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Abstract: Building energy consumption
constitutes a significant contributor to
greenhouse gas emissions. Precise
forecasting of energy consumption in
buildings plays a pivotal role in managing
building energy efficiently, thereby aiding in
the reduction of greenhouse gas emissions.
However, existing prediction algorithms
often focus on within-period variations in
energy consumption data and overlook
between-period variations. This limitation
makes it challenging to achieve precise
prediction results, especially for long-term
forecasts. To address this research gap, this
paper proposes an Enhanced Long-Term
Prediction based on 2D Tensorization
(ELP2T) for building energy consumption.
First, a Frequency-Guided 2D Tensorization
Network (FG-2TN) is proposed. Energy
consumption data, when represented as a
one-dimensional time series, faces certain
limitations, and FG-2TN is employed to
address these limitations. Second, a
Progress-Optimized Deep Convolutional
Network (PO-DCN) is proposed. It is
designed to efficiently extract and learn
features from the obtained two-dimensional
tensors with fewer parameters and less time.
Third, a modular method is proposed to
transform one-dimensional time series into
two-dimensional tensors using Fast Fourier
transform. These tensors are processed and
then concatenated into a one-dimensional
sequence for output. Ultimately, a
comparative analysis was carried out using
several traditional forecasting algorithms to
highlight the superior performance of the
ELP2T model. The obtained average R²
score for our proposed method is 0.807,
representing an impressive enhancement of
11.06% compared to the most advanced
alternatives. This substantial improvement
firmly establishes the superiority of our

approach. Especially, when considering a
prediction length of 720 units, the
performance gain of this metric increases to
18.09%, underscoring the pronounced
advantage of our method in addressing
long-term forecasting scenarios.
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1. Introduction
The world is currently facing numerous
problems caused by global warming. One of
the leading causes of global warming is the
excessive emissions of greenhouse gases.
Surprisingly, buildings represent a significant
portion, approximately 40%, of the total
greenhouse gas emissions[1]. To address this
problem effectively, it becomes crucial to
accurately predict building energy
consumption, as it allows for better
management and planning of energy usage[2].
Such predictions enable intelligent control
decisions, help maintain a balance between
energy supply and demand, provide insights
into building behavior, and facilitate optimal
adaptations to changing conditions[3]. They
assist in achieving finer control over power
systems and elevating energy utilization
efficiency. Moreover, long-term prediction can
help power systems better analyze electricity
consumption cycles and make better plans[4].
Hence, enhancing the accuracy of predictions
for building energy consumption is
imperative[5].
Methods for predicting building energy
consumption are generally divided into two
main categories: methods based on physical
models and data-driven methods.
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Physical-model-based methods, also known as
white-box approaches, utilize the principles of
thermodynamics and heat transfer to estimate
energy usage within buildings. For example,
the energy consumption of heating, ventilation,
and air conditioning (HVAC) systems is
estimated using various approaches, including
the variable base degree day method, the
equivalent full load hours method, and the bin
method. Popular software tools for simulating
building energy include EnergyPlus, eQuest,
and DOE-2, among others. These
physical-model-based approaches require
detailed input information about the building's
physical attributes, HVAC systems, equipment,
and the schedules of occupants for simulation
purposes. While this detailed input can lead to
precise energy consumption predictions, it also
tends to make the modeling process more
complex and time-consuming.
Data-driven approaches for predicting building
energy consumption fall into two primary
categories: statistical methods and machine
learning techniques. Statistical methods, often
referred to as grey box models, generally rely
on regression analysis for prediction. For
instance, Wen et al. [6] utilized Multiple
Linear Regression (MLR) for forecasting
energy use in buildings. Additionally, Kozitsin
et al.[7] applied the Auto-regressive Integrated
Moving Average (ARIMA) model to capture
time series trends and seasonal variations in
energy consumption. Though these
conventional statistical techniques laid the
groundwork for predicting energy use, the
intricate and multifaceted nature of building
systems limited their precision in forecasts.
To overcome the limitations of physical-model
based and statistical methods, researchers have
turned to machine learning. Ma et al.[8]
employed Support Vector Machines (SVM) to
address nonlinear problems and developed an
SVM-based model for forecasting office
lighting energy consumption. Amber et al.[9]
utilized Artificial Neural Networks (ANNs) to
predict power consumption in a London-based
administrative building. Jiang et al.[10] used
Random Forest (RF) for energy consumption
prediction, improving stability and accuracy by
combining multiple decision trees.
Additionally, ensemble learning methods have
had a significant impact on building energy
consumption prediction[11]. However, existing
machine learning algorithms face challenges

