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Abstract: This paper leverages data and
projects from Group A to enhance the
application of bomb impact point tracking
and measurement using binocular vision.
The research involved gathering bomb
impact measurement data across various
mountain peaks of differing elevations,
Using binocular drones to collect data.
Nevertheless, challenges such as bomb
impact overlap and occlusion within the
video data were identified. To tackle these
equipment-related obstacles, including
bomb occlusion and camera overlap issues,
remote sensing image reconstruction
networks were utilized to reconstruct bomb
impact images that exhibited partial overlap.
The processed imagery data was annotated
utilizing the labelimg annotation tool, in
collaboration with the OpenCV data
processing utility, for precise labeling of
bomb impact images. Moreover, a
multi-object tracking network was
developed and trained for the effective
tracking of bombs. The central aim of this
research is to regress the world coordinates
of initial bomb impact points by employing
bomb point localization algorithms and
image regression networks dedicated to
bomb measurement. Furthermore, this
paper delves into the inaccuracies found
within target point measurements and
undertakes an error analysis predicated on
the information pertaining to the target. To
enhance the operational capability of the
airborne observation platform, the research
entailed the relocation of the electro-optical
pod to a predetermined position, followed
by the remote transmission of the gathered
data to ground-based equipment. The
ground-based equipment is designed to
configure parameters, control the
electro-optical pod, receive commands, and
process image data for conducting
intersection measurement calculations. The

electro-optical pod itself facilitates
high-speed measurements of target impact
positions across visible light, infrared, and
laser modes, additionally offering
capabilities for local data storage. The
pod's attitude self-stabilization was
accomplished with gyroscopes. Meanwhile,
the ground equipment facilitates remote
control, parameter setting, data reception,
and the execution of intersection
measurement calculations based on image
data.

Keywords: Super-resolution Reconstruction;
Explosion Point Measurement; Binocular
Vision; Linear Regression; Error Analysis

1. Introduction
The system described is utilized for monitoring
and measuring the impact point positions of
ammunition fired from multiple-barrel artillery
in ground suppression conditions. Prior to
firing, all drones transition into a preparation
state and await takeoff instructions. Upon
receiving the takeoff command, three drones
take off simultaneously and proceed to their
designated positions and altitudes for standby.
The ground integrated display and control
system continuously receives real-time status
parameters from the drones, electro-optical
pod, GNSS/IMU inertial navigation system
positioning parameters, and partially real-time
transmitted image data [1]. This data includes
real-time previews from visible light
high-speed cameras or infrared videos and can
be promptly displayed on the ground
integrated control system, enabling users to
monitor the operational status of the drones
and the electro-optical pod. The system setup
is depicted in the accompanying Figure 1.
Throughout the firing process, the
electro-optical pod diligently adheres to a
prearranged plan to survey the target area,
performing tri-mode measurements in visible
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light, infrared, and laser to record high-speed
target impact positions, with all data stored
locally. Subsequent to firing, through an
analysis of the downloaded visible light and
infrared video data, this research harnesses
computer vision techniques for image change
detection to autonomously identify the bomb
impact targets [2]. The system meticulously
locates the positions of the targets by analyzing
three visible light video images and an infrared
image, enabling precise triangulation
measurements of the bomb impact targets. By
combining the identified positions with ground
target information and utilizing observations
from multiple angles, advanced spatial
triangulation algorithms accurately calculate
the three-dimensional coordinates of the bomb
impact targets.

Figure 1. Drone Measurement Scenarios

2. Utilizing Super - Resolution
Reconstruction for Precision Bomb Impact
Tracking and Measurement in Binocular
Visual Occlusion Scenarios

2.1 Hybrid Gaussian Background Modeling
The Gaussian distribution is employed to
describe the consistent spatial distribution of
all images within a video sequence, aiding in
the development of a background Gaussian
distribution probability model [3]. By utilizing
a predefined probability threshold T, the pixel
values undergo evaluation to determine their
adherence to the model. If the criteria are met,
the pixel is classified as part of the background;
otherwise, it is recognized as a moving target.
The formula for this classification process is as
follows:

� �, � =
0, �� �, � − �� �, �

�
�
−1 �, �� �� �, � − �� �, � ≤ �

1, �� �, � − �� �, �
�

�
−1 �, �� �� �, � − �� �, � > �

(1)

The threshold T can be adjusted either through
adaptive thresholding or manual adjustments to
reduce computational load. When dealing with
a grayscale image input, the aforementioned

equation can be streamlined into a
one-dimensional formula:

�(�, �) =
0, (��(�, �) − ��(�, �))/��(�, �) ≤ �
1, (��(�, �) − ��(�, �))/��(�, �) > � (2)

where ��(�, �) represents the mean square
deviation of the Gaussian distribution of
(�, �) pixels[4]. The Gaussian background
model implements background updates using
the following formula:

��+1(�, �) = (1 − �)��(�, �) + ���(�, �) (3)
��+12 = 1+ � ��2 �, � + �(��(�, �) − ��(�, �))�(��(�, �) −

��(�, �)) (4)
Where � is the model update rate, and � is
the variance update rate.
The background distribution can be accurately
represented by a weighted combination of
multiple Gaussian distributions, as depicted in
Figure 2 below:

Figure 2. Multi-Gaussian Model Weighted
Hybrid Representation of the Background
The process for the hybrid Gaussian model is
outlined as follows:
A. Initialize the matrix parameters for each
Gaussian model.
B. Use the T-frame data image from the video
to train the Gaussian mixture model, with the
initial Gaussian distribution derived from the
first frame pixel.
C. Compare each pixel with the mean of the
current Gaussian distribution; if the difference
is within 3 times the variance, assign the pixel
to the distribution and update its parameters.
D. If the pixel does not match the existing
Gaussian distribution, create a new Gaussian
distribution based on the pixel. [5].

