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Abstract: Desertification poses a serious
threat to both humanity and ecosystems, and
planting sea-buckthorn can help prevent
wind erosion, maintain soil and water, and
play a crucial role in improving ecological
conditions. Traditional methods of planting
sea-buckthorn are characterized by high
labor costs and lengthy time cycles, making
them inadequate for the demands of
large-scale afforestation. To address this issue,
this paper presents a tree-planting robot
capable of planting sea-buckthorn on
desertification land. The robot is equipped
with a self-developed integrated mechanical
arm for grasping and planting, utilizing
SLAM mapping and RTT path planning for
autonomous navigation and optimal route
planning. Additionally, it features a vision
recognition system based on deep learning
this tree-planting robot effectively reduces
labor, saves time and economic costs, and
contributes to the improvement of land
desertification.
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1. Introduction
Land desertification is becoming increasingly
severe, significantly impacting the ecological
environment and necessitating large-scale
afforestation efforts to improve the ecosystem.
This year, the National Forestry and Grassland
Administration has formulated and implemented
the "Three-Year Action Plan for Large-Scale
National Afforestation (2023-2025)", proposing
an annual afforestation target of no less than 100
million mu (approximately 16.5 million acres),
with at least 20 million mu (approximately 3.3
million acres) dedicated to artificial afforestation.
Sea-buckthorn , which thrives in high-altitude
areas with gravel or sandy soil, as well as

saline-alkali land, exhibits high heat and cold
resistance and wind erosion resilience. Therefore,
it can significantly increase afforestation area
and quality for greening desertification land.
Furthermore, sea-buckthorn fruits are rich in
vitamin C, making them a highly nutritious wild
fruit and a key species for the industrial
development of desertification land. With a
relatively long lifespan of around 15 years,
sea-buckthorn matures from seedling to
fruit-bearing in just five years, making it suitable
for planting in desertification areas. Traditional
manual tree planting in desertification land is
inefficient, slow, and labor-intensive. Therefore,
there is a need to develop a tree-planting robot [1]
[2] capable of planting sea-buckthorn in
desertification land. This robot employs an
automatic drilling mechanism and an integrated
mechanical arm to plant sea-buckthorn
seedlings into the drilled holes [3], completing
the soil covering process. To ensure the quality
of the planting process, the robot utilizes the
Yolov5 deep learning-based object detection
algorithm [4] to check if the planted
sea-buckthorn seedlings are upright and if the
soil covering is satisfactory. In case of
deviations, the information is transmitted to the
control system for adjustments. Additionally, the
robot achieves autonomous navigation [5] [6] [7]

and path planning [8] through three-dimensional
positioning based on a depth camera. The
emergence of the sea-buckthorn planting robot
for desertification land presents a promising
solution to address these challenges. These
robots incorporate advanced technologies,
enabling autonomous tree planting and aiding in
the restoration of desertification land ecosystems
at low production costs, thereby enhancing
economic benefits.

2. Mechanical Design

2.1 Mechanical Arm Design
To enable the robot to effectively plant trees in

28 Journal of Life Sciences and Agriculture (ISSN: 3005-5709) Vol. 1 No. 2, 2024

http://www.stemmpress.com Copyright @ STEMM Institute Press



desertification land, an integrated mechanical
arm for grasping and planting is designed[3], as
shown in Figure 1,. The device consists of a
six-degree-of-freedom mechanical arm and a
grafting device. The six-degree-of-freedom
mechanical arm is composed of multiple joints,
each capable of free rotation or movement.
Typically, a six-degree-of-freedom mechanical
arm consists of a base, two rotary joints, and
three linear motion joints. The base is fixed to
the main body of the robot, and the rotary joints
allow the mechanical arm to rotate in both
horizontal and vertical directions. The linear
motion joints enable the mechanical arm to
move in three-dimensional space. The highlight
of this mechanical arm is its dual functionality
of both gripping/clamping tree seedlings and soil
covering, as depicted in detail in Figure 1. This
design significantly optimizes the structure of
the sea-buckthorn planting robot, reducing
costs while effectively achieving sea-buckthorn
planting.