such as inaccurate predictions, low
computational efficiency, and limited
applicability.
In recent years, deep learning algorithms have
made significant advancements, particularly in
the field of building energy consumption
prediction. Cai et al.[12] successfully applied
Convolutional Neural Networks (CNNs) to
building energy consumption prediction,
offering new insights into data processing for
energy forecasting. At the same time,
Recurrent Neural Networks (RNNs) and their
variants, such as Long Short-Term Memory
(LSTM) networks and Gated Recurrent Units
(GRUs), have been widely adopted for their
ability to effectively model the dependencies
in sequential data. Fan et al. proposed a hybrid
Convolutional-Recurrent Neural Network for
residential building energy consumption
prediction. The researchers conducted
comparisons across a variety of deep learning
models specialized for time series analysis,
including LSTM, GRU, CNN-LSTM, and
CNN-GRU. In their experiments, the
CNN-GRU model emerged as the most
effective, demonstrating superior performance.
Recently, Transformers with attention
mechanisms have been widely adopted for
sequential modeling. Li et al.[13] improved the
performance of sequence-to-sequence deep
learning models by incorporating attention
mechanisms. Their experiments, focusing on
energy consumption prediction in 36 buildings,
demonstrated an average 2% improvement in
prediction accuracy. Time series models excel
at capturing temporal information in building
energy data but become less reliable for longer
prediction horizons.
Extensive research has shown that time series
models are effective in making accurate
predictions for short-term periods, typically
less than 48 hours. However, their reliability
and accuracy decrease when it comes to
long-term forecasts that span beyond 48 hours.
The majority of studies in this field focus on
predicting outcomes over short to
medium-term durations, largely ignoring
long-term prediction due to the limitations of
one-dimensional time series models. Existing
prediction algorithms primarily consider the
impact of each time point on neighboring point.
However, they tend to overlook the
interdependencies and connections between
adjacent regions with in the same timeframe.
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This constraint restricts the identification and
extraction of closely connected
two-dimensional local features, which are
crucial for achieving highly accurate long-term
predictions. Consequently, the task of
accurately predicting outcomes over extended
periods of time remains a challenging
endeavor.
In time series, variations at individual time
points are not only influenced by nearby
temporal points but also strongly correlated
with changes in neighboring periods. To make
this distinction clearer, we categorize these
temporal variations into two types:
‘within-period variation’ and ‘between-period
variation’. The former refers to changes
between neighboring time points within the
same cycle, while the latter refers to changes
between time instances corresponding to
identical phases across various cycles.
According to these findings, this paper
proposes an Enhanced Long-Term Prediction
based on 2D Tensorization (ELP2T) model.
The ELP2T model consists of two main
components: The Frequency-Guided 2D
Tensorization Network (FG-2TN) and the
Progress-Optimized Deep Convolutional
Network (PO-DCN). The FG-2TN module
utilizes the Fast Fourier Transform (FFT) to
transform 1D time series into multiple sets of
2D tensors at different frequencies. This
expansion of the analysis into a 2D space
allows for a more comprehensive examination
of temporal changes. The PO-DCN module is
designed to extract temporal features from the
transformed 2D tensors and facilitate effective
feature learning. The contributions of this
study are outlined as follows:
1) A modular method is proposed to

transform 1D time series into 2D space,
enabling the simultaneous presentation of both
within-period and between-period variations.
2) The FG-2TN module is proposed to

obtain different frequencies and convert 1D
energy consumption data into 2D tensors.
3) The PO-DCN module is proposed for

feature extraction and learning by
parameter-efficient blocks in 2D space.
4) The introduction of the ELP2T

framework for forecasting building energy
consumption, which achieves state-of-the-art
performance in predominant analytical tasks.