2.2 Bomb Point Tracking and Target
Identification
Upon examining the target and explosion point
detection segment, it has been discerned that
the system is required to simultaneously
recognize multiple target types within the
algorithm. Additionally, it should be capable
of fulfilling the tracking task for the target
along its motion trajectory [6]. Consequently, a
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deep learning-based tracking algorithm has
been chosen to detect explosive points and
targets. The system utilizes a
Fully-Convolutional Siamese Network for
tracking purposes, adept at pinpointing the
location of both the target and the detonation
point. It also tracks and recognizes the
trajectory of the explosion point from the
moment the fuse is activated, through the
fireball’s emergence, to the eventual dispersion
of smoke [7].
The algorithm is anticipated to proficiently
track and pinpoint the behavioral trajectory of

the target object. The objective is to precisely
ascertain the pixel location of the target within
the image with maximum accuracy. Moreover,
it is designed to align the pixel coordinate
point in the image with the actual coordinate
position in the real world, utilizing a
transformation matrix for precise
correspondence [8].
The system employs an enhanced
Object-tracking model to detect explosive
points and designated targets. The detailed
procedure is depicted in Figure 3.

Figure 3. Schematic Diagram of the Workflow of the Bomb Point Target Tracking Model
Prior to delving into the tracking model, it’s
essential to outline the algorithm for tracking a
solitary target. The efficacy of tracking a
single target hinges largely on the comparison
of features and logical deduction. This feature
comparison forms the core of numerous
studies. Given the initial frame of the target’s
image, the most direct method to ascertain the
target’s position in subsequent frames is by
contrasting the upcoming frame’s image with
the target’s image features, typically within a
sliding window or object proposal framework.
The feature bearing the closest resemblance is
deemed the target object[9]. The architecture
of the Object-Tracking network is illustrated in
Figure 4.
To refine the object tracking algorithm, it is
trained using the maximal image search
technique. The training regimen for the
algorithm is grounded in the discriminative
approach, leveraging both positive and
negative exemplars. Logical functions are
employed as loss functions to systematically
train the network.

� �, � = ���(1 + ���( − ��)) (5)
Where v is the actual value score of a single
sample and candidate pair, and � ∈ { − 1,1} is

the label of its groundtruth. By using image
pairs that contain example images and larger
searches, this paper take advantage of the fully
convolutional nature of the network during
training[10]. This will result in a plot � → �
generated by the score v, with each pair
efficiently yielding many samples. This article
define the loss of the score plot as the average
of the individual losses.

Figure4. Diagram of a Single-target Target
Tracking Network

� �, � = 1
� �∈� �(� � , �[�])� (6)

Each position in the score graph is required to
have the real label � � ∈ { − 1,1} , and the
parameter � of the convolutional network is
obtained by applying stochastic gradient
descent to the problem.
The image extraction process involves two
consecutive frames from the video, ensuring
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the presence of objects in both. These frames
are spaced no more than T frames apart, and
during training, classes that do not pertain to
the objects are disregarded. The object
proportions within each frame are normalized,
maintaining the original aspect ratio of the
images. Additionally, if the score plot elements
fall within the radius R from the center, this is
taken into account alongside the network’s
stride k.

� � = +1 �� �||� − �|| ≤ �
−1 ��ℎ���

(7)
For enhancement: Elements within the score
plot are deemed positive.
In the single-target tracking process, the initial
condition is set to the first frame, where the
target is assigned a mask. This mask is then
predicted for the target in each subsequent
frame, effectively transforming the task into

one of video target segmentation.
Drawing from the single-target tracking
algorithm’s insights, the SAT algorithm model
meticulously classifies target objects within the
tracklet on a pixel-by-pixel basis. It employs a
tracking algorithm to continuously observe the
segmented target, segments it within the
tracked target frame, and utilizes the SAT
target segmentation tracking task as a
foundation for recognizing and tracing the
explosion point’s motion trajectory. This
methodology aids in partially reconstructing
the explosion’s complete motion trajectory,
allowing for the accurate localization and
dynamic monitoring of the event. The
extensive network architecture for the SAT
segmentation classification task is illustrated in
Figure 5.

Figure 5. Diagram of the Overall Network Structure of SAT Multi-objective Tracking Task
To enhance the sentence: The system’s test
image data is initially captured at a resolution
of 1080×1920×1. Therefore, it is necessary to
modify the network’s input parameters to
retain the integrity of the initial subtle target
information as it is processed by the network.
In the process of dataset construction, the
categorization of output identifiers is
restructured, amalgamating all classes into two
primary groups: explosive points and target
points. The annotation process is executed with
precision using labelimg, taking into account
pre-existing conditions to ensure accuracy[10].
The system extracts video features pertinent to
target tasks via 3D convolution, with a
particular focus on temporal data along the
T-axis for tracking purposes. This approach
incorporates functionalities for recognizing
trajectories and pinpointing pixel coordinates.
In the process of tracking and identifying
targets, the four coordinate points defining the
entire target in pixel space are determined. The
complete motion trajectory of the explosion

point, from ignition to smoke formation, is
calibrated. Recognition criteria are limited to 6
targets and 7 types of targets at the explosion
point.

