
The Application of Reconstructed Trees in Collegiate
Programming Contests

Zijie Shen, Ruixiang Li, Junping Shi *
School of Computer Science and Engineering, Jishou University, Jishou, Hunan, China

*Corresponding Author.

Abstract: In collegiate programming
contests, reconstructed trees find extensive
application in tackling path-edge-weight
constraint problems within graphs. These
trees, defined as structures where edges
carry precisely unit weight, reflecting the
original graph's node set, serve as potent
tools. This article elucidates the
methodology behind constructing
reconstructed trees, primarily leveraging
minimum spanning trees. Additionally, it
delves into the optimization of queries
employing binary lifting coupled with
Lowest Common Ancestor (LCA)
algorithms. By delving into specific problem
instances, it discerns the multifaceted
advantages inherent in employing
reconstructed trees within the competitive
ambiance of collegiate programming
contests. Beyond merely resolving path-
edge-weight constraints, these trees
augment algorithmic efficiency and code
comprehensibility. They furnish contestants
with robust utilities and techniques,
fostering enhanced performance and
enabling them to navigate contests with
greater adeptness, thereby contributing
significantly to their competitive endeavors.
Their utility extends beyond the confines of
contests, finding application in diverse real-
world scenarios, enriching problem-solving
capabilities, and fostering a deeper
understanding of graph theory concepts.

Keywords: Reconstructed Trees; Minimum
Spanning Trees; Binary Lifting with Lowest
Common Ancestor

1. Introduction
International College Programming
Competition (ICPC) has evolved into the
preeminent collegiate programming contest [1]
globally, an annual extravaganza that serves as
a platform for showcasing the innovative

prowess, collaborative dynamics, and
programming acumen of university students
from diverse backgrounds and cultures. Over
the course of its illustrious history spanning
decades, the competition has not only grown in
scale but also in significance, attracting an
ever-expanding pool of participants eager to
test their mettle against the best and brightest
in the field. As the landscape of computer
science continues to evolve, so too do the
challenges presented at ICPC, with an
increasing emphasis on graph theory and tree-
based algorithms emerging as prominent
themes. To meet these challenges head-on and
to excel in the intense and competitive
environment of ICPC, participants have turned
to a myriad of sophisticated data structures and
algorithmic techniques. Among these, the
reconstructed tree has garnered particular
attention for its efficacy in addressing
problems that demand expedited solutions to
queries related to path-edge weight constraints
within graphs. Its versatility and efficiency
have made it a cornerstone of modern
programming competitions, enabling
contestants to navigate complex problem sets
with confidence and precision. As ICPC
continues to push the boundaries of innovation
and excellence, the strategic utilization of
reconstructed trees underscores the symbiotic
relationship between theoretical knowledge
and practical application, empowering
participants to push the envelope of what is
possible in the ever-evolving landscape of
computer science and programming
competitions.

2. The Current Research Status of
Reconstructed Trees
The essence of a reconstruction tree lies in
transforming the edges of a tree into new
nodes, wherein each new node encapsulates
the information of the original edge,
specifically its weight. The purpose of this

72 Journal of Natural Science Education (ISSN: 3005-5792) Vol. 1 No. 3, 2024

http://www.stemmpress.com Copyright @ STEMM Institute Press



refactoring is to enhance the representation of
connections between nodes, such as
determining the maximum or minimum value
along the path between two points. This
transformation not only furnishes a more
intuitive data structure but also furnishes a
more efficient platform for executing various
algorithms and queries on the tree. By
consolidating edge information into nodes, we
can effortlessly access pertinent attributes of
paths, thereby optimizing the tree's structure
and enhancing data processing efficiency.
Refactoring trees can be used in a wide range
of scenarios, such as processing dynamic data
flows and achieving efficient memory
management. At present, the research of
reconfigurable tree mainly focuses on how to
optimize and improve its algorithm
performance to adapt to the ever-changing
application requirements. The research
directions include algorithm optimization [2],
dynamic maintenance [3], application
extension [4], theoretical analysis [5],
parallelization and distributed computing [6].