Figure 1. Modeling Diagram of Mechanical
Arm

2.2 Chassis Design
Considering the soft and complex nature of
desertification land, a metal tracked chassis is
chosen for the robot. It is driven by four DC
motors, providing ample power for the vehicle's
movement. The tracked driving method,
compared to wheeled driving, exhibits stronger
adaptability to the ground, enhanced climbing
ability, smoother movement, and significant
advantages in handling complex and heavy-duty
operations. Additionally, the large ground
contact area of the tracks increases stability. In
soft soil conditions, where sinking is shallow,
the probability of malfunctions is greatly
reduced. The modeling diagram of the chassis is
shown in Figure 2.

Figure 2. Chassis Modeling Diagram

3. System Design
The robot utilizes ROS (Robot Operating
System) as the main control system and STM32
microcontroller as the control center. The ROS
main controller communicates commands to the
STM32 microcontroller through serial
communication, instructing the mechanical arm
to reach specified coordinate positions. The
robot then utilizes the drilling end to bore holes,
lifts the mechanical arm, switches to the
gripping end, picks up sea-buckthorn seedlings
from the robot's body, places them into the holes,
and levels the soil to complete the tree planting
process. The Yolov5 object detection algorithm
based on deep learning is employed to recognize
the status of the seedlings and output
two-dimensional pixel coordinate information
for their endpoints. As the seedlings have a
relatively large volume, the project
independently designed a
two-degree-of-freedom camera mounting device
that can rotate left and right by 180 degrees and
up and down by 90 degrees. This allows for
multi-angle capturing of images, addressing
issues related to obstruction. To achieve
autonomous navigation, SLAM (Simultaneous
Localization and Mapping) three-dimensional
mapping and RRT (Rapidly Exploring Random
Trees) path planning are employed.

3.1 YOLOv5 Recognition Algorithm Target
Detection
YOLOv5 is a deep learning algorithm designed
for object detection. [4] This algorithm represents
the latest version in the YOLO series and is
widely applied in the field of computer vision.
Object detection is a crucial task in computer
vision, aiming to accurately identify objects of
different categories from images or videos and
determine their locations. YOLOv5 is capable of
achieving real-time object detection with
significant improvements in both accuracy and
speed.
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The following are the main features and
principles of the YOLOv5 algorithm:
(1) Single-stage Detector: YOLOv5 is a
single-stage object detector, meaning it can
perform both object detection and classification
in a single forward pass. It is more efficient
compared to traditional two-stage detectors.
(2) Network Architecture: YOLOv5 adopts a
backbone network structure called
CSPDarknet53. This network structure employs
a method called Cross-Stage Partial (CSP)
connection, which improves feature extraction
without increasing the number of parameters.
(3) Multi-scale Prediction: To adapt to objects of
different scales, YOLOv5 uses the Feature
Pyramid Network (FPN) structure. The FPN
structure can integrate feature maps from
different levels, enabling detection and
localization of objects at different scales.
(4) Anchor Mechanism: YOLOv5 uses an
Anchor mechanism to generate predefined
bounding boxes. These bounding boxes are used
to detect the position and size of the targets. By
predefining a set of Anchors with different sizes
and aspect ratios, YOLOv5 can predict bounding
boxes adaptively based on the scale of the
targets.
(5) Data Augmentation: To enhance the model's
generalization ability, YOLOv5 introduces
various data augmentation techniques. These
techniques include random scaling, rotation,
cropping, flipping, etc., which increase the
diversity of the dataset and improve the model's
robustness.
(6) Training Strategy: YOLOv5 employs a data
augmentation method called Mosaic to improve
the model's generalization ability. Mosaic
combines four different images randomly to
create a synthetic image containing multiple
objects. This training method allows the model
to better learn the contextual information of the
targets.
In summary, YOLOv5 is a fast, accurate, and
efficient deep learning algorithm for object
detection. Through techniques such as
single-stage detection, multi-scale prediction,
and data augmentation, it achieves excellent
performance in real-time and accuracy. The
desertification sea-buckthorn planting robot,
using the YOLOv5 algorithm, can more
accurately identify the status of sea-buckthorn
seedlings and transmit this information to the
control system for adjustments. After the
mechanical arm completes the soil covering, the

algorithm can quickly recognize and judge the
adequacy of the soil covering. The overall
flowchart of the YOLOv5 algorithm is
illustrated in Figure 3.