2.3 Precision Bomb Impact Point
Regression Module
To refine the sentence: Considering the
ammunition’s trajectory and the explosion’s
timing may not coincide with exact
single-pixel precision, it is crucial to
determine the exact pixel coordinates of the
explosion point. This is achieved by
analyzing the locations of the fireball and
the smoke observed after the explosion. The
algorithmic rationale for this procedure is
detailed in Figure 6.
For a refined expression: Training an accurate
pixel coordinate regression model for the
explosion point necessitates the use of
manually annotated optical sequences
depicting the explosion’s fireball and smoke.
This is complemented by data on wind
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direction, speed, the ammunition’s entry angle,
and velocity, along with a precise correlation
of explosion points. Such a detailed method
enables the extraction of regression model
parameters for the explosion point’s
coordinates. Additionally, a reverse model is
constructed to link the wind conditions,

ammunition dynamics, and the progression of
the fireball and smoke back to the explosion
point, which assists in the precise annotation of
bomb coordinates. When trained on this rich
dataset, the regression model demonstrates
enhanced robustness and stability, benefiting
from the integration of expert insights.[11].

Figure 6. Exact Frying Point Regression Algorithm logic
To refine the sentence: The exact pixel
coordinate regression model for the explosion
point can be formulated either autonomously,
employing diverse regression models and
pre-existing data, or through amalgamation
with the explosion point detection model. In
the integrated approach, the detailed pixel data
of the explosion point is incorporated into the
detection model’s input, with the precise pixel
coordinates serving as the model’s output. The
step-by-step algorithmic development of the
complete linear regression model is outlined
below.
To refine the sentence: The linear regression
algorithm model, designed to ascertain the
exact location of the explosion point, posits
that there exist n pixel coordinate positions for
the explosion point. Each feature is associated
with a corresponding weight value, indicative
of the parameter’s influence on the explosion
point’s position. The model is conceptualized
as the aggregate of the product of features and
their respective weights, augmented by an
offset value. The mathematical representation
is as follows:
� = �1 ∗ �1 +�2 ∗ �2 +…+ �� ∗ �� + � (8)
As the system aims to regressively predict the
coordinates of the initial explosion point, the
offset term b is fixed at 0. In this context,
[�0 �1 �2…��]represents the regression position
information and parameter matrix or vector
associated with the explosion point at different

stages, including the ignition, light spot
creation, smoke formation, and smoke
dissipation processes.
� = �0 ∗ �0 + �1 ∗ �1 +�2 ∗ �2 +…+ �� ∗ �� + �(9)
The weight w can also be written in the form
of a matrix:

� = [�0 �1 �2 … ��] (10)
The weights in the regression monitoring task
of bomb point represent the impact of various
parameters, such as wind direction and the
position of the monitored coordinate point
(observed by the UAV), on the final prediction
result[10]. These weights are represented by
vectors.

� = ��� (11)
The loss function is a crucial algorithm that
assesses the model’s quality to a certain extent.
In regression problems, this article
commonly employs the mean square error
(MSE) as a measure of loss.Within the
regression algorithm, MSE serves as the
ultimate metric for evaluating the loss and
performance of the regression model.
Specifically, in determining the exact location
of the explosion point, the regression
model provides a criterion for measuring the
discrepancy between the expected and actual
coordinate positions of the explosion point.
The loss function is defined as follows:

���� �������� = 1
� �=1

� ��� − �� 2� (12)
Here, ��� Symbolizes the sample’s forecasted
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value, corresponding to the bomb point’s
coordinate location as projected by the
regression model. Meanwhile, yi represents
the actual value of the sample, indicating the
real position in world coordinates after
converting the bomb point's pixel coordinates
through the matrix. A lower value of the loss
function indicates a closer alignment between
the predicted and true values.

2.4 Location of the Explosion Point
The determination of the bombing point’s
direction is achieved by integrating the pixel
coordinates captured by the target recognition
algorithm with the pose data of the single
camera, which is acquired during the
calibration phase. The autonomous system
ascertains the bombing point’s direction by
applying the principle of perspective
transformation, which projectively converts the
pixel coordinates gathered by the UAV into the
bombing point’s vector. Figure 7 depicts the
structural schematic of the autonomous
system’s approach to establishing the bombing
point’s orientation.

Figure 7. Single-machine Bomb Point
Direction Monitoring Map

Suppose that the point Q is a measured point in
the spatial field of view (world coordinate
system), and the point is projected onto the
single-camera imaging plane, q(x, y) represents
the imaging point of the camera's coordinate
system, and its pixel point is (u, v) . Let M be
the projection matrix, and since the camera
system has successfully completed the
calibration, this part is known, then there are:

��
�
�
1

= �

��
��
��
1

=
�11 �12
�21 �22
�31 �32

�13 �14
�23 �24
�33 �34

��
��
��
1

(13)

In the formula above, Zc Denotes the z-axis
coordinates of point Q within the camera’s
reference frame. where the camera is
positioned[11]. Meanwhile, (u, v, 1) indicates
the homogeneous coordinates that match the
pixel coordinates of the dual projection points
on the imaging surface. and (Xm, Ym, Zm, 1)

denotes the homogeneous coordinates of the
measured point Q in the world coordinate
system. With the knowledge of coordinates
(u, v, 1) and the projection matrix M, a system
of three equations can be constructed.
However, when only two equations are
available, the direction of the measured point
Q between the cameras can still be obtained.
In the multi-machine joint explosion point
solution, the pixel coordinates of the explosion
point(q1, q2, q3) taken by the three cameras of
Lianli are used to construct a
non-homogeneous linear equation system, and
the world coordinates of the explosion point
(Q1, Q2, Q3) are obtained by using the least
squares method. The system processes a video
feed from three cameras, capturing the target
and the explosion point’s pixel coordinates; it
then computes the global coordinates for each
explosion site.
(1) The binocular vision convergence
fixed-point model refers to a positioning
model in which two cameras capture
images of the object being measured from
different positions within the same scene,
thereby obtaining the distance information
of the target point being measured[12].
From the previous single-camera
monitoring, a single calibrated camera can
determine the direction of the measured
target, while two cameras can determine
the position information of the measured
target through the intersection of
directional rays, assuming that the
measured point is captured simultaneously,
as depicted in Figure 8.