3. The Principles and Implementation of
Reconstructed Trees

3.1 Definition
Refactoring trees, a cornerstone concept in
computer science, embody a dynamic
approach to processing and organizing intricate
data structures. At its core, a refactoring tree
represents a versatile framework that
accommodates the evolving needs of software
projects by facilitating the flexible
reconstruction of data hierarchies. This
concept transcends mere data organization; it
encapsulates a philosophy of adaptability and
scalability essential for navigating the
complexities of modern software development.
Unlike static data structures, refactoring trees
offer a high degree of reusability, allowing
developers to iteratively refine and optimize
their codebase in response to changing
requirements and evolving design paradigms.
This inherent flexibility empowers software
engineers to seamlessly adapt their data
structures to accommodate new features, scale
to accommodate growing datasets, and
optimize performance to meet evolving user
demands. By providing a modular and
extensible foundation for data management,
refactoring trees promote code reuse,

modularity, and maintainability, fostering a
more agile and resilient software development
process. As such, mastering the principles of
refactoring trees is not merely a technical skill
but a strategic imperative for navigating the
ever-changing landscape of modern software
engineering.

3.2 Principle
The reconstructed tree is generally constructed
in a bottom-up manner, from small nodes to
large nodes, layer by layer, recursively, until it
reaches the topmost root node. In a
reconstructed tree, each node represents a
specific data structure, such as groups of
numbers, linked lists, trees, and so on. Each
node has its own data field and pointer field for
storing data and Pointers to other nodes. The
key to refactoring trees is that existing nodes
can be modified, added or removed according
to new requirements, and then a new data
structure can be reconstructed.

3.3 Concrete Implementations
3.3.1 Filtering key data
In a graph, there exist insignificant edge data.
To filter out critical edge weight information
for building a reconstructed tree, the Kruskal
algorithm [7], can be used to eliminate
irrelevant edges. Kruskal is an excellent
minimum spanning tree [8], algorithm based
on union lookup set.
The general process of the Kruskal algorithm
is as follows:
First, sort all the edge weights in ascending
order.
Then, enumerate each edge in sequence. If the
two vertices of an edge are not in the same
connected component, add this edge to the
edge set of the spanning tree and merge the
two vertices into one connected component.
As shown in the Figure 1:

Figure 1. Minimum Spanning Tree Result
3.3.2 Build reconfiguration tree
First, according to the nodes in the figure, a
single node tree with itself as the parent node
is generated successively.
Then the edge data screened by the minimum
spanning tree algorithm is sorted according to

Journal of Natural Science Education (ISSN: 3005-5792) Vol. 1 No. 3, 2024 73

Copyright @ STEMM Institute Press http://www.stemmpress.com



the edge weight from small to large. The edges
are taken successively, and a new parent node
is established based on the edge weight of the
edge. The two child nodes of the parent node
are the top parent nodes of the left and right
nodes of the edge taken respectively.
As shown in the Figure 2:

Figure 2. Reconstruction Tree Creation
Repeat the above steps until all edges are
reconstructed. The reconstructed tree is
successfully established.
3.3.3 Information query
To query the minimum value of the maximum
edge weight of the path between any two
points in the graph, that is, to find the nearest
common parent of the two points in the
reconstruction tree, and the data of the parent
node is the minimum value of the maximum
edge weight of the path between the two points.
If the amount of data is small, you can search
queries directly. But in fact, if you consider the
reality, the general amount of data will be large,
which will lead to the branch chain of the tree
is relatively long. In this case, the time
complexity of brute force query is high.
Therefore, binary lifting with LCA to improve
query efficiency.
Suppose we want to solve the parent node of
two points u and v.
The LCA violence method is that we always
jump up the deeper one step until the depth of
u and v is equal for the first time, and then
jump up the two points at the same time until
their parent nodes are the same.
The binary lifting with LCA method is actually
to jump as much as possible in each step on the
basis of the violence method, and its idea is
actually consistent with the idea of
dichotomies. The following is the approximate
process of binary lifting with LCA method:
First, using recursion, record the first, second,
fourth, eighth, ..., 2^n parent nodes of each
node in the reconstructed tree from top to
bottom. As shown in the Figure 3.
Then, calculate the depth difference between
the two requested nodes u and v, denoted as
dep = deep(u) - deep(v). Convert dep into a
sum of 2^n numbers, i.e., dep = 2^0 + 2^1 + ...
+ 2^n. After that, make the node with a deeper

