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Abstract: This study investigates the impact
of the built environment on low-carbon
travel behaviors in Panzhihua, a medium-
sized city in China, using the Hierarchical
Linear Model (HLM). The analysis, based
on a survey of residents' travel patterns,
reveals an significantly influences travel
choices in land use and bus stop density by
one standard unit, that is, the likelihood of
residents to choose public transportation for
commuting increases by 46.24%. Oppositely,
residents in densely populated areas are less
willing to choose cars in living trips. It
suggests the balances between residential
density and accessible public transit, which
shows the necessary for urban planning.
These findings provide valuable insights for
public officials to reduce carbon emissions
through sustainable urban development
strategies.
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1. Introduction
The rapid urbanization and motorization have
led to significant environmental challenges,
including traffic congestion and carbon
emissions. While large cities have been the
focus of numerous studies on travel behavior
and low-carbon transportation, smaller urban
areas have received less attention. This
research aims to address this gap by examining
the influence of the built environment on
residents' travel choices in Panzhihua, a
representative small to medium-sized city in
Sichuan, China.
The importance lies in its potential to inform
urban planning and policy-making, particularly
in the context of promoting low-carbon travel
modes. By understanding how urban density,
land use mix, and public transportation
accessibility affect travel behavior, we can
better design cities to reduce reliance on
private vehicles and lower carbon emissions

[1-2].
We employ a Hierarchical Linear Model
(HLM) to analyze data from a questionnaire
survey, focusing on commuting, living, and
entertainment trips. The results of this study
are expected to provide a theoretical
foundation for guiding low-carbon
transportation choices, formulating urban land
use policies, and optimizing urban
transportation structures in smaller urban
settings [3-4].
The following sections detail the methodology,
including the variable design, data collection,
and analysis approach, followed by the
presentation of the empirical findings and their
implications for urban planning and
sustainable development.

2. Methods
The study employs a Hierarchical Linear
Model (HLM) to investigate the influence of
the built environment on residents' low-carbon
travel behaviors in Panzhihua, China. The
HLM is chosen for its capacity to analyze the
nuanced effects of the built environment on
travel choices across various travel purposes,
including commuting, living, and
entertainment trips.

2.1 Impact Mechanism of the Built
Environment on Residents’ Low-Carbon
Travel
The interplay between land use and travel
mode choice is characterized by a macro-level
feedback loop between urban planning and
transportation systems. Micro-level analyses
focus on the built environment's impact on
travel behavior, considering density, land use
diversity, design, and accessibility [5-8].
Extensive research has identified
commonalities in the relationship between the
built environment and travel behaviors [9-10].
Residential and employment density are key
determinants of travel behavior. High densities,
indicative of concentrated land use, are
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theorized to improve public transport
efficiency and accessibility, consolidating
travel demands and potentially favoring non-
motorized modes. This concentration may also
lead to peak-hour congestion, reducing car
travel appeal. Thus, increasing densities is
suggested to decrease car dependency and
encourage low-carbon travel.
Land use diversity, reflecting the variety and
balance of land uses, affects travel patterns. A
diverse mix of services can satisfy various
social activities, potentially shortening trips
and reducing car demand. Enhancing land use
diversity is hypothesized to reduce car reliance
and promote sustainable travel.
Design elements, including road networks,
pedestrian infrastructure, and parking,
influence travel preferences. While improved
road density and connectivity may increase car
travel, they can also improve public transport
attractiveness. Pedestrian-friendly streets and
bike lanes are expected to encourage walking
and cycling.
Accessibility to public services, such as transit
stops, is crucial. High accessibility is likely to
increase public transport use and decrease car
dependency, whereas poor accessibility may
increase car reliance.

2.2 Hierarchical Linear Model Concerning
the Impact of The Built Environment on
Residents’ Travel Mode
2.2.1 Hierarchical Linear Model
Hierarchical Linear Model (HLM), initiated by
Lindley and Smith, is a flexible framework for
analyzing nested data structures. Laird et al.
enhanced the field with a robust covariance
component estimation method [11-13].
HLM construction involves a random effects
regression model with first-layer variables to
screen for variability; and the introduction of
second-layer variables to refine the model.
Compared with the random effects model, the
complete model is incorporated with second-
layer predictor variables, through which, how
the variables of the first and second layers
affect Yij can be detected. The basic formula is
presented as follows:
The first layer:

0 1 1ij j j ij ijY X r    (1)
The ������ layer:

0 00 01 1 0j j jW      (2)

1 10 11 1 1j j jW      (3)
The subscript "0" represents the intercept; the
subscript "1" represents the regression
coefficient related to the first-layer predictor
variable X1; the subscript i stands for the
research unit of the first layer; and the
subscript j stands for the second layer unit
subordinated to the first-layer individual. If
there is more than one independent variable in
the first-layer model, such as X2 and X3,
accordingly, there will be β2j and β3j, and so on
in a similar fashion. And in the second-layer
equation, β0j, γ00, and μ0j are the same as the
null model. Specifically, β1j is the slope of the
first layer related to the second-layer unit j; γ10
represents the overall average of the slopes of
all the second-layer units in the first layer.
W1j represents the first predictor variable of the
second layer. if there is a second predictor
variable, it will be W2j. The rest can be done in
the same manner. �01 and �11 are the
regression slopes of the Eq. (2) and the Eq. (3)
respectively. The remaining parameters are the
same as above.

