
A Study of Disjoint Set Union in Programming Competitions

Zijie Shen, Ruixiang Li, Junping Shi*
The School of Computer Science and Engineering, Jishou University, Jishou, Hunan, China

*Corresponding Author.

Abstract: Disjoint Set Union (DSU) is a tree
data structure, which is used to effectively
deal with the problems of merging and
querying disjoint sets. The DSU algorithm
can be used to merge sets and query to
which set the node belongs. The DSU
algorithm is usually implemented using
arrays and tree structures, but there are
also methods that use hash tables. The DSU
algorithm has a wide range of applications
in the connectivity of graph theory, social
network and image processing. It helps
researchers better understand and analyze
set operations, provides a basis for
subsequent work, and promotes the solution
and optimization of various problems in the
field. At the same time, in the programming
competition of college students, the use of
DSU is more frequent, usually the use of set
query is more, resulting in high time
complexity and unable to solve the problem
quickly. Therefore, path compression
strategy is introduced to significantly
improve the efficiency of set query. Finally,
the application of path compression in
union search is introduced in the form of
programming competition.

Keywords: Disjoint Set Union; Tree Data
Structure; Merging; Querying; Path
Compression Strategy

1. Introduction
In the college programming competition,
especially the International College
Programming Competition (ICPC) [1],
Disjoint Set Union (DSU) as a key data
structure [2] has attracted much attention.
Known as the Olympics of programming
competitions for college students, ICPC
highlights students' talent in algorithmic [3]
problem solving, often involving DSU
algorithms in data structure. The DSU
algorithm was first proposed in 1964 by
Bernard A. Galler and Michael J. Fischer for

managing relations between equivalence
classes [4]. DSU is a classical data structure,
which is widely used in computer science [5]
to solve set merging and query problems. The
basic idea is to partition elements into a
number of DSU and be able to merge and
query these sets efficiently. With the DSU
algorithm, we can quickly determine whether
two elements belong to the same set and
combine two sets into a single set. The
application fields of DSU algorithm cover
graph theory [6], network connection [7],
social network analysis [8], image processing
[9], database and many other fields. Became an
integral part of computer science.
In the ICPC competition, when it is generally
involved to determine whether two nodes are
in a set [10], most cases need to use the DSU
to solve. However, the time complexity [11] of
the ordinary DSU algorithm is too high, so that
the ordinary DSU algorithm cannot pass in the
actual competition. Therefore, we consider to
improve the time complexity of the DSU
algorithm to reduce the time complexity of the
algorithm, so as to solve the problems in the
competition smoothly. The improved DSU
algorithm can quickly query whether two
nodes are in the same set.

2. The Study of DSU

2.1 Definition of DSU
DSU is a data structure for processing set
merging and querying, which is widely used to
solve set partition and join problems. In DSU,
each element is assigned a unique identifier,
usually an integer, to represent a set. These
sets can be dynamically merged together to
form a larger set, while allowing the query of
whether two elements belong to the same set.
The core idea of DSU is to maintain a set of
disjoint sets and provide efficient methods to
merge sets as well as to query the set to which
an element belongs. In this way, DSU
facilitates the solution of various practical

Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 1 No. 4, 2023 1

Copyright @ STEMM Institute Press http://www.stemmpress.com



problems, such as network connectivity
problems, connectivity problems in graph
theory, and data association in databases. The
flexibility and efficiency of DSU make it an
important tool in algorithms and data
structures, and it is widely used in various
aspects of computer science.

2.2 Principle of DSU
DSU is an efficient data structure whose
principle is to dynamically represent the union
of multiple sets by maintaining a tree structure
that is constantly updated. This data structure
not only provides efficient query function, but
also supports efficient dynamic update
operation. The core idea of DSU is to group
the elements of each set and assign a
representative element to each group. These
representative elements are organized into a
tree structure, where each node represents a
representative element of a set. By iteratively
searching the representative elements in the
tree, the set to which any element belongs can
be quickly determined. In addition, DSU
supports the Union operation, which merges
two sets to form a larger set by joining their
representative elements. This process involves
adjusting the tree structure to ensure data
consistency and efficiency. DSU has many
advantages. First, it is able to quickly query the
set to which an element belongs by directly
accessing the node that represents the element.
Second, DSU supports dynamic update
operations, which means that elements can be
added or removed without rebuilding the entire
data structure. In addition, DSU is space
efficient because it only stores representative
elements of each set instead of storing all
elements. Due to these advantages, DSU is
widely used in many fields. Figure 1 is the
merging process of the DSU.