Figure 3. Overall Network Structure
Diagram of YOLOv5 Algorithm

3.2 Tree Planting Site Localization
The localization module primarily involves
converting two-dimensional pixel coordinates
into three-dimensional spatial coordinates.
Initially, the depth camera captures color and
depth images simultaneously, utilizing stereo
vision to calculate depth through infrared
sensors and emitters. The OpenNI_ROS2_SDK
library is then used to align the depth stream
with the color stream, obtaining the depth value
corresponding to the target object's
two-dimensional pixel coordinates as output by
the recognition module. Subsequently, using the
depth information and the intrinsic parameters of
the camera's color sensor, the two-dimensional
pixel coordinates of the color image are
converted into three-dimensional spatial
coordinates with the color camera as the
reference frame. Finally, the TF library is
employed to transform the coordinates from the
color camera's reference frame to the mechanical
arm's reference frame based on their relative
positions. The resulting coordinates are then
sequentially transmitted to the mechanical arm
control system through a scheduling strategy.
Based on the recognized center pixel coordinates
and depth values of the sea-buckthorn
seedlings, the three-dimensional spatial
coordinates of the seedling's center are obtained
through coordinate transformation. The
mechanical arm is then controlled to reach the
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specified coordinate position, and the end
effector is used to perform operations such as
grasping and planting on the target
sea-buckthorn seedling.

3.3 SLAMMapping
SLAM (Simultaneous Localization and Mapping)
is an algorithm that simultaneously performs
localization and map construction. [5][6][7] The
principles of SLAM mapping can be broken
down into the following steps:
Sensor Data Acquisition: The desertification
sea-buckthorn planting robot, equipped with
sensors, gathers environmental information in
the surrounding area. This includes data such as
distance and angle measurements from LiDAR,
as well as image information from cameras.
Data Preprocessing: Sensor data undergo
preprocessing steps such as denoising and
filtering to enhance data quality, enabling
subsequent algorithms to handle the data more
effectively.
Feature Extraction: Using feature extraction
algorithms, differences between sensor data
from the current and previous moments are
extracted as features. For example, edge
information of objects on the map can be
extracted from LiDAR data.
Feature Matching and Localization: The features
collected at the current moment are matched
with previously stored features in memory.
Registration algorithms are used to calculate the
robot's current position and update the map.
Backend Optimization: Non-linear optimization
is applied to refine the results of localization and
mapping, aiming to improve accuracy, reduce
the impact of noise, and optimize the quality of
the map, etc.
Loop Detection: Over a certain period, the robot
may pass through the same area multiple times.
During this time, the previous map and
localization results are examined to determine
whether corrections are needed for the map and
position information.
In summary, the principles of SLAM mapping
rely on sensor data acquisition. Through
processes like feature extraction and matching,
the robot's position and map are continuously
updated and calibrated in real-time. This allows
for the simultaneous achievement of localization
and map construction functions. The algorithm
finds wide applications in fields such as
unmanned vehicles and robotics.

3.4 RRT Path Planning
RRT (Rapidly-Exploring Random Tree) path
planning algorithm is a tree-expanding algorithm
that efficiently navigates through complex
environments. [8] It is a randomized strategy for
planning, continuously expanding the tree in a
random manner. Below, we will provide a
detailed explanation of the implementation
principles of RRT path planning.
The RRT path planning algorithm involves two
key concepts: the tree structure and random
samples. The algorithm starts by randomly
selecting a starting point, creating the initial
node in the tree, which serves as the root node.
Subsequently, the algorithm generates tree nodes
using random samples until it reaches the goal
point or meets the planning time limit. During
each tree expansion, the RRT algorithm
randomly selects a goal point and grows from an
existing node to a new one.
In RRT path planning, it is essential to ensure
the diversity of node distribution, sufficient
coverage of the area, and the minimization of the
path. Therefore, the process of selecting nodes in
the tree must meet two requirements: firstly,
nodes should be randomly distributed within the
designated area; secondly, nodes should have
appropriate distances from existing nodes to
ensure that the branches of the tree are neither
too dense nor too sparse.
During the tree-building process, random
samples are taken from the environment. If a
sample point is not feasible with some existing
nodes in the tree, it is skipped, and another
sample point is generated. If the sample point is
feasible, the nearest tree node is found, a new
path is connected between them, and the new
node is added to the tree, continuing until the
goal point is reached.
In practical applications, the RRT path planning
algorithm encounters certain issues that require
refinement and optimization. For instance, there
are concerns related to speed and efficiency. The
randomness in the node distribution of the RRT
algorithm may result in longer search times
compared to other algorithms, prompting the
need for state compression techniques to address
such issues. Additionally, the problem of local
optimal solutions in the algorithm requires
human intervention, such as adding random
sample points to the boundaries of the
exploration area or stopping area.
In summary, the RRT path planning algorithm is
based on random sampling and tree branch
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expansion. Although the implementation of the
algorithm is relatively simple, it can achieve
high levels of efficiency and planning quality.
Through improvements and optimizations in
practical applications, the RRT algorithm, in
conjunction with SLAM mapping, can fully
enable the sea-buckthorn planting robot to
navigate autonomously in desertification land,
accurately completing the sea-buckthorn
planting process.

