathematical contexts, is
introduced to handle phase information in
complex numbers within the Fourier
analysis framework. Together, these
elements form a comprehensive toolkit for
understanding the intricate interplay
between time and frequency in signal
processing.
After performing STFT on a heartbeat
signal, the resulting TF spectrum is a d×d
dimensional matrix, which is a function of
time (corresponding to different window
movements) and frequency. Each column of
the matrix represents the frequency
distribution of the signal within the current
window moment. The TF spectrum matrix
for different types of heartbeats has
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different dependencies on time and
frequency dimensions. Therefore, attention
mechanisms can be employed.
ECG signals are one-dimensional time series,
and the temporal waveforms of different
heartbeat types are different. One-dimensional
convolutional neural networks (CNN) can be
used to extract temporal features of heartbeats.
Using a 3-layer one-dimensional CNN for
feature extraction from filtered heartbeats,
each layer includes a one-dimensional
convolution (Conv), ReLU activation function,
and pooling operation. The first two layers are
max-pooling (MaxPool), and the last layer is
average-pooling (AvgPool). The parameters
for the convolutional layers in the CNN feature
extraction network are set as shown in Table 2
(using Conv1d-7-4 as an example, and the
other layers follow the same pattern).
Table 2. Convld-7-4 Convolutional Layer

Parameter Settings
operate Parameter settings
Conv kernel_size=7, channels=4,

stride=1, padding=0
ReLU 1
MaxPoolkernel_size=3, stride=2
The one-dimensional convolution operation
slides the convolution kernel over the time-
domain heartbeat signal according to the stride
(Stride) to extract features through the dot
product with the signal. ReLU activation
function enhances the non-linear mapping
capability of the model, and pooling reduces
the dimensionality of the data, reducing feature
redundancy. Each convolutional layer uses
multiple channels (Channels) with different
convolution kernels to extract features. If the
number of sampling points in the signal is less
than the size of the convolution kernel
(kernel_size) in the last convolution, zero
padding is used. After feature extraction by
CNN attention Mechanism for Time-
Frequency Feature Extraction in CNN can
only capture the temporal features of
heartbeats. Due to the influence of temporal
random noise, it may not adequately
represent the characteristics of different
types of heartbeats. As a result, the
classification network may not achieve
satisfactory accuracy. By optimizing the
monitoring system, the quality of the core
components is improved, which in turn
improves the overall accuracy [7].

Additionally, the convolutional kernel
focuses on extracting local features of time-
series signals, neglecting that a complete
heartbeat should be a continuous time
process with strong temporal dependencies.
This makes it challenging for CNN to learn
global correlation information from the
signal. Inspired by the use of word
embedding encoding in machine translation
tasks, which encodes words into vectors and
learns the global dependency relationships
between vectors for semantic extraction, the
time-frequency spectrum reflects the
spectral characteristics of the signal at
different moments, and different heartbeat
signals have more discriminative power in
the time-frequency domain compared to the
time-domain sequence. Therefore, different
time moments of the power spectrum can be
used as input vectors, and an attention
mechanism can be employed to extract the
global features of heartbeat signals.
The Attention Block for time-frequency
feature extraction based on the attention
mechanism, consisting of N cascaded sub-
modules which are concatenated to form the
entire time-frequency feature extraction
module. The process of each sub-module is
as follows. Firstly, encode the TF spectrum
matrix after STFT into position-coded
column vectors to represent the relative
positional relationships of the spectra at
different moments using the position
encoding vector calculated as follows [8]:

PE pos, 2i = sin (pos/10002i/df) (9)
PE pos, 2i + 1 = cos (pos/10002i/df) (10)

In Equation (9) and (10), the output PE (pos,2i)
and PE (pos,2i+1) represent two elements in
the position encoding vector, calculated using
sine and cosine functions, respectively. These
encodings are utilized to denote the relative
positional relationships of the spectrum at
different time steps. And df denotes the
dimensionality of the position encoding. While
pos represents the positional information.
Linearly mapping the signal TF matrix to
multiple heads allows the same attention
mechanism to learn features from multiple
signal frequency representation subspaces.
This enhances the ability to capture
dependencies within different ranges (long-
distance and short-distance, etc.) in the time-
frequency domain when capturing the signal
[9]. Self-attention is then performed in parallel
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on these heads, and the computation process is
as follows:
Attention Q, K, V = softmax QKT

dk
V (11)

In this equation, Attention (Q, K, V) represents
the computation of the attention mechanism,
where Q stands for query, K for key, and V for
value. Softmax means the softmax function,
utilized to normalize the attention distribution,
ensuring that the sum of attention weights
equals 1. And QKT represents the scaled dot-
product attention in the attention mechanism,
while dk is the dimensionality of both query
and key.