Figure 8. Schematic Diagram of Binocular
Vision Convergence Fixed-point Model

Assuming that the fixed point Q is a measured
point in the spatial field of view, and the point
is projected onto the imaging plane of the left
and right cameras, ql, qr the pixel coordinates
of the two points have been detected to
be (ul, vl), (ur, vr) , and then assuming that the
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two cameras in the model have completed the
calibration work, and the Ml, Mr are their
respective projection matrices, then there are:

���
��
��
1

= ��

��
��
��
1

=
�11

� �12
�

�21
� �22

�

�31
� �32

�

�13
� �14

�

�23
� �24

�

�33
� �34

�

��
��
��
1

(14)

���
��
��
1

= ��

��
��
��
1

=
�11

� �12
�

�21
� �22

�

�31
� �32

�

�13
� �14

�

�23
� �24

�

�33
� �34

�

��
��
��
1

(15)

Zcl, Zcr respectively represent the coordinates
of the depth direction of Refers to the location
of point Q within the coordinate system of the
dual-camera setup.and m_ij represent the
element values in the two projection matrices
of Ml, Mr (ul, vl, 1), (ur, vr, 1) respectively
represent the homogeneous coordinates
corresponding to the pixel coordinates of the
two projection points on their respective
imaging planes, and (Xm, Ym, Zm, 1) represent
the homogeneous coordinates corresponding to
the measured point Q in the world coordinate
system. The simultaneous formulas can
eliminate the Zcl, Zcr in the above equation,
and then obtain two sets of linear equations for
(Xm, Ym, Zm) as follows:

(���31
� −�11

� )�� + (���32
� −�12

� )�� + (���33
� −�13

� )�� = �14
� − ���34

�

(���31
� −�21

� )�� + (���32
� −�22

� )�� + (���33
� −�23

� )�� = �24
� − ���34

�

(���31
� −�11

� )�� + (���32
� −�12

� )�� + (���33
� −�13

� )�� = �14
� − ���34

�

(���31
� −�21

� )�� + (���32
� −�22

� )�� + (���33
� −�23

� )�� = �24
� − ���34

�

(16)

The two sets of linear equations in the above
equation are essentially two projection line
equations composed of the measured point Q
and the two cameras in the model. According
to the principle of geometry, these two straight
lines intersect at the same point, that is, the
O1q1 of the straight line and the O2q2 of the
straight line should intersect at the point
Q(Xm, Ym, Zm) [13] . In theory, the
three-dimensional spatial coordinates of the
measured point are attainable through the joint
resolution of the aforementioned pairs of linear
equations. However, the practical application
is often marred by noise interference, which
skews the projection lines. To counteract this,
an estimation derived from the least squares
method is utilized in lieu of the true 3D spatial
coordinates of the measured point. This
method enables the determination of the
coordinates for point Q, thereby enhancing the
accuracy of distance measurement.

��
��
��

= ��� −1��� (17)

In the above formula:

� =

���31
� −�11

� ���32
� −�12

� ���33
� −�13

�

���31
� −�21

� ���32
� −�22

� ���33
� −�23

�

���31
� −�11

�

���31
� −�21

�
���32

� −�12
�

���32
� −�22

�
���33

� −�13
�

���33
� −�23

�

(18)

� =

�14
� − ���34

�

�24
� − ���34

�

�14
� − ���34

�

�24
� − ���34

�

(19)

2.5 Post-explosion Point Treatment
2.5.1 Cross-validation of the location of the
explosion point
The positioning cross-verification is realized
by using the trinocular vision fixed-point
model, which is built on the basis of the
binocular vision convergence ranging model
through the reasonable placement of three
cameras, and at the same time adjusts the
position relationship between the cameras to
make their respective optical axes at a certain
angle to each other, that is, the model is
composed of three sets of binocular ranging
models. Assuming that the projection points of
any point Q in space on the imaging surfaces
of a, b and c are q1, q2 and q3 respectively,
the schematic diagram of the trinocular
ranging model is shown in Fig.9. Ideally, the
measured values of the binocular ranging
model composed of camera A and camera B
should be Q1 , the measured value of the
binocular ranging model composed of camera
B and camera C should be Q2 , and Q3 the
measured value of the binocular ranging
system composed of camera A and camera C
should overlap with the actual measured point
Q at one point, that is, the three straight lines
of Ocaq1, Ocbq1, Occq1 intersect to the same
point Q. However, in the actual ranging
environment, based on the existence of errors
in the binocular ranging system, the three
points of Q1, Q2, Q3 do not overlap with the
actual measured point Q[14]. Instead, the three
straight lines of Ocaq1, Ocbq1, Occq1 intersect in
pairs to form different three points in space
Q1, Q2, Q3 , and the three-dimensional spatial
coordinates of these three points can be
obtained by binocular ranging algorithm.