2. Preliminary

2.1 Definition
When talking about energy consumption data,
it belongs to the category of time series data.
This classification comes from the fact that
energy consumption data is organized in
chronological order, where each data point is
linked to a specific time instance. Typically,
these measurements are taken at hourly, daily,
or other time intervals. Time series models
have the ability to uncover various
time-dependent patterns within energy
consumption data, such as seasonal, trending,
and periodic patterns. Consequently, they
allow for predicting future consumption trends
and conducting detailed analyses. Energy
consumption data is represented using the
definition of a time series as follows:

�1D = �1, �2, ⋯, ��� �� ∈ ℝ�� (1)
Where �1D represents the collection of
original 1D time series data, symbolizing the
input energy consumption data sequences used
for prediction. �� denotes the sequence length,
and �� signifies the number of variables
recorded at each time point.

2.2 Data Preparation
2.2.1 Dataset
The publicly available dataset ‘Informer-ELC’
was utilized, collecting hourly electricity
consumption data from 321 consumers in a
city in the western United States spanning the
years 2012 to 2014. A partial visualization of
the dataset is shown in Figure 1.

Figure 1. Partial Dataset Presentation
The construction of a data-driven model
requires three distinct datasets[14]:
1) Training data, which is used to train and

fit the data-driven model;
2) Validation data, utilized for unbiased

assessment while fine-tuning the model’s
hyperparameters;
3) Testing data, employed to evaluate the
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performance of the final model.
The dataset was partitioned into training,

validation, and testing data following a ratio of
7:1:2.

Figure 2. The Overview of the ELP2T Model Framework
2.2.2 Normalization
When the features in a dataset exhibit
substantial discrepancies or the data
distribution is uneven, this can lead to a
significant degradation in predictive
performance. Normalization plays a pivotal
role in data preprocessing by adjusting the
scales of features, eliminating dimensional
influences, and enhancing model performance
and algorithm convergence speed. Its function
is to bring disparate features to a comparable
scale, thus reducing the impact of outliers,
improving algorithmic robustness, and
concurrently emphasizing data patterns during
feature engineering. This not only promotes
data comparability and interpretability but also
establishes a resilient foundation for machine
learning and data analysis. The Min-Max
normalization approach has been employed,
individually applied to each data point, as
elucidated below:

Norm ��� = ��
�−����

�

����� −����
� (2)

Where ��� and Norm ��� represent the
original and normalized data for the m-th
feature of the sequence, respectively. �����

and �����

denote the maximum and minimum values of
the m-th dataset.

3. Method
This section offers a detailed overview of the
ELP2T model, including its architecture
depicted in Figure 2.

3.1 Overall Structure
As shown in Fig 2, ELP2T is composed of
multiple Tensorized Feature Extraction Cell
(TFEC) connected in a residual way. Each
TFEC comprises the FG-2TN and PO-DCN
modules. FG-2TN takes the 1D time series of
building energy consumption as input and
transforms it into a 2D representation.
Subsequently, PO-DCN performs 2D feature
extraction and learning. It then refactors back
and combines the obtained 1D sequences
dynamically to form the final output.
For the h-th layer of ELP2T, where the input is
denoted as �1Dℎ−1 , this process can be
formally expressed as:

�1Dℎ = TFEC �1Dℎ−1 + �1Dℎ−1 (3)
To provide a more intuitive and clear
representation of the model’s structure, we
have presented an algorithm flowchart, as
shown in Figure 3.
In the upcoming subsections of this chapter,
we will delve into detailed explanations of the
FG-2TN and PO-DCN modules.