depth jump up sequentially by 2^0, 2^1, ...,
2^n. This process can be quickly achieved with
the help of the parent node table obtained from
Figure 3. For example, if the two requested
nodes are 2 and 9, and dep = deep(2) - deep(9)
= 2 = 2^1, referring to Figure 3, we can
directly get that node 2 jumps to node 10. This
way, the depths of the two nodes are made
equal.

Figure 3. Reconfiguration Tree
Finally, when the depths of the two nodes are
equal, we obtain the current depth dep =
deep(u) = deep(v), and decompose dep into a
series of sums of 2^n numbers, for example,
dep = 2^0 + 2^1 + ... + 2^n. Iterate i from n to
0. If the depth of the current node is greater
than 2^i, and the two nodes are not the same
node after jumping up 2^i steps, make the two
nodes jump up 2^i. Otherwise, decrement i. In
this process, we can use the parent node table
obtained from Figure 3 to quickly find the 2^i-
th parent node of each node. After completing
the loop, the parent node of the current two
nodes is their LCA [9]. Taking nodes 2 and 6
in Figure 3 as an example, dep = 4 = 2^2. The
values of i are 2, 1, and 0 in sequence. When i
is 2 or 0, the conditions are not met. When i is
1, nodes 2 and 6 both jump up 2^1 steps.
According to the parent node table, node 2
jumps to node 10, and node 6 jumps to node 9.
At this point, their parent node is node 11, so
the maximum value of the path edge weights
between nodes 2 and 6 is the data contained in
node 11, which is 4.

4. Practical Application and Analysis

4.1 Problem Description
A has n cities, numbered from 1 to n, with m
two-way roads between them. Every road has a
weight limit for vehicles, referred to as the
weight limit. There are now q trucks
transporting goods, and drivers want to know
the maximum weight each vehicle can carry
without exceeding the vehicle weight limit.

74 Journal of Natural Science Education (ISSN: 3005-5792) Vol. 1 No. 3, 2024

http://www.stemmpress.com Copyright @ STEMM Institute Press



4.2 Input Format
The first line has two integers n, m separated
by A space, indicating that there are n cities
and m roads in A.
Next line m contains three integers x, y, z,
separated by a space between each of the two
integers, indicating that there is a road from
city x to city y with a weight limit of z.
Attention :x! =y, there may be multiple roads
between the two cities.
The next line has an integer q, indicating that q
trucks need to deliver goods. Next line q, two
integers x in each line, separated by a space
between y, indicating that a truck needs to
transport goods from City x to City y,
guaranteeing x! =y.

4.3 Output Format
There are q rows, each with an integer
indicating the maximum load for each wagon.
If the truck does not reach its destination,
output -1.

4.4 Scope of Data
For 30% of the data, 1<=n<1000,
1<=m<10000, 1<=q<1000.
For 60% of the data, 1<=n<=1000, 1<=m<
5000000, 1<=q<1000.
For 100% data, 1<=n<=10000, 1<=m<
50000000, 1<=q<30000.

4.5 Problem Analysis
This problem is a typical reconstructed tree
problem, q trucks are q queries.
If you do not use the reconstructed tree for
optimization, but run a search query directly,
then each query needs to traverse all nodes at
least once, with a time complexity of O(n).
The time complexity [10] is q*O(n).
If a refactoring tree is built and optimized
using a doubling LCA, the time complexity per
query is roughly log2(n). The time complexity
is q*log2(n). Compared with direct search, the
speed of query is greatly improved by building
reconstructed tree for query.