5. Experimental Simulation and Clinical
Application

5.1 Experimental Simulation and Results
Analysis
Applying the above model for feature analysis
on certain abnormal electrocardiogram (ECG)
power spectra, and categorizing them based on
different types of arrhythmias, a judgment is
made according to specific ECG waveform
features and clinical symptoms [10]. Through
K-means clustering analysis, the following
results shows in the following Figures are
obtained when k=4.

Figure 1. Data from Normal and Abnormal
ECGs are Plotted Together

Figure 1 shows the analysis of abnormal ECG
power spectra using the proposed model.
Different colours represent different
arrhythmia types in the merged plot of normal
and abnormal ECG data, clustered into four
clusters (k=4). Each cluster represents a
different arrhythmia type. In the overall
spectrum range, normal ECG shows a
relatively smooth power distribution without

prominent frequency peaks, exhibiting some
uniformity at the center of the overall
distribution. Except for some abnormal data in
the ultra-low-frequency range, distinct energy
peaks are observed in the lower frequency
range, accompanying specific waveform
shapes, indicating a certain type of arrhythmia.
In the higher frequency range, sharp frequency
peaks indicate another type of arrhythmia.

Figure 2. Abnormal ECG Power Density
Peak Frequency and Corresponding Power
By analyzing the peak frequency and
corresponding power distribution plots of
abnormal electrocardiogram (ECG) power
density, crucial information about the
frequency domain features of abnormal cardiac
signals can be obtained. As shown in Figure 2,
ECGs with abnormal heart rates are commonly
distributed in the frequency range of 1-7 Hz,
with an overall lower power in the data.

Figure 3. Classification of Abnormal ECG
Power Density Peak Frequency and

Corresponding Power
Abnormal ECG signals may be associated with
specific physiological or pathological
conditions. By classifying peak frequencies
and powers, it is possible to discern abnormal
ECG signals associated with different health or
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disease states. Figure 3 shows the
Classification of abnormal ECG power density
peak frequency and corresponding power.
Based on the classification and analysis of the
above algorithms, it was concluded that the
abnormal ECG power spectrum could be
divided into 826 cases of atrial fibrillation, 4
cases of premature ventricular contractions, 0
cases of premature atrioventricular
contractions, and 3 cases of supraventricular
tachycardia.
The loss function values for the training set
and validation set change with the number of
training iterations as shown in Figure 4(a).
From Figure 4(a), it is observed that the loss
function for the training set continuously
decreases during the training process, and the
loss function for the validation set decreases
significantly in the early training stage,
stabilizing after approximately 30 iterations.
The classification accuracy on the training set
and validation set during the training process is
shown in Figure 4(b). Due to the larger
proportion of normal heartbeats (N) in the
original dataset, after balancing the data, the
number of abnormal heartbeat features is
smaller than normal heartbeat features. This
meets the medical requirement in practical
applications. Therefore, the model achieves
good accuracy after one backpropagation
optimization, primarily learning the features of
normal heartbeats. As training progresses, the
accuracy on the validation set continues to rise,
converging around 0.99 after approximately 30
iterations, at which point the network learns
the features of abnormal heartbeats. Based on
the model's performance on the validation set,
the optimal model is selected, and its
confusion matrix on the test set is shown in
Figure 4(c).
From Figure 4(c), it is clear that the
classification accuracy for normal heartbeats
(N), ventricular premature contractions (V),
left bundle branch block (L), and right bundle
branch block (R) is 99.70%, 99.74%, 99.70%,
and 99.93%, respectively, all close to 100%,
indicating that the model can classify these
four types of ECG signals almost without error.
The accuracy for atrial premature contractions
(A) is slightly lower but still reaches 98.82%.
Through a comprehensive analysis of various
evaluation indicators, the proposed model
performs well on the five classes of ECG
signals, all indicators exceeding 0.9.