3.2 Frequency-Guided 2D Tensorization
Network
Figure 4 illustrates that each time point
encompasses two distinct temporal variations:
variations within its immediate vicinity
(within-period variation) and variations across
different periods (between-period variation).
However, the traditional 1D time series format
is limited to capturing changes between
consecutive time points. To overcome this
limitation, we have explored the
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implementation of a 2D temporal structure.
This structure is explicitly designed to
represent both within- and between-period
variations. Such an improvement in the
representation significantly enhances the
potential for more effective feature learning.
To be more specific, for a time series of length

�� recording �� variables, the original 1D
arrangement is denoted as �1� ∈ ℝ��×�� . In
order to capture in between-period variation,
the identification of frequencies and periods is
necessary. This is achieved through FFT
analysis in the frequency domain on the time
series, as shown below:

Figure 3. The Algorithm Flowchart of ELP2T
� = ��� Amp ��� �1� (4) (
�1, �2, ⋯, �� = ���Topk � (5)
�� =

��
�� , � ∈ 1,2,⋯, � (6)

Where FFT ⋅ and Amp( ⋅ ) represent Fast
Fourier Transform and amplitude calculation,
respectively. The symbol � ∈ ℝ�� represents
the computed amplitude values of various
frequencies, obtained by averaging the values
across the �� dimensions using Avg ⋅ .
Notably, the i-th value of amplitude �� denotes
the amplitude strength corresponding to the i-th
frequency, which corresponds to the periodic
length �� =

��
�� . To account for the sparsity

in the frequency domain and mitigate noise
from irrelevant high frequencies, we select only
the top-k amplitudes and obtain the most
significant frequency �1, �2, ⋯, �� along
with the non-normalized amplitude

�1, �2, ⋯, �� , where k is a hyperparameter.
These selected frequencies also correspond to k
periodic lengths �1, �2, ⋯, �� . Considering the
conjugate symmetry of the Fourier transform
for real signals, we focus solely on frequencies
within 1,2,⋯, �� 2 . We summarize Eq (4-6)
as follows:
�1, �2, ⋯, �� , �1, �2, ⋯, �� =FreqPick �1D (7)
In brief, �1D gets k sets of frequencies with the
largest amplitude �1, �2, ⋯, �� and
corresponding period lengths �1, �2, ⋯, ��
after the operation of FreqPick ⋅ .
Based on the selected frequencies
�1, �2, ⋯, �� and their corresponding period
lengths �1, �2, ⋯, �� , we can reshape the 1D
time series �1D ∈ ℝ��×�� into k sets of 2D
tensors using the following equation:

�2�� = Refactor��,�� Padding �1� , � ∈
1,2,⋯, � (8)
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Where Padding ⋅ expands the time series by
padding zeros along the time dimension to
ensure compatibility with the Refactor��,�� ⋅ ,

where �� and �� represent the number of rows
and columns of the transformed 2D tensor.

Figure 4. A Univariate Example to Illustrate 2D Structure in Time Series

It’s worth noting that �2D� ∈ ℝ��×��×��

represents the i-th time series reshaped
according to frequency - �� . Ultimately, as
illustrated in Figure 4, through the application
of the selected frequency and estimated period,
we derive a collection of 2D tensors
�2D1 , �2D2 , ⋯, �2D� , which signifies k unique
temporal variations originating from various
periods. Furthermore, it's important to highlight
that this transformation brings forth two kinds
of localities within the transformed 2D tensors:
localities among neighboring time points
(columns, indicating within-period variation)
and localities among successive periods (rows,
indicating between-period variation). As a
result, the 2D temporal variations can be
efficiently analyzed using 2D kernels.