5. Conclusion
As society continues to advance, the landscape
of collegiate programming competitions
reflects a corresponding rise in complexity and
sophistication. In this evolving environment,
contestants encounter increasingly intricate
challenges, with graph theory and tree-based

problems occupying prominent positions
among them. Mastery of the refactoring tree
emerges as a pivotal skillset, offering
contestants a competitive edge and equipping
them with the tools necessary to navigate the
complexities of modern problem sets. By
adeptly leveraging the capabilities of
refactoring trees, contestants can not only
distinguish themselves within the competitive
arena but also gain a decisive advantage in
resolving path-edge weight restrictions within
graphs. The versatility and efficiency of
refactoring trees enable contestants to
streamline their problem-solving workflows,
facilitating rapid and accurate computations
while enhancing code readability and
maintainability. Furthermore, proficiency in
refactoring trees transcends the confines of
competition, empowering individuals to excel
in diverse real-world scenarios and contribute
meaningfully to the advancement of computer
science and software engineering. As such, the
acquisition and refinement of skills related to
refactoring trees represent not only a strategic
imperative for success in collegiate
programming contests but also a pathway to
continued growth and innovation in the
broader field of technology.

References
[1] Blum J Competitive programming

participation rates: an examination of
trends in US ICPC regional contests.
Discover Education, 2023, 2(1): 11.

[2] Nadimi-Shahraki M H, Zamani H, Asghari
Varzaneh Z, et al. A systematic review of
the whale optimization algorithm:
theoretical foundation, improvements, and
hybridizations. Archives of Computational
Methods in Engineering, 2023, 30(7):
4113-4159.

[3] Paiva B, Manrique I, Dimopoulos M A, et
al. MRD dynamics during maintenance
for improved prognostication of 1280
patients with myeloma in the
TOURMALINE-MM3 and-MM4 trials.
Blood, 2023, 141(6): 579-591.

[4] Pham T T, Nguyen L L P, Dam M S, et al.
Application of edible coating in extension
of fruit shelf life. Agri Engineering, 2023,
5(1): 520-536.

[5] Qiao H, Wu Y X, Zhong S L, et al. Brain-
inspired intelligent robotics: Theoretical
analysis and systematic application.

Journal of Natural Science Education (ISSN: 3005-5792) Vol. 1 No. 3, 2024 75

Copyright @ STEMM Institute Press http://www.stemmpress.com



Machine Intelligence Research, 2023,
20(1): 1-18.

[6] Khan S, Khan M A, Khan M, et al.
Optimized feature learning for anti-
inflammatory peptide prediction using
parallel distributed computing. Applied
Sciences, 2023, 13(12): 7059.

[7] Situmorang Y M, Mansyur A.
Pengoptimalan Jaringan Pipa Primer
PDAM Tirtanadi Cabang Tuasan Dengan
Menggunakan Algoritma Kruskal. Jurnal
Riset Rumpun Matematika dan Ilmu
Pengetahuan Alam (JURRIMIPA), 2023,
2(2): 225-237.

[8] Labbé M, Landete M, Leal M.
Dendrograms, minimum spanning trees
and feature selection. European Journal of
Operational Research, 2023, 308(2): 555-
567.

[9] Wan G, Du B, Pan S, et al. Reinforcement
learning based meta-path discovery in
large-scale heterogeneous information
networks. Proceedings of the aaai
conference on artificial intelligence. 2020,
34(04): 6094-6101.

[10] Shah B, Bhavsar H. Time complexity in
deep learning models. Procedia Computer
Science, 2022, 215: 202-210.

76 Journal of Natural Science Education (ISSN: 3005-5792) Vol. 1 No. 3, 2024

http://www.stemmpress.com Copyright @ STEMM Institute Press