2.2.2 Model Concerning the Impact of The
Built Environment on Residents’ Travel Mode
With reference to the formula described in
section 2.2, the HLM concerning the impact of
the built environment on residents’ travel
mode is constructed as follows:
First layer:
��� = �0�+�1� ������ + �2� ���

+ �3� ������� + �4� ����
+ �5� ������ + �6� ����
+ ���,

(4)

Regarding gender, 0 present males while 1
present females. In terms of age, families
means family size; kids are the number of
children in the family; income shows the
family salary per month; bike is the number of
bicycles owned by the family; and car is the
number of cars owned by the family. It is
temporarily assumed that the above
independent variables have an impact on
residents’ travel modes.
It is assumed that built environment variables
are composed of population density, degree of
land use mixture, road network density,
distance to the downtown, and density of bus
stops exert influences on residents’ travel
choice through affecting the household car-
owning rate. The second-layer model is
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constructed as follows:
Second layer:

�0� = �00 + �0�
�1� = �10 + �1�
. . .
�6� = �60 + �6�

�7� = �70 + �71(�������) + �72(���������) +
�73(����) + �74(��� ��� � �) + �75(�����) + �7�

(5)

Where density represents the population
density of the traffic zone where the residential
area is located; diversity is the degree of land
use mixture of the traffic zone where the
residential area is located; road represents the
traffic zone where the residential area is
located; distance stands for the distance from
the center of the traffic zone where the
residential area is located to the downtown;
and stops indicates the number of bus stops
owned by the traffic zone where the residential
area is located.

3. Experiment Design
The travel survey is carried out in Panzhihua,
Sichuan, China, to analyze the influence of the
residential area's built environment on low-
carbon travel behaviors by a Hierarchical
Linear Model (HLM). This comprehensive
analysis encompasses variable design, model
construction, data analysis, model calibration,
and analysis.

3.1 Variable Design
3.1.1 Built Environment Variables
(1) Dependent Variable: Resident travel within
a traffic zone, characterized by attributes such
as distance, mode, bus stop distribution, and
timing, significantly affects urban structure,
transport efficiency, energy consumption, and
carbon emissions. Carbon emissions are
particularly influenced by these travel
attributes, underscoring their importance in
low-carbon travel characterization.
(2) First-Layer Independent Variables:
Individual and family factors, including gender,
age, economic status, lifestyle, environmental
consciousness, family size, and household
vehicle/bicycle ownership, shape residents'
low-carbon travel choices.
(3) Second-Layer Independent Variables: Built
Environment Factors
1) Population density: With the traffic zone as
the analysis unit, the population density of the
traffic zone can be obtained by dividing the
number of people in each traffic zone by the

area of the traffic zone, as shown in Figure 1.
(a).
2) Degree of land use mixture: Urban land can
be divided into residential and commercial
land, per the urban land classification standard.
On this basis, it is measured in line with the
entropy model. Figure 1. (b) shows the result
of dividing the proportion of land type by the
total land types in the community.
3) Road network density: The road network
density is used as an indicator of the design
variable and obtained by dividing the total
length of the road in the community by the
community area, as shown in Figure 1. (c).
4) Distance to the downtown: The distance
between each traffic zone and the traffic zone
where the downtown is, as shown in Figure 1.
(d).
5) Bus stop density: The bus stop density is
adopted to characterize the distance variable to
the bus stop, which can be obtained by
dividing the number of bus stops in the
community by the area of the community, as
shown in Figure 1. (e).

Figure 1. Variable Design, Data Statistics
and Research Area

3.1.2 Research Area and Resident Travel
Survey
This investigation centers on Panzhihua,
Sichuan, China, covering an expanse of 7,440
square kilometers and accommodating
approximately 640,000 residents, classifying it
as a small to medium-sized city in China. The
study focuses on 93 delineated traffic zones
highlighted in Figure 1. (f).
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Built environment metrics: Residential zone
characteristics such as density, diversity,
design, destination accessibility, and proximity
to bus stops are assessed using population data,
land use data, road network information, and
bus stop data.
Personal and family data: Surveyed travel
behavior data from Panzhihua residents,
collected from September 13 to September 20,
2019, includes family demographics, personal
details, and travel logs. The survey achieved an
88% effective response rate, with 1,765
households and 3,373 individuals' travel
records analyzed.