3.3 Progress-Optimized Deep Convolutional
Network

Convolutional Neural Networks (CNNs) have
demonstrated remarkable performance in 2D
image processing. Through convolutional layers
and pooling layers, CNNs can effectively
capture local features of images and
progressively learn higher-level abstract
features. However, in order to make CNNs
applicable to structured data and get more
accurate predictions, it need some
improvements. We have incorporated some of
its macroscopic and microscopic design
elements that are beneficial for model
performance into traditional CNNs, resulting in
the proposal of the Progress-Optimized Deep
Convolutional Network (PO-DCN). The
PO-DCN module encompasses a range of novel
design choices aimed at enhancing both the
efficiency and effectiveness of tensor
processing. We will delve into these design
aspects in the following subsections. The
framework of PO-DCN is illustrated in Figure 5.

Figure 5. The Framework of PO-DCN
3.3.1 Depthwise separable convolution
Traditional convolutional neural network
consists of two main steps: spatial convolution
and channel-wise mixing. However, Depthwise
Separable Convolution breaks these steps down
and utilizes different approaches: depthwise
convolution and pointwise convolution, to
replace the conventional convolution operations.

In the depthwise convolution phase, processing
is performed separately on each channel of the
input feature map, without any interaction
between the channels. In other words, each
channel employs an independent convolution
kernel for feature extraction. The advantage of
this strategy lies in reducing the number of
model parameters while still capturing unique
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information from each channel.
Following the depthwise convolution stage,
pointwise convolution utilizes 1×1 convolution
kernel to fuse features across channels. It is
used to aggregate the information contained in
all channels, and generate the final output
feature map. It is noteworthy that pointwise
convolution does not perform spatial sliding
operations, as it solely undertakes linear
combinations between channels. The key
advantage of Depthwise Separable Convolution
lies in significantly reducing the model’s
parameter count and computational cost.
Through this decomposed convolution
approach, Depthwise Separable Convolution
successfully segregates spatial and
channel-related feature extraction processes,
thereby enhancing model efficiency and
lightweightness while preserving information
richness. Novel avenues in the design of deep
learning models, aiding in achieving
remarkable performance even under limited
computational resources. Fig 6 shows the
comparison of traditional convolution and
depthwise separable convolution.

Figure 6. Comparison of Traditional
Convolution and Depthwise Separable

Convolution
3.3.2 Inverted bottleneck
In the design of the Transformer block, a
pivotal innovation is the introduction of the
inverted bottleneck structure, which involves
expanding the hidden dimension of the
Multi-Layer Perceptron (MLP) block to four
times the input dimension. We incorporate this
design into the CNN framework. The essence
of the inverted bottleneck structure aims to
enhance the network’s feature extraction
capability without introducing excessive
computational burden and memory overhead,

thus better capturing critical information within
input data. The comparison of traditional
bottleneck structure and PO-DNC’s inverted
bottleneck structure is shown is Figure 7.
To provide a more comprehensive depiction of
this structure and its enhancements, we have
compared the structure of ResNeXT with the
PO-DCN block. Firstly, by applying smaller
convolution kernels for dimension reduction,
the input feature map is compressed, effectively
reducing computational demands and memory
requirements. Subsequently, larger convolution
kernels are employed to capture richer feature
information, enabling the network to precisely
comprehend subtle variations within input data.
Lastly, smaller convolution kernels are once
again employed to elevate the dimension,
restoring features to a higher dimension. This
multi-layer convolutional operation strategy
empowers the network to process input data
more intricately and comprehensively without
sacrificing crucial features.