Figure 1. DSU Merging Process

2.3 Implementation of DSU
Assume that there are currently n sets and use
the data p to represent each set. In order to
facilitate the subsequent operations, these n
sets need to be preprocessed first. The main
purpose of preprocessing is to determine a
representative element for each set and ensure
that this representative element is an element
of the set itself. With this preprocessing, we
can query and update collections more
efficiently. Specifically, for each set, we
choose itself as its representative element. The
preprocessing of n sets is necessary to facilitate
the subsequent query and update operations
and to improve the efficiency of the overall
operation. The C++ code is shown in Figure 2:

Figure 2. Preprocess n Sets
DSU has two basic operations: set query and
set merge.
In the set query operation, the user can input
an element x, and DSU will quickly determine
which set this element belongs to, that is,
determine the representative element of the set
to which it belongs. This fast query capability
makes DSU very useful in application
scenarios where the set to which an element
belongs needs to be queried frequently. The
C++ code is shown in Figure 3:

Figure 3. Set Querying
In addition to query operations, DSU also
provides set merging capabilities. In the set
merge operation, the user can merge two or
more sets into a new set. DSU achieves this
operation by adjusting its internal data
structure to maintain data consistency and
efficiency. The merge operation may involve
the adjustment of the tree structure, the join of
nodes and other operations to ensure that the
merged set can be queried and updated quickly.
The C++ code is shown in Figure 4:

2 Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 1 No. 4, 2023

http://www.stemmpress.com Copyright @ STEMM Institute Press



Figure 4. Set Merging

2.4 Improvement of DSU
The optimization method of path compression
is used to optimize the union search set, which
aims to improve the efficiency of the search
operation. Path compression is a technique that
optimizes the lookup process by connecting
nodes directly to their root node. Specifically,
when searching for the root node, we directly
connect the current node as well as all its
parents along the path to the root node, thus
reducing the height of the tree to the minimum
and improving the speed and efficiency of the
subsequent lookup operation. Figure 5 shows
the optimized merging process.

Figure 5. DSU Merging Process after
Optimization

In this implementation, each node maintains a
reference to its parent node, and when
searching for the root node, we walk up the
node's parent pointer until we find the root
node, and connect all nodes along the way to
the root node directly, which can significantly
reduce the time complexity of subsequent
lookup operations. Figure 6 is the c++ code for
finding the root node to which x belongs after
optimization.

Figure 6. Set Querying After Optimization

Through path compression optimization and
lookup set, merging and lookup operations can
be performed more efficiently, which is
suitable for solving various practical problems,
such as graph theory, network connection and
so on. Path compression is one of the
commonly used optimization techniques in the
union and Find set algorithm, which improves
the performance and reliability of the
algorithm, and is widely used in practical
projects.

3. Practical Application

3.1 Description of the Title
Taking Luogu problem P1551 as an example.
If a family has an excessively large number of
members, determining whether two individuals
are relatives can be quite challenging. Now,
given a family relationship graph, the task is to
determine whether any two given individuals
are relatives.
Specification: If x and y are relatives, and y
and z are relatives, then x and z are also
relatives. If x and y are relatives, then all
relatives of x are also relatives of y, and vice
versa – all relatives of y are also relatives of x.
Input:
First line: Three integers n, m, p (n, m, p ≤
5000), representing the number of people n,
the number of relative relationships m, and the
number of queries about relatives p.
The following m lines: Each line contains two
numbers Mi, Mj, where 1 ≤ Mi, Mj ≤ n,
indicating that Mi and Mj are relatives.
Next p lines: Each line contains two numbers
Pi, Pj, querying whether Pi and Pj are relatives.
Output:
p lines, each line containing either "Yes" or
"No", indicating the answer to the ith query as
either "having" or "not having" a relative
relationship.

3.2 Problem Analysis
Each person can be viewed as a vertex in the
graph, and when there is a relative relationship
between two people, the relationship forms an
edge connecting the two vertices. In this way,
when given a set of relative relations, we
naturally obtain a graph model consisting of n
vertices and m edges. It is worth noting that
the connected branches in the graph represent
the set of individuals with relatives.
Given the transitivity of kinship relations, we

Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 1 No. 4, 2023 3

Copyright @ STEMM Institute Press http://www.stemmpress.com



know that any two vertices within the same
connected branch are relatives. This means that,
for a given query, we only need to check
whether two vertices are in the same connected
component.
Using a traditional approach to this problem,
one might first build a complete graph for
these n vertices and m edges, and then look for
connected components to make a judgment.
However, this method not only requires a large
amount of storage space to store m edges, but
also is not efficient using regular traversal
algorithms.
To solve this problem more efficiently, we can
use the DSU method. Specifically, a separate
set is created for each person, and these sets
initially contain only that individual, indicating
that no one initially knows whether they are
related or not. Whenever a new relative
relation is provided, we merge the two sets. In
this way, we can obtain the current set relation
in real time.
When we need to run a query, we simply
check whether two elements of the current
result belong to the same set. Since the DSU
method maintains an efficient data structure
during the merging process, this query
operation can be done in constant time.
In general, by using DSU, we can process
kinship queries more efficiently, especially
when dealing with large datasets. This method
not only saves the storage space, but also
improves the query efficiency, making it
possible to judge the relative relationship
quickly and accurately in dynamic
environment.

