Research on Performance Evaluation of Full Process Cost Management in Expressway Projects

Junyong Yu

Yunnan Infrastructure Investment Co., Ltd. Kunming, Yunnan, China

Abstract: The research purpose of this article is to optimize the performance evaluation of cost management throughout the entire process of highway projects. Currently, China's highway construction is booming, but cost management is complex and requires the construction of a scientific performance evaluation system comprehensively supervise and evaluate engineering costs. This article literature induction method for literature review, followed by expert scoring method to assign scores to indicators, and finally used Analytic Hierarchy Process to determine indicator weights. From the results, this study identified key factors that overall cost management performance of highway projects, and constructed relevant evaluation models and weight hierarchy tables. Therefore, the results of this article are helpful in controlling project accurately evaluating benefits, and optimizing fund management, which is of great significance for improving the level of highway project management and investment return rate.

Keywords: Expressway Project; Full Process Management; Cost Management; Management Performance; Performance Appraisal

1. Introduction

With the vigorous development of the Chinese economy, the construction of highway transportation is increasingly showing its pivotal position. But the cost management of highway projects is not only complex but also extremely crucial. Effective engineering cost management is undoubtedly an indispensable link in ensuring that engineering projects can be completed smoothly according to the predetermined time and quality standards. This article emphasizes that in order to comprehensively improve the efficiency of

highway engineering cost management, it is imperative to build a scientific performance evaluation system. This system requires comprehensive supervision and evaluation of engineering costs from the perspective of project owners [1]. With the help of this system, owners can implement cost control and conduct benefit evaluations, thereby timely discovering cost overruns or clearly understanding investment returns, providing data support for management decision-making. In order to comprehensively examine every aspect of highway construction, outcome and process indicators should be established step by step, so that existing problems can be identified and corresponding solutions can be taken at the first time [2]. By applying evidence theory methods to evaluate cost management at each stage, it is possible to more accurately grasp the real-time dynamics of cost control and project performance. By systematically summarizing the effectiveness of cost management in each link, the management process can be continuously optimized, with the aim of achieving higher quality and efficiency in future highway construction, and making due contributions to China's highway engineering construction.

2. Research Status

2.1 Technical Management Methods for Whole Process Cost Management

The implementation process of cost technology management methods includes: firstly, in the decision-making and design stage of the project, through in-depth market research and accurate cost estimation, determining the overall cost budget of the project. Secondly, during the construction phase, a strategy of real-time monitoring and dynamic adjustment is adopted to ensure that all costs are controlled within the budget range. Finally, during the completion and operation stages of the project, a cost-benefit analysis

and post evaluation are conducted to provide useful references for subsequent projects. In terms of implementation strategy, cost technology management methods emphasize data analysis and comparison, as well as continuous optimization of cost control methods. By introducing advanced cost management systems and information technology, real-time data collection, analysis, and processing can be achieved, thereby improving the accuracy and efficiency of cost control [3]. The cost technology management method has played a crucial role in the proposed closed-loop system. It ensures the accuracy and consistency of information by systematically integrating cost control methods and data. This not only improves the transparency of cost management, but also provides a real-time and comprehensive cost control view for the project team. Through this approach, the project team can promptly identify and solve cost overruns, ensure the smooth progress of the project, and ultimately achieve a comprehensive improvement in the and efficiency of highway quality construction.

2.2 The Impact of a Closed-loop System throughout the Entire Process on the Performance of Cost Management

The introduction of a closed-loop system enables real-time monitoring of various cost indicators in the project process, timely adjustment of management strategies to ensure that the project progresses smoothly according to the established cost budget. At the same time, through the built-in data analysis function of the system, cost data of each stage of the project can be deeply excavated, providing more accurate data support for management decision-making. In practice, the expected results of implementing this system not only include effective control of project but also reflect significant costs, a improvement in project benefits. monitoring and managing the entire process, various problems during the project progress can be identified and resolved in a timely manner, ensuring timely and high-quality completion of the project, thereby maximizing the overall benefits of the project. The implementation of this system will also bring many benefits, primarily improving the transparency and efficiency of project

management, making it more convenient for all parties involved to obtain project information, and strengthening communication and collaboration. Secondly, through the accumulation and analysis of data, project management processes can be continuously optimized to improve the efficiency and quality of future project execution. The successful implementation of this system will lay a solid foundation for the sustainable development of China's highway transportation and promote the progress and prosperity of the entire industry.