Figure 7. Traditional Bottleneck Structure
(left) and PO-DNC’s Inverted Bottleneck

Structure (right)
Such a design holds significance when
integrated into CNNs. The introduction of the
inverted bottleneck structure enables the
network to adapt better to features of varying
scales and hierarchies, thereby enhancing
feature extraction capabilities. Using
distinct-sized convolution kernels at critical
stages, the network becomes adept at capturing
the diversity and complexity of input data,
showcasing superior performance across
diverse tasks.
In summary, the integration of the inverted
bottleneck design from the Transformer block
into CNNs brings innovation to the network’s
feature extraction process. This design strategy
enhances the network’s expressive capacity
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while maintaining computational efficiency,
allowing the network to better comprehend and
process input data, resulting in improved
performance across various applications.
3.3.3 Changing stage compute ratio
In traditional CNNs, as the network depth
increases, issues like vanishing or exploding
gradients may arise, rendering the training of
deep networks challenging. To address this,
ResNet introduced a clever approach by
dividing the network into multiple consecutive
stages, each containing several residual blocks.
The output of each stage serves as the input for
the next, forming a cascaded architecture.
During training, the model gradually
approximates the ideal mapping by learning
from the residual blocks in each stage, enabling
the construction of deeper networks.
Recently, the Swin Transformer (ST) has
showcased remarkable performance in tasks
like 2D image processing. Although ST does
not employ the structure of CNN, it still adopts
the multi-stage concept. In the original ResNet,
the stacking of blocks across stages (from
stage1 to stage4) followed a ratio of (3, 4, 6, 3),
approximately 1:1:2:1. In contrast, in the ST,
for example, Swin-T has a ratio of 1:1:3:1, and
Swin-L has a ratio of 1:1:9:1. It’s evident from
these examples that the ST emphasizes a higher
proportion of block stacking in the third stage.
Drawing inspiration from this, we attempt to
modernize the model’s parameters by applying
a similar stage ratio, incorporating the essence
of the ST’s approach. We set the stacking of
residual blocks in stages 1 to 4 of our model to
(3, 3, 9, 3), aiming to further optimize its
performance. This not only maintains the
model’s lightweight and efficient nature but
also better uncovers the inherent structure of
features. This modernized design holds the
potential to enhance the model’s performance
and achieve superior results across various
tests.

4. Experimental Results and Analysis
In this section, we conducted a comprehensive
set of experiments to assess the effectiveness of
our proposed model. We begin by introducing
the general performance evaluation metrics
employed. Subsequently, we compare and
analyze the experimental outcomes of our
model with those of other models for a
comparative study. Finally, we conducted
ablation experiments to delve into the

individual contributions of various modules
within the model.

4.1 Evaluation Metrics
In this research, we evaluated the efficacy of
various prediction methods by comparing them
across several metrics, namely Mean Squared
Error (MSE), Mean Absolute Error (MAE), and
the Coefficient of Determination (R2). These
metrics provide a comprehensive assessment of
prediction accuracy and model performance.
The formulas for calculating these metrics are
outlined in Equations (9-11), where i represents
the sample index, n denotes the total number of
samples, y represents the measured value, y
represents the predicted value, and y̅ is the
mean output. The equations are as follows:

��� = 1
� �=1

� �� − �� �� 2 (9)

��� = 1
� �=1

� �� − �� �� (10)

�2 = 1 − �=1
� ��−��� 2�

�=1
� ��−�� � 2�

(11)

MAE and MSE are common metrics in
regression analysis. MAE measures the average
absolute difference between predicted and
actual values, squared differences, emphasizing
larger errors. indicating model accuracy. MSE
is a statistical measure that quantifies the
average squared difference between the
estimated values and the actual value, widely
used in regression analysis to assess model
accuracy. Both metrics assess regression model
fit by quantifying prediction errors. Smaller
values of these metrics indicate more accurate
predictions.
R2 is a widely used metric in statistics to
measure the goodness of fit of a regression
model. It represents the proportion of the
variance in the dependent variable that can be
explained by the independent variables,
indicating the degree to which the regression
model fits the actual data. R² values range
between 0 and 1, where a value closer to 1
indicates a better explanatory power of the
model for the data.