4. Conclusion
With the continuous development of
programming competitions, more and more
attention is paid to the in-depth study of
algorithms, and the demand for algorithm
efficiency is also increasing. In the competition,
players are faced with a variety of complex
problems, which often require efficient
algorithms to solve. Therefore, the study of
data structures and algorithms has become the
core content of programming competitions.
Data structure and algorithm are not only the
key to solve the problem, but also an important
standard to measure a contestant's
programming ability and thinking level. In
programming competitions, participants need
to be familiar with a variety of common data

structures and algorithms, and be able to
flexibly use them to solve practical problems.
As an efficient data structure for processing set
merging and set query, DSU shows excellent
performance in solving some specific problems.
DSU is a data structure designed to deal with
dynamic set merging and set query problems.
By grouping elements into different sets and
maintaining a tree structure to represent these
sets, DSU provides an efficient way to merge
and query sets. By applying the path
compression optimization strategy, the DSU
can simultaneously update the nodes on the
path during the merge process, which makes
the subsequent lookup operation faster.
Path compression optimization is a common
technique used to speed up the query and
merge operations of a merge set. In the
traditional union lookup set, when we need to
merge two sets, we need to find the root node
of both sets. This is an O (log n) operation. But
in practice, we usually need to merge the same
set multiple times, which leads to a lot of
double computations. To solve this problem,
we can use path compression optimization.
In DSU, the optimization strategy of path
compression is to direct the parent node of a
node to the root node, so that the subsequent
search operations can directly reach the root
node from the parent node, thus avoiding
repeated search process. This optimization not
only reduces the lookup time, but also makes
the whole data structure more compact and
improves the space efficiency.
A deep understanding of the principle and
implementation details of DSU is important for
solving real-world problems and improving
algorithm design skills.

Acknowledgments
This work was supported by the 2023
Innovation and Entrepreneurship Training
Program for College Students in Hunan
Province of China under Grant (number
S202310531040).

References
[1] Yonghui Wu and Jiande Wang. Algorithm

Design Practice for Collegiate
Programming Contests and Education.
Routledge, 2018, 706-706.

[2] Clifford A. Shaffer. A Practical
Introduction to Data Structures and
Algorithm Analysis. Prentice Hall PTR,

4 Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 1 No. 4, 2023

http://www.stemmpress.com Copyright @ STEMM Institute Press



2000, 512-512.
[3] G. J. Chaitin. Algorithmic information

theory. IBM Journal of Research and
Development, 1977, 21(4):350-359.

[4] Galler, Bernard A. and Fisher, Michael J.
An improved equivalence algorithm.
Association for Computing Machinery,
1964, 7(5):301-303.

[5] Eleni Stroulia and Stan Matwin. Advances
in Artificial Intelligence. Proceedings of
the 14th Biennial Conference of the
Canadian Society on Computational
Studies of Intelligence, Berlin, Heidelberg,
2001.

[6] Chen, Qingyun, Laekhanukit, Bundit, Liao
Chao et al. Survivable Network Design
Revisited: Group-Connectivity. 2022 IEEE
63rd Annual Symposium on Foundations
of Computer Science (FOCS), 2022, 278-
289.

[7] Chen X, Wang Y, Dong H, et al. Network
Representation Learning Based On
Random Walk Of Connection Number.
International journal of innovative

computing, information and control, 2022,
18(3):883-900.

[8] Hwang J H, Shin H U. Effects of Job
Search Behavior Patterns on the
Employment of Persons with Disabilities
in Korea through Social Network Analysis.
Journal of rehabilitation, 2023, 89(2):50-
57.

[9] Patterson, C. L. and Buechler, Guenther.
Digital image processing at the Aerospace
Corporation. Computer, 1974, 7(5):46-52.

[10] Gundala, Laxmi Amulya and Spezzano,
Francesca. A Framework for Predicting
Links between Indirectly Interacting
Nodes. 2018 IEEE/ACM International
Conference on Advances in Social
Networks Analysis and Mining
(ASONAM), 2018, 544-551.

[11] Golumbic, Martin Charles and Shamir,
Ron. Complexity and algorithms for
reasoning about time: a graph-theoretic
approach. Association for Computing
Machinery, 2010, 40(5):1108-1133.

Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 1 No. 4, 2023 5

Copyright @ STEMM Institute Press http://www.stemmpress.com