2.3 Analysis of the Uniqueness of Performance Evaluation Methods for Cost Management throughout the Entire Process of Highway Projects

In the field of highway projects, traditional cost management practices often focus on a single stage or local link, lacking comprehensive and systematic consideration of the entire project cost management process. Compared to this, the performance evaluation method for the entire process cost management proposed in this study demonstrates its unique contribution and advantages [4]. The new system has introduced the concept of full process and closed-loop management, achieving comprehensive monitoring and real-time feedback on various stages of the from decision-making, design, construction to completion [5]. This systematic management method not only improves the accuracy of cost control, but also effectively reduces the risk of cost overruns. In contrast, traditional methods often only perform cost accounting after project completion, lacking the ability to timely detect and correct cost deviations during the project process. In terms of effectiveness, the new system objectively measure the results of cost management in each stage of the project by setting clear performance evaluation indicators, thereby timely identifying problems and making improvements [6]. However, traditional methods rely more on empirical judgment and subjective analysis, making it difficult to form a scientific and objective evaluation system. In terms of efficiency, the new system utilizes advanced information technology to achieve real-time data collection, analysis, and processing, greatly improving the efficiency and accuracy of cost management.

However, traditional methods often require manual data organization and calculation, which is not only inefficient but also prone to errors. In terms of feasibility, the new system has strong applicability and flexibility, and can be customized and optimized according to the characteristics and needs of different projects. However, traditional methods are often limited by fixed processes and standards, making it difficult to adapt to complex and ever-changing project environments.

3. Establishment of a Performance Evaluation System for Cost Management throughout the Whole Process of Expressway Construction Projects

In the decision-making stage, use market research data and historical project cost data to conduct preliminary cost estimation and risk assessment. During the design phase, the economic viability of the design scheme is ensured through a detailed bill of quantities and cost estimation data [7]. Entering the construction bidding stage, select with construction unit the best cost performance ratio based on the bill of quantities and comprehensive unit price data [8]. During the construction phase, real-time monitoring of material costs, labor costs, and machinery usage costs, and timely adjustment of construction plans to control total costs [9]. During the completion stage, the overall cost of the project will be calculated and compared with the budget to evaluate the effectiveness of cost management [10]. Taking a highway project in Yunnan as an example, value

engineering analysis was introduced in the design phase. By comparing the cost data of different design schemes. the most cost-effective scheme was selected, achieving significant cost savings before construction. During the construction phase, dynamic cost control methods were adopted, combined with real-time cost data monitoring, to timely adjust the construction plans of some high cost sub projects, further controlling the risk of cost overruns. The specific structure is shown in Figure 1.

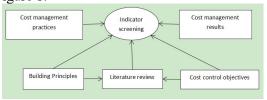


Figure 1. Evaluation Ideas for Cost Management throughout the Entire Process of Highway Construction Projects

Firstly, the decision-making stage of highway construction projects includes planning decisions, investment forecast documents, and financing plans, as shown in Table 1.

The work content of the design phase of highway construction projects includes budget materials, design quality, appropriate estimates, and appropriate budgets, as shown in Table 2. The work content of the bidding stage of highway construction projects includes the rationality of the engineering project quantity list, the verification of the base bid cost, the standardized bidding process, and the reasonable bidding price, as shown in Table 3

Table 1. Performance Evaluation Indicator Set for Decision Stage

Criterion layer	Indicator layer	evaluating indicator		
	Dlamnina danisiana	Is the specifications and standards constructed reasonable		
	Planning decisions	Is the size of the project or project appropriate		
Performance		The investment estimate is based on valid information		
evaluation		Does the budgeting process follow standard procedures		
indicators for	Investment forecast	The ratio of difference between investment estimate and actual		
investment	document	Evaluate whether the approval of documents complies with		
decision-making		relevant regulations		
stage Is the resp		Is the response to feedback timely		
	Eva desigio a elso	The proportion of capital in total investment		
	Fundraising plan	The proportion of financing expenses to total financing		