4.2 Experimental Performance and
ComParative Analysis
To better show the model’s predictive
performance across various sequence lengths,
we adopted different prediction sequence
lengths. Keeping the input length �� fixed at 96,
we evaluated the model’s predictive accuracy
for various prediction sequence lengths �� ∈
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96,192,336,720 . The visual representation of
the experimental results is depicted in Fig 8.
To further validate the superior predictive
performance of our proposed ELP2T model
compared to other models, we established six
commonly used time series forecasting
algorithms for comparison. These include
traditional methods like ARIMA, Temporal
Convolutional Network (TCN), LSTM, as well
as state-of-the-art Transformer-based
approaches such as LogTrans, Informer, and
Fedformer. It’s important to note that due to

Fedformer exhibiting the best performance
across all benchmark tests, it was chosen as the
primary benchmark model for comparison.
Table 1 presents the prediction results of
ELP2T in comparison with other benchmark
algorithms. All algorithms were evaluated using
the same training, validation, and testing
datasets. Fig 9 illustrates the radar chart of the
R² metrics, and Fig 10 illustrates the results of
the MSE and MAE metrics for different models
under various prediction lengths, providing an
intuitive overview of the algorithm’s prediction
performance.

Table 1. The Results of Comparative Experimental

Method
96 192 336 720

MSE MAE R2 MSE MAE R2 MSE MAE R2 MSE MAE R2

ELP2T 0.171 0.277 0.819 0.189 0.292 0.806 0.207 0.311 0.786 0.223 0.331 0.753
Fedformer 0.183 0.297 0.783 0.195 0.308 0.753 0.212 0.323 0.712 0.231 0.353 0.657
Informer 0.274 0.368 0.654 0.296 0.386 0.643 0.300 0.394 0.612 0.373 0.439 0.578
LogTrans 0.258 0.357 0.726 0.266 0.368 0.654 0.280 0.380 0.596 0.359 0.416 0.544
LSTM 0.375 0.437 0.537 0.442 0.473 0.504 0.639 0.676 0.439 0.980 0.814 0.286
TCN 0.985 0.813 - 0.996 0.821 - 1.012 0.824 - 1.438 0.784 -
ARIMA 0.879 0.764 - 1.032 0.833 - 1.136 0.876 - 1.136 0.933 -

Figure 8. Visualization of Some Prediction Results Under Various Prediction Lengths
It is evident that ELP2T consistently achieves
the best performance across all prediction
sequence lengths. Compared to Fedformer, the
proposed ELP2T demonstrates an overall
relative improvement of 11.06% in terms of R².
Notably, this improvement becomes more
pronounced for longer prediction sequence

lengths, such as 336 and 720, where R² is
relatively enhanced by over 12.50% and
18.10%, respectively.
In summary, ELP2T consistently delivers
exceptional performance across different
prediction sequence lengths, with its advantages
becoming particularly evident as the sequence
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length increases. This suggests that ELP2T
exhibits a comparative advantage over other
sequence forecasting models, especially when
dealing with longer prediction sequences.

Figure 9. Radar Chart of Comparative
ExPeriments for R² Metrics

4.3 Ablation Experiments Analysis
In this subsection, we conduct ablation
experiments to explore the impact of key
components in our approach on the final
performance. By gradually removing or
adjusting these components, we aim to
investigate their influence on the overall results.
Taking the state-of-the-art (SOTA) results
achieved by utilizing FG-2TN and PO-DCN
modules as our baseline, we tested three
ablation variants of ELP2T:
1) PO-DCN: In this variant, we removed the
FG-2TN module from ELP2T.
2) FG-2TN + TCN: We replaced the
PO-DCN module with a traditional TCN.
3) TCN: This variant involves the removal
of both the FG-2TN module and the PO-DCN
module, with TCN serving as their replacement.

4) By comparing the performance of these
ablation variants to the baseline which uses
FG-2TN and PO-DCN modules, we can gain
insights into the contributions of each
component to the final performance of ELP2T.