(a) Curves of Loss Function Values on the
Training and Validation Sets

(b) Accuracy Curves on the Training Set
and Validation Set

(c) Confusion Matrix
Figure 4. Model Evaluation and Tuning

In summary, the CNN model is able to
effectively learn various features of different
ECG signals, and it exhibits excellent
performance in various performance metrics
for ECG signal classification.
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5.2 Clinical Application and Diagnosis
Considering the impact of arrhythmias on
cardiac supply function, a diagnostic model is
established to rank and score arrhythmias from
high to low risk:
1)Ventricular fibrillation or cardiac arrest: 10
points. The heart loses effective contraction,
blood flow stops suddenly, and the patient is in
a life-threatening state, requiring immediate
cardiopulmonary resuscitation.
2)Ventricular tachycardia: 8 points. Frequent
contractions of the ventricles lead to a decrease
in cardiac output, requiring timely treatment.
3)Ventricular premature contractions: 7 points.
Premature contractions of the ventricles can
cause transient bradycardia, requiring
monitoring to prevent deterioration.
4)Atrial fibrillation: 6 points. The atria lose
orderly activation, and cardiac output
decreases. Anticoagulation and rate control are
necessary to prevent thrombosis and episodes.
5)Atrial flutter or tachycardia: 5 points.
Frequent contractions of the atria can affect
ventricular filling and ejection, requiring
treatment and control.
6)Atrial ectopy (atrial premature contractions):
3 points. Occasional shortening of the
atrioventricular conduction time has a minimal
impact on blood flow but requires monitoring.
7)Sinus rhythm normal: 1 point. The heart is
activated and contracts in an orderly manner,
maintaining normal hemodynamics.
The risk level is represented by a score ranging
from 1 to 10, with a higher score indicating a
higher risk level that requires more rapid
treatment intervention. The scoring results are
based on the physiological impact of different
arrhythmias on cardiac output and cardiac
supply function and serve as a reference for
clinical ECG monitoring alarms.
The algorithmic implementation of the
diagnostic model is as follows:
First, to define seven types of arrhythmias and
their corresponding risk scores.
Second, to input the electrocardiogram (ECG)
data file, and use the HR_analysis function to
identify the type of arrhythmia.
Third, to calculate the average score for the
identified arrhythmia type and determine the
risk level based on preset thresholds.
Fourth, to display the type of arrhythmia,
average score, and risk level.
Fifth, using the HR_analysis function to
identify arrhythmias based on the ECG.

This scoring system is designed based on the
impact of arrhythmias on cardiac function,
where a higher score indicates a higher level of
risk, aligning with the physiological basis of
clinical judgment. However, in practical
applications, personalized assessment based on
the specific condition of the patient is still
required, and this system should be considered
as a reference tool.

6. Summary
Heart rate monitoring plays a crucial role in
medical and health management, and the
introduction of mathematical analysis methods
makes it possible to achieve a deeper
understanding of heart rate data. By discussing
the applications of convolutional neural
networks (CNNs), clustering analysis, and
short-time Fourier transform (STFT) in heart
rate monitoring, this paper delves into the
importance of these methods in improving
monitoring accuracy and expanding
application areas. The mathematical
perspective on heart rate monitoring methods
provides a new dimension for medical and
health management research. The continuous
optimization of CNNs, clustering analysis, and
short-time Fourier transform, among other
mathematical analysis methods, will drive
heart rate monitoring towards greater precision,
intelligence, and profound impacts on future
medical, health management, and social
research.

Although we get some results in this study, it
has limitaions as follows. 1)Data Quality and
Sample Size: The paper does not deeply
discuss potential data quality issues in heart
rate monitoring, such as anomalies and missing
values, and the coupling of models in small
sample sizes. These issues can significantly
impact the reliability and universality of
practical applications. 2)Algorithm
Explanation and Interpretability: The paper
does not thoroughly explore the inherent
mechanisms of these methods and the
interpretability of their output results. In the
medical field, the interpretability of algorithms
is crucial for acceptance and credibility in
clinical practice.3) Verification in Real-World
Applications: The paper does not cover the
validation and application of the mentioned
mathematical methods in real clinical scenarios.
Future research should consider testing these
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methods in different diseases or specific
patient populations for practical testing.
In future research, improvements can be made
in the following aspects:
A) Intelligent and Personalized Healthcare:
With the continuous application of
mathematical methods in heart rate monitoring,
future developments may lead to more
intelligent and personalized healthcare.
B) Big Data and Cross-Domain Integration:
With the advent of the big data era, the field of
heart rate monitoring will be able to handle
larger and more diverse datasets. By
integrating heart rate data with genomics,
bioinformatics, and other multi-domain data, a
more comprehensive understanding of
individual health conditions can be achieved.
C) Real-Time Monitoring and Preventive
Health Management: Further developments in
wearable devices and imperceptible sensing
technologies can expand heart rate monitoring
to real-time monitoring. Through mathematical
methods, potential health issues can be
identified in a timely manner, enabling more
preventive health management and reducing
the risk of disease occurrence.
D) Deep Learning and Model Optimization:
Future research can focus more on the
application of deep learning methods. By
employing more complex neural network
structures and model optimization techniques,
the learning capabilities and generalization
performance of models can be improved,
making heart rate monitoring more accurate
and reliable.
E) Standardization and Clinical Practice: As
technology continues to advance, future efforts
can be directed towards standardizing heart
rate monitoring methods. Standardization helps
lower the technical barriers, allowing more
medical institutions and professionals to apply
these methods.
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