Figure 9. Schematic Diagram of a Three-eye
Vision Fixed-point Model

Through the above theoretical analysis, it can

Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 2 No. 1, 2024 11

Copyright @ STEMM Institute Press http://www.stemmpress.com



be seen that the binocular ranging system will
have a certain error in the positioning of the
measured point, especially in the depth
direction, so the system proposes a triocular
vision joint ranging algorithm to optimize the
measured values of the Q1, Q2, Q3 points, and
then obtain more accurate distance information
of the measured target. That is, let the spatial
coordinates of the measured point (Xm, Ym, Zm),
then the objective function is used to estimate
the actual coordinates of the Q point optimally,
and the detailed deduction is as follows:
� = ��� � − �1 + � − �2 + � − �3 (19
)
Assuming that the pixel coordinates of the
three points of q1, q2andq3 projected by point
Q on the imaging planes of a, b and c cameras
have been detected to be
(ua, va), (ub, vb), (uc, vc), and then assuming that
the three cameras in the model have completed
the calibration work, and the Ma, Mb, Mc are
their respective projection matrices, then there
are:

���
��
��
1

= ��

��
��
��
1

=
�11

� �12
�

�21
� �22

�

�31
� �32

�
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�

�23
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�

�33
� �34

�

��
��
��
1

(20)
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�
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(21)
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�
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�
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�
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�

�33
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�
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��
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(22)

In the formula, Mi represents the projection
matrix of each of the three cameras and Mi =
Ai[RiTi] (where i = a, b, c ),
(ua, va, 1), (ub, vb, 1), (uc, vc, 1) represent the
homogeneous coordinates corresponding to the
pixel coordinates of the three projection points
on their respective imaging planes, and
(Xm, Ym, Zm, 1) represents the homogeneous
coordinates corresponding to the measured
points Q in the world coordinate system. On
the basis of the previous section bit algorithm,
the three-dimensional spatial coordinates of the
three points of Q1, Q2, Q3 can be obtained by
using the least squares method, that is,
Qi(Xmi, Ymi, Zmi) (where i = 1,2,3 ), and it can
obtain the projection line equation of twice the
number of cameras on the basis of traditional
binocular ranging, which can further enhance
the anti-noise ability, as shown in the
following formula[15].

��:
���
���
���

= �����
−1
�����, � = 1,2,3 (23)

where:

�1 =

���31
� −�11

� ���32
� −�12

� ���33
� −�13
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���31
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� ���33
� −�23

�
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�
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���32
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�
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�

(24)
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�
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�

(25)
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� ���33
� −�23

�

���31
� −�11

�

���31
� −�21

�
���32

� −�12
�

���32
� −�22

�
���33

� −�13
�

(���33
� −�23

�

(26)

�2 =

�14
� − ���34

�

�24
� − ���34

�

�14
� − ���34

�

�24
� − ���34

�

(27)

�3 =

���31
� −�11

� ���32
� −�12

� ���33
� −�13

�

���31
� −�21

� ���32
� −�22

� ���33
� −�23

�

���31
� −�11

�

���31
� −�21

�
���32

� −�12
�

���32
� −�22

�
���33

� −�13
�

(���33
� −�23

�

(28)

�3 =

�14
� − ���34

�

�24
� − ���34

�

�14
� − ���34

�

�24
� − ���34

�

(29)

It can be simplified to:
� = ��� � − �1 + �− �2 + � − �3
= �� − ��1 2 + �� − ��1 2 + �� − ��1 2

+ �� − ��2 2 + �� − ��2 2 + �� − ��2 2

+ �� − ��3 2 + �� − ��3 2 + �� − ��3 2(30)
By the fact that the sum of squares of the
dispersions of the variables and their
arithmetic mean is the smallest, the optimal
estimate of the measured point Q can be
obtained.
2.5.2 Explosion point anomaly detection
During the capture of the explosion point,
images from a particular camera may become
unfocused, obscured by fog, or obstructed by
smoke on the field. In such instances, the
explosion point exception handling module
will invoke redundant image data to substitute
the compromised data and reinitiate the
detection and positioning process for the
explosion point.[16]. In scenarios with
multiple explosion points, the angle of
observation can lead to an adhesion effect
among the points captured by the camera. This
can significantly compromise the accuracy of
the explosion point detection module. To
rectify this, it is essential to employ redundant
image data from different angles. As explosion
points may exhibit varying degrees of adhesion
when viewed from distinct perspectives, it is
necessary to analyze three separate sets of
image data. After identifying the explosion
points, their potential adhesion must be tracked
across these three data sets to ensure precise
recognition.
2.5.3 Cross-validation of multi-mode
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information
During the detonation of ammunition,
environmental elements like smoke and dust
from the explosion can impair the optical
lens’s ability to capture the explosion point,
thereby influencing the outcome. Consequently,
thermal imaging data captured by the infrared
lens is utilized for the detection and
localization of the explosion point. This data
also serves to cross-validate the findings from
the optical lens, ensuring the precision of the
explosion point’s coordinate results.
2.5.4 Analysis of sources of error
The error source analysis conducted in this
study is divided into two main categories. The
first involves assessing the algorithm model’s
accuracy by evaluating the detected explosion
points and the algorithm’s training precision.
The second category is dedicated to examining
the errors related to the alignment between the
world coordinates and pixel coordinates, which
are crucial for pinpointing the exact location of
the explosion point as determined by the
algorithm.
In evaluating the error of the tracking model,
the mean error across individual losses within
the tracking task serves as a metric to assess
the algorithm’s precision. This section delves
into a quantitative analysis of the target’s
relative error, employing a binocular
measurement system. It involves a detailed
examination of the variance between the world
coordinates of the anticipated bomb point and
the coordinates obtained from the pixel data of
the specific point via the regression model.
The actual coordinates of the explosion site are
ascertained through Real-Time Kinematic
(RTK) positioning, pinpointing the crater
created by the blast to acquire the true global
coordinates of the detonation point.
To ascertain the global coordinates of the
bomb points predicted by regression, the pixel
coordinates generated by the model are
converted through matrix transformations.
Error analysis is performed by juxtaposing the
precise coordinates of the predicted bomb
point against the actual detonation point’s
global coordinates, taking into account a range
of external and internal factors, and applying a
linear regression model to accurately
determine the bomb point’s location.