3.5 Control of the Robotic ArmMovement
To achieve precise drilling at specified tree
planting locations with the robotic arm, it is
essential to obtain the relative positional
relationship between the mechanical arm and the
target point. Data obtained from depth cameras
and LiDAR represent the relative positional
relationship between the sensors themselves and
the surrounding environment. The TF library is
then used to transform this information into the
relative positional relationship between the
mechanical arm, drilling, and the target point.
We plan to establish coordinate systems for each
sensor and actuator of the robot, storing this
coordinate information in ROS for managing
coordinate system transformations using the TF
library. This enables the management of the
robot's changing posture and position
information in three-dimensional space over
time. It can track changes in coordinate systems
during robot operation, merging known
information to ensure coordination between
components during motion. Moveit motion
planning algorithm library will be utilized for
motion planning. During the object movement,
Moveit uses coordinate system information
provided by TF and the state information of
sea-buckthorn seedlings provided by the
camera. It processes data about the robot and the
surrounding environment, calculates the
kinematic equations for each robot joint, thereby
determining the robot's motion trajectory. It then
decides the next grasping or planting action for
the robot to achieve the desired final goal. The
control flow of the motion mechanical arm is
illustrated in Figure 4.

4. Experimental Data
By obtaining publicly available seedling status
datasets online and capturing various states of
sea-buckthorn seedlings through physical
photography, all acquired images are filtered.
The dataset is then enhanced through operations

such as rotation, mirroring, cropping, etc. The
final goal is to achieve a dataset size of 10,000
images with a training accuracy of 98.3%. The
accuracy curve is depicted in Figure 5.

Figure 4. Control flow chart of mechanical
arm

Figure 5. Accuracy Curve

5. Program Debugging and Optimization
Iteration
To implement functions such as motion planning
and path tracking for the desertification
tree-planting robot in the program and ensure
that the mechanical arm can move along an
approximately ideal trajectory, it is necessary to
debug and optimize the system. Based on
various scenarios the robot may encounter
during tree planting, optimization iterations are
performed on the robot's algorithms, mechanical
structure, and other aspects. This involves
adding some context-aware code, such as
obstacle detection, distance calculation, etc., to
prevent mutual interference and collisions
among the mechanical arm and other obstacles.

6. Summary
This paper addresses the issue of sea-buckthorn
planting in desertification land and proposes the
design of a tree-planting robot based on ROSE
control and deep learning visual recognition,
incorporating significant innovations in the
mechanical structure. Firstly, a tracked motion
chassis is employed to adapt to a wider range of
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terrain conditions. Secondly, for the grasping
and planting of seedlings, a self-developed
integrated mechanical arm for gripping and
planting is utilized. Finally, during the planting
process, autonomous navigation and positioning
at planting locations are achieved using SLAM
and RRT. The main conclusions drawn from this
study are as follows:
(1) Based on the size of sea-buckthorn
seedlings and the topographical features of
desertification land, a prototype of the
desertification tree-planting robot was designed.
This includes a tracked motion chassis and a
storage device more suitable for sea-buckthorn
seedlings, facilitating a smoother planting
process;
(2) The YoloV5 object detection algorithm based
on convolutional neural networks was utilized to
train on a dataset of photos capturing the status
of sea-buckthorn seedlings in the natural
environment and photos indicating qualified soil
coverage during planting. The final training
resulted in a dataset of 10,000 images with an
average recognition accuracy of 98.3%;
(3) SLAM algorithm and RRT path planning
were employed to enable the robot to
automatically navigate through obstacles during
its movement, enhancing the stability of the
robot's operation and making the entire
tree-planting process more towards full
automation;
(4) The hardware and software structure of the
tree-planting robot was designed, and the entire
robot was assembled. Field experiments of
sea-buckthorn planting were conducted,
resulting in a survival rate of over 80% for
sea-buckthorn seedlings. Therefore, the robot
demonstrates high reliability.
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