Figure 10. Performance of Comparative
ExPeriments Under Different Prediction

Lengths
Table 2. The Results of Ablation Experiments

Method
96 192 336 720

MSE MAE R2 MSE MAE R2 MSE MAE R2 MSE MAE R2

ELP2T 0.169 0.273 0.819 0.186 0.288 0.806 0.203 0.306 0.786 0.224 0.325 0.753
PO-DCN 0.288 0.394 0.713 0.387 0.486 0.607 0.593 0.657 0.493 0.822 0.758 0.328
FG-2TN+TCN 0.224 0.328 0.759 0.263 0.357 0.688 0.307 0.386 0.601 0.413 0.414 0.536
TCN 0.985 0.813 - 0.996 0.821 - 1.012 0.824 - 1.438 0.784 -
The results of the ablation experiments are
presented in Table 2. Additionally, a radar chart
depicting the R² scores of the ablation
experiments can be found in Fig 11. Analyzing
the prediction results of PO-DCN and ELP2T,
it’s evident that the FG-2TN module within
ELP2T, which transforms data into a 2D space
for feature extraction and learning, effectively
enhances prediction accuracy. This effect

becomes more pronounced as the prediction
length increases. Furthermore, by comparing
the results of ‘FG-2TN+TCN’ with those of
ELP2T, it demonstrates the excellent feature
learning capability of PO-DCN in the 2D space.
In addition, when comparing PO-DCN with
some traditional prediction algorithms as shown
in Table 1, it’s clear that PO-DCN achieves
better prediction results, highlighting the
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effectiveness of the improvements made to
traditional CNNs.

Figure 11. Radar Chart of Ablation
ExperiMents for R² Metrics

4.4 Generalization Analysis
To evaluate the generalization capabilities of
the ELP2T algorithm, it was implemented on a
real-world dataset. This dataset comprised
electricity consumption records over three years
from 93 buildings within a university located in
Wuxi, Jiangsu Province, China. For
benchmarking purposes, these records were
also analyzed using the state-of-the-art
Fedformer model. The outcomes of training
both ELP2T and Fedformer on this dataset are
illustrated in Figure 12. The results clearly
show that the ELP2T model consistently
delivers robust prediction performance, even
when applied to diverse datasets. This
experimentation underscores the ELP2T
model's strong generalization capabilities,
affirming its effectiveness beyond the initial
conditions it was designed under.

Figure 12. Experimental Results of
GeneralIzation Analysis

5. Conclusion
In this study, we have introduced the ELP2T

model, aiming to contribute to the improvement
of accurate long-term building energy
consumption prediction. Our approach is
guided by the unique insights into temporal
variations within and between periods, leading
to the development of a comprehensive
framework. Firstly, we introduced the FG-2TN
module, which leverages the FFT to transform
1D time series into 2D tensors. This innovative
approach allows for the extraction of spatial and
frequency features, effectively capturing
short-term within-period variations and
long-term between-period trends. Secondly, we
introduced the PO-DCN module, inspired by
both CNNs and Transformer architectures. This
module facilitates efficient feature extraction
from the derived 2D tensors, further enhancing
the accuracy and efficiency of our model.
Finally, the proposed ELP2T model
demonstrated its superiority in predicting
building energy consumption. Experimental
results demonstrate that our model outperforms
other algorithms in terms of accuracy and
stability. Furthermore, the experiments
highlight the model’s potential for
generalization and its applicability to diverse
datasets.
The ELP2T model proposed in this paper is
particularly suited for predicting building
energy consumption with strong periodic
patterns. However, real-world scenarios often
involve non-periodic or weakly periodic energy
consumption data. Therefore, future research
should focus on enhancing the accuracy of
predictions for non-periodic data. We aim to
explore additional deep learning models, such
as the Diffusion model, to achieve accurate
predictions for a wider range of complex energy
consumption data.
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