� = �0 ∗ �0 +�1 ∗ �1 +�2 ∗ �2 +…+�� ∗ �� + � (31)
Among the linear regression models,
[�0 �1 �2…��] respectively represents the

evolutionary attitude of the explosion point,
� = [�0 �1 �2 …��] is expressed as the
influence of various internal parameters on
pixel coordinates, and the specific influence
parameters can be expressed as wind direction,
altitude, drone position, etc. In the above
analysis, the error of the regression model is
also briefly analyzed, in which the computer
memory temperature, the temperature of the
working environment, the humidity of the
working environment, the degree of
anti-interference of external noise, the
maximum wind resistance, and the location of
the UAV deployment can be used as factors
affecting the internal parameter changes. In
addition, the system uses the binocular
measurement system by default to perform
regression analysis and prediction on the exact
world coordinate position of the explosion
point[17].
2.5.5 An error analysis model is established to
focus on the analysis of the error of parameter
calibration
Calibrating the camera parameters and
computing the three-dimensional coordinates
of the spatial target feature points are essential
processes that hinge on the accurate
calculation of the feature points’ coordinates
on the imaging plane. This necessitates a
thorough analysis of the error-inducing factors
affecting the coordinates of the imaging points
on the imaging surface. The primary
contributors to calibration error in camera
parameters include optical system lens
distortion, the camera’s internal structural
setup, and the quantization error and noise
from electronic components. The optical
system’s lens distortion leads to aberrations in
the principal ray, as depicted in figure 10. This
distortion shifts the principal point on the
image plane and the imaging point away from
their ideal locations, impacting the camera’s
parameter calibration and the subsequent
computation of the target feature point’s
three-dimensional coordinates.

Figure 10. The Influence of CMOS
Installation Error on the Coordinates of the

Imaging Point
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θ is the angle of the actual imaging surface
from the ideal imaging surface, and Δf is the
distance of the actual imaging surface from the
ideal imaging surface, then the influence of the
imaging surface installation error on the
coordinates of the imaging point can be
expressed by the following formula:

∆�2 =
����1+����(∆�+�∙����1∙����)

���(�1+�)
(32)

In addition, the measurement error of the
position of the imaging point of the calibration
object plane is:
� = |� ∙ tan � ∙ �� − � ∙ ����| The selected
calibration method and equipment can ensure
that the maximum deviation of the calibration
affecting the position of the imaging point can
be controlled at 0.073 pixels[18].
Due to machining and assembly inaccuracies,
there is a misalignment between the camera’s
coordinate system and that of the cubic mirror.
To quantify the angular discrepancy between
the two systems, a collimator, theodolite, and a
high-precision bidirectional turntable are
employed. The collimator is set up on a
horizontal plane, ensuring that the turntable’s
horizontal axis is both level and orthogonal to
the collimator’s optical axis. Similarly, the
vertical axis is adjusted to be perpendicular,
creating a coordinate system with the turntable
and collimator that is congruent with the
camera’s coordinate system.

2.5.6 Analysis of the error between the
real-world coordinates and the world
coordinates of the exact bomb point location
In the detection and measurement of the

binocular camera, Q =

��
��
��
1

is used to

represent the coordinates of the world spatial
information, and the linear regression
algorithm is used to deduce the position
coordinates of the initial explosion point, and
the error analysis method is used to measure
the explosion point and the corresponding real
coordinates.

���
��
��
1

= ��

��
��
��
1

=
�11

� �12
�

�21
� �22

�

�31
� �32

�

�13
� �14

�

�23
� �24

�

�33
� �34

�

��
��
��
1

(33)

���
��
��
1

= ��

��
��
��
1

=
�11

� �12
�

�21
� �22

�

�31
� �32

�

�13
� �14

�

�23
� �24

�

�33
� �34

�

��
��
��
1

(34)

The influence of various parameters in the
pixel coordinate on the error is considered into
the parameter coordinate transformation matrix

A, the specific method uses the following
formula to derive the whole parameter
transformation matrix A, the parameter
conversion matrix A plays an important role in
the conversion between coordinates, firstly, the
two pixel coordinate information composed of
the binocular measurement system are
consociated, and the formula of converting it
into a linear coordinate equation is as follows:
��� ∙ �� = �� ∙ �� = �11

� ∙ �� +�12
� ∙ �� +�13

� ∙ �� +�14
�

��� ∙ �� = �� ∙ �� = �21
� ∙ �� +�22

� ∙ �� +�23
� ∙ �� +�24

�

��� ∙ 1 = �� ∙ �� = �31
� ∙ �� +�32

� ∙ �� +�33
� ∙ �� +�34

�
(35)