3.2 Results
Data on commuting, living, and entertainment
travel are solved with the HLM software,

respectively. Table 1. presents regression
coefficients showcasing the impact of diverse
factor variables on residents' travel modes
across different travel objectives. For instance,
in commuting travel, the degree of land use
mixture exhibits a negative coefficient of
0.4624. This value denotes a 46.24% reduction
in the likelihood of residents opting for cars for
commuting purposes per standard unit increase
in land use mixture when other variables hold
a value of 0. Similarly, the density of bus stops
displays a negative coefficient of 0.4971 for
commuting travel. It signifies a 49.71%
increase in the likelihood of residents choosing
cars for commuting travel per standard unit
increase in bus stop density when other
variables maintain a value of 0.

Table 1. Logistics Regression Coefficient Conversion Table
Commuting Travel Living Travel Recreational Travel

Variable Regression
Coefficient

Reduction
Coefficient

Regression
Coefficient

Reduction
Coefficient

Regression
Coefficient

Reduction
Coefficient

Gender -0.1244 0.4689 — — — —
Age — — -0.0039 0.4990 -0.0044 0.4989

Income 0.0687 0.5172 0.0588 0.5147 0.0453 0.5113
Familys — — -0.0197 0.4951 — —

Kids -0.0086 0.4979 -0.0607 0.4848 — —
Bike — — -0.0115 0.4971 -0.0559 0.4860
Car 0.3868 0.5955 0.1499 0.5374 0.1438 0.5359

Density 0.0001 0.5000 -0.0001 0.5000 0.0001 0.5000
Diversity -0.1505 0.4624 0.0280 0.5070 0.1728 0.5431
Road -0.0110 0.4973 0.0234 0.5058 -0.0394 0.4902
Stops -0.0116 0.4971 -0.0495 0.4876 -0.0775 0.4806

Distance 0.0107 0.5027 -0.0156 0.4961 0.0013 0.5003
In small and medium-sized cities, the positive
correlation between residential population
density and car usage for commuting
challenges conventional research, potentially
due to insufficient public transit services in
densely populated areas. This leads to a
preference for car travel among residents.
However, population and bus stop densities
significantly influence car usage for living-
related trips, while land use diversity, road
network density, and central city proximity
have negligible effects on travel mode
preferences. Interestingly, population density
negatively correlates with living travel mode
choices, contrasting with commuting patterns.
This could be attributed to the availability of
walkable amenities and public transit in high-
density regions. These results may vary across

urban structures in different countries, and the
built environment's components show minimal
impact on entertainment travel mode selection.

4. Discussion
Firstly, small and medium-sized cities ought to
adhere to a high-density and compact
development model, ensuring a harmonized
distribution of residential population and
workplaces to curtail residents' commuting
distances, consequently diminishing reliance
on car travel. Secondly, a commitment to
diversified land use development, steering
clear of single land development, is imperative.
Thirdly, a rationalized planning of the urban
road network system can bolster road
accessibility and expand the coverage of bus
stops, thereby fostering the expansion of urban
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public transportation services. However, these
outlined policy measures negatively impact
entertainment travel, and their efficacy may
face challenges.
Hence, policy implementation must
comprehensively consider factors influencing
residents' entertainment-related travel and
harmonize with other planning and travel
guidance policies. This could involve
augmenting bus routes to tourist destinations,
enhancing the service network of public
transportation dedicated to tourists, and
augmenting specialized buses for tourist sites.
Residents should be encouraged to adopt low-
carbon travel modes for entertainment
purposes, thereby reducing urban residents'
reliance on cars. This approach aims to
optimize the travel patterns of urban residents,
mitigating carbon emissions and air pollution
to foster a sustainable urban environment.

5. Conclusions
The research reveals that in densely populated
areas with high bus station densities, residents
favor public transport for living trips, while car
use is prevalent for commuting in dense
residential zones. These insights contribute to
urban and transportation planning, aiming to
promote low-carbon travel and optimize urban
travel patterns.
(1) The study elucidates the impact mechanism
of the built environment on low-carbon travel
by examining the interplay between land use
and transportation.
(2) Categorizing travel purposes into
commuting, living, and entertainment
highlights how modifying the built
environment can reduce car dependence , and
encourage low-carbon transport.
(3) Population density, land use mixture, and
bus stop density significantly influence
commuting mode preferences. Higher
residential density correlates with increased car
use for commuting, while a higher degree of
land use mixture and bus stop density reduce
car preference. The likelihood of choosing
public transport increases with land use mix
and bus station density, by 46.24% per
standard unit increase.
(4) In living travel, population and bus stop
densities discourage car use, favoring walking
and public transport. Bus stop density also
negatively affects living travel distances, while
road network density has a similar impact.

However, entertainment travel is less
influenced by built environment factors, with
travelers showing greater independence in their
choices.
Future research could expand on built
environment factors using big data and
consider the impact of spatial scale selection
on research outcomes, enhancing model
accuracy across different scales.
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