��� ∙ �� = �� ∙ �� = �11
� ∙ �� +�12

� ∙ �� +�13
� ∙ �� +�14

�

��� ∙ �� = �� ∙ �� = �21
� ∙ �� +�22

� ∙ �� +�23
� ∙ �� +�24

�

��� ∙ 1 = �� ∙ �� = �31
� ∙ �� +�32

� ∙ �� +�33
� ∙ �� +�34

�
(36)

Simultaneous derivation of the above
equations yields the following system of linear
equations:
(���31

� −�11
� )�� + (���32

� −�12
� )�� + (���33

� −�13
� )�� = �14

� − ���34
�

(���31
� −�21

� )�� + (���32
� −�22

� )�� + (���33
� −�23

� )�� = �24
� − ���34

�

(���31
� −�11

� )�� + (���32
� −�12

� )�� + (���33
� −�13

� )�� = �14
� − ���34

�

(���31
� −�21

� )�� + (���32
� −�22

� )�� + (���33
� −�23

� )�� = �24
� − ���34

�

(37)

The parameter transformation matrix A is
obtained by using the linear equation system,
the parameters in matrix A are modeled, and
error analysis is conducted with a particular
emphasis on analyzing the error of the target.
The transformation matrix is represented in the
following form for quantitative analysis of
errors.
�� =

�11
� �12

�

�21
� �22

�

�31
� �32

�

�13
� �14

�

�23
� �24

�

�33
� �34

�
�� =

�11
� �12

�

�21
� �22

�

�31
� �32

�

�13
� �14

�

�23
� �24

�

�33
� �34

�
(38)

The error is therefore taken into account and
the resulting matrix equation is

�� + ���� =
�11
� �12

�

�21
� �22

�

�31
� �32

�

�13
� �14

�

�23
� �24

�

�33
� �34

�
+
�11� �12�

�21� �22�

�31� �32�

�13� �14�

�23� �24�

�33� �34�
(39)

�� + ���� =
�11

� �12
�

�21
� �22

�

�31
� �32

�

�13
� �14

�

�23
� �24

�

�33
� �34

�
+
�11� �12�

�21� �22�

�31� �32�

�13� �14�

�23� �24�

�33� �34�
(40)

Combined with the above derivation process,
the parameter position conversion matrix is
formed.

� =

���31
� −�11

� ���32
� −�12

� ���33
� −�13

�

���31
� −�21

� ���32
� −�22

� ���33
� −�23

�

���31
� −�11

�

���31
� −�21

�
���32

� −�12
�

���32
� −�22

�
���33

� −�13
�

���33
� −�23

�

(41)

� =

�14
� − ���34

�

�24
� − ���34

�

�14
� − ���34

�

�24
� − ���34

�

(42)

The error is therefore taken into account and
the resulting matrix equation is

� + ���� =

���31
� −�11

� ���32
� −�12

� ���33
� −�13

�

���31
� −�21

� ���32
� −�22

� ���33
� −�23

�

���31
� −�11

�

���31
� −�21

�
���32

� −�12
�

���32
� −�22

�
���33

� −�13
�

���33
� −�23

�

+
�11��� �12���
�21��� �22���
�31��� �32���

�13���
�23���
�33���

(43)

The whole conversion relationship is
represented in the form of a matrix, and the
algebraic remainder is represented by ��� =
( − 1)�+�∙ ��� . The coordinates of the whole
world are deduced in combination with various
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error factors:
��
��
��

= �−1 ∙ � = �∗

�
∙ � = 1

�
∙
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⋮ ⋱ ⋮
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1
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�
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���33
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�

���33
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�
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� − ���34

�

�24
� − ���34

�

(44)

Where � =
��
��
��

is expressed as the

three-dimensional coordinates of the world's
position.
Taking into account the factors affecting the
error, the resolution of the visible light camera
is not less than 1920*1080, the size range of
16.3cm*9.2cm, and the coverage of the entire
target is 700m×700m. The pixel size
corresponding to the killing range of 1000
square meters is 96*54,
96*54*0.084mm*0.084mm=36.57��2, which
indicates the proportion of the explosion point
in the actual picture.
The representation of the parameter
transformation matrix, which takes into
account the error factor, is shown below

� + ���� =
��
��
��

= � + ���� −1 ∙ � =

1
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(45)

After the error is calculated by MSE, the direct
error between the coordinates of the exact
bombing point position and the world
coordinates is calculated as ��� = 1

� �=1
� ��� −�

�� 2 ≤ 1� ≈ 7 ∗ 4 pixels. The coverage
converted to pixel coordinates can be
expressed as a size of 7*4 pixels. It shows that
the error between the predicted regression
position coordinates of the bomb point and the
real-world point is very controllable, which
can meet the requirements of the required
coordinates and error range[19].
Then the matrix form of the Taylor expansion
of �(�1, �2, …, ��) at �(0) is expressed as
� � = � � 0 + ∇�(� 0 )�∆� + 1

2
∆��� � 0 ∆� + … ,

∇� � 0 = ��
��1

, ��
��2

, …, ��
��� �(0)

�
and this formula

represents �(�) in �(0) he partial derivative at
((0)), where �(0) represents only the position
of the target coordinate point. The world
coordinates are deflected by the world

coordinates of the target coordinates.

� � 0 =

�2�
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��2��1
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⋮
�2�

�����1

⋮
�2�

�����2

⋱
⋯

�2�
��1���
�2�

��2���
⋮
�2�
���2 �(0)

(46)

is expressed as a Hesse matrix at �(�) at �(0) .
The Hesse matrix is a symmetric matrix of n*n
order composed of the second-order partial
derivative of the objective function f at the
point x.
2.5.7 Optimize the error analysis function
Before using the camera, the internal
parameter K of the camera can be obtained
after calibrating the camera, and the pixel
coordinates of the feature points can be
obtained through feature point matching, and
then the normalized spatial coordinates
corresponding to the pixels can be obtained
according to the above model combined with
the transformation matrix, namely:

�
�
= � = (� − ��)/�� (47)
�
�
= � = �−��

��
(48)

� = 1 (49)
When the drone is shooting, the model of the
camera is:

���� = �
�
�
1

= � ��� + � = ���� (50)

Expressing � = (�|�) in the form of Lie
algebra, then

��
��
��
1

= ���� �

��
��
��
1

(51)

Then the optimization equation for the whole
can be expressed as

�∗ =
������

�
1
2 �=1

� �� −
1
��
����(�^)��

2

2
� (52)

G-N and L-M are solved by optimizing the
equations.

3. Experiment
The exact pixel coordinates are [100.001
199.99911 1], [149.99893 299.99997 1], and
the corresponding exact world coordinate
location points are [7700, 73407, 0.0], [-66029,
-605035, 0.0].
The world coordinates of the target calculated
by vector space to coordinate function �� =
� �� − � are [7700.001290525472,
73407.76817339347, 0.0], [-66029.50444612742,
-605035.9517151915, 0.0]. The corresponding
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internal reference matrix is

� =
−0.91536173 0.40180837 0.02574754
0.05154812 0.18037357 −0.98224649
−0.39931903 −0.89778361 −0.18581953

The internal reference matrix, the world
coordinate position points detected by the
UAV and the internal reference matrix of the
camera are combined with the pixel matrix to
generate the error vector function � = 1

��−�
∙

[|��| + �� − 1 ∙ |��| ∙
1

��−�
] ∙ ���� to obtain

the offset of the final world coordinate position
∆�
∆�
∆�

=
0.001290525472
0.76817339347

0

0.50444612742
0.9517151915

0
。

3.1 Real-time Solution Time for the Target
In the real-time calculation process of
single-target video, under the premise of the
current downlink bandwidth of 80 Mbs, the 25
fps real-time image information displayed on
the ground integrated display console requires
5 Mbs bandwidth. When transmitting
high-speed real-time information for 5 seconds,
the theoretical calculation formula is described
as follows: (1920×1080×8)/2×1000���×5�

(75×1024×1024)
=

527� = 9��� , and the additional amount of
data to be transmitted is 20%-30% for
subcontracted transmission, and the estimated
return time is about 12 minutes.
When the data is transmitted over a wired
optical fiber channel, the transmission
bandwidth rate is 500Mbs, and the
transmission uses three USB3.0 data
transmission lines. The 25fps real-time screen
information displayed on the ground integrated
display console requires 5 Mbs bandwidth.
Assuming that the length of the video to be
measured is 5 minutes, when transmitting 300
seconds of high-speed real-time information,
the theoretical calculation formula is described
as follows (1920×1080×8)/2×1000���×300�

(1485×1024×1024)
=

1598� = 26min and the subpackage
transmission needs to increase the transmission
data by 20%-30%, and the transmission
process includes three camera data volumes, so
the estimated backhaul time is about 30
minutes.
By analyzing two distinct channel transmission
modes, along with the solution time for
detecting and identifying multiple explosion
points, we can enhance the real-time
calculation of the bomb point [20]. During this
process, three UAVs simultaneously segment

and track the target bomb point. The real-time
solution time encompasses several components:
the data transmission duration, the tracking and
segmentation phase of the bomb point target,
the time taken by the regression algorithm to
revert to the initial bomb point coordinates, the
pixel positioning of the bomb point target, and
the time required for converting to world
coordinates.
Taking the transmission process of
short-distance wireless channel as an example,
the transmission time of the three UAVs is 12
minutes when transmitting and solving the
video for 5s, the tracking time of the target
cutting and tracking algorithm is 7 minutes, the
time for the regression algorithm to reverse
calculate the position of the initial explosion
point is 5 minutes, and the time for world
coordinate conversion and target positioning is
33 seconds. Real-time solution time =
transmission + detection + pushback +
positioning = 9min + 0.55min + 0.55min +
0.017min = 15.617min
Taking the transmission of wired USB3.0
channel as an example, the SAT transmission
frame rate is 150 frames per second, and
900,000 frames of pictures need to be
transmitted, so the tracking algorithm takes
100 minutes. The linear regression algorithm
also takes 100 minutes, and the real-time
solution time = transmission + detection +
pushback + positioning = 30 min + 99.8 min +
99.8 min + 1.53 min = 231.13 min.
4. Conclusions
This paper introduces the application of
explosion point tracking and measurement
under binocular vision, which is supported by
the project and data provided by Group A. This
paper collected the bomb point measurement
data at different heights on the top of the
mountain by collecting the data of the
pushback, and noticed that there were
problems such as ghosting and occlusion of the
explosion point in the data video. In order to
solve the problem of explosion occlusion and
camera ghosting caused by equipment
problems, this article used the remote sensing
image reconstruction network to reconstruct
some explosion point images with ghosting.
The processed data images are annotated by
the labelimg annotation tool combined with the
data processing tool OpenCV, and the
multi-target tracking network is used to
complete the training of the multi-target
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tracking model, so as to realize the tracking
processing of the explosion points. In this
paper, this article focus on the task of
regression of the world coordinate point of the
initial bomb point through the bomb point
location algorithm and image regression
network to realize the bomb point
measurement.
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