Table 2. Performance Evaluation Indicator Set for Design Phase

Criterion layer	Indicator layer	evaluating indicator
design	Budget	Is complete budget preparation necessary
phase	materials	Ensure that the depth of budget preparation meets regulations

performance		Is the timeliness and compliance of the audit process crucial				
appraisal		Feedback should be timely and handled accordingly				
index		Comparison, selection, and optimization of design schemes should be ca				
	Design	out				
	quality	Need to achieve a certain level of design standardization				
		The design should be completed within the limit				
	A mmammiata	Pricing indicators and expenses should comply with regulations				
	Appropriate estimate	The calculation of engineering quantity needs to be correct and error free				
	Cstilliate	Analysis is needed on the deviation of overestimation in the estimated budget				
		The calculation and listing of engineering quantities should be accurate and				
	Appropriate	error free				
	budget	Reasonable application and conversion of quotas				
		The unit price and cost standards need to be accurate				

Table 3. Performance Evaluation Index Set for the Bidding Stage

Criterion layer	Indicator layer	evaluating indicator
	Dationality of	The correctness of list items must be ensured
	Rationality of engineering	Newly added projects should comply with corresponding rules and
	project	regulations
	quantity list	The bill of quantities needs to be formulated strictly in accordance with the
	qualitity list	specifications
D	Benchmark	Need to verify whether the quantity of the project is accurate and error free
Performan	cost	The accuracy of various expenses is an important link in checking the base
ce evaluation	verification	bid cost
indicators	Standardized bidding	The most suitable and effective bidding method should be selected
during the		The bidding process must comply with relevant rules to ensure compliance
bidding	_	The effectiveness of evaluation methods is the key to ensuring fairness and
stage	process	impartiality in the bidding process
stage		The deviation rate of bidding control price should be within an acceptable
		range
	Reasonable	The deviation rate of bidding control price review needs to be controlled
	bidding price	within a reasonable range
		The proportion of unbalanced quotation sub items should be as low as
		possible to maintain the overall balance of the quotation

The work content during the construction phase of highway construction projects includes engineering cost recording, budget approval implementation, cost control and fund utilization plan, engineering change management, engineering claim handling, and settlement document production and approval. The specific details are shown in Table 4.

The work content of the completion stage of the highway construction project includes the preparation and circulation of accounting documents, fund investment management, project acceptance, construction safety, and schedule, as shown in Table 5 below:

4. A Performance Evaluation Model for Full Process Cost Management of Expressway Construction Projects Based on Evidence Theory

After visiting and scoring 15 experts in the construction of relevant highways, based on the scoring data, a judgment matrix was obtained using the Analytic Hierarchy Process, and then the hierarchical ranking weights were calculated.

During the decision-making stage, three indicators and their weights were obtained, as shown in Table 6.

During the design phase, four indicators and their weights were obtained, as shown in Table 7

During the bidding stage, four indicators and their weights were obtained, as shown in Table 8.

During the construction phase, six indicators and their weights were obtained, as shown in Table 9.

Table 4. Performance Evaluation Indicator Set for Construction Stage

Criterion layer	Indicator layer	evaluating indicator		
		Ensure the accuracy of measurement and payment records		
	Engineering cost records	Design change records need to be kept complete		
	Engineering cost records	Price adjustment records need to be accurate		
		Claim records need to be detailed		
	Budget approval	Analyze by comparing contracts with approved budgets		
	implementation	Reserve fees should be used appropriately		
Performance	Cost control and fund	The fund utilization plan should be reasonable		
evaluation	utilization plan	Conduct in-depth analysis of investment deviations		
indicators	utilization plan	Control measures need to demonstrate effectiveness		
during the		Engineering change quotation must comply with regulations		
construction	Engineering Change	Change calculations should follow relevant regulations		
phase	Management	The deviation rate of the change amount approval should be		
phase		within an acceptable range		
	Engineering claim	The claim process should be complete and complete		
	processing	Claim fees must comply with relevant regulations		
		Settlement materials must be complete and authentic		
	Settlement document	The preparation content needs to be complete and flawless		
	production and permission	The basis for preparation must be valid		
		The approval of settlement documents must be reasonable		

Table 5. Performance Evaluation Indicator Set for Completion Stage

Table 3.1 error mance Evaluation indicator Set for Completion Stage				
Criterion layer	Indicator layer	evaluating indicator		
Completion stage	Preparation and circulation of accounting documents	The completeness and effectiveness of the detailed content of the final account are reflected in whether it contains all necessary information and is accurate and accurate. The proportion of deviations in the final accounting review process involves the processing and interpretation of raw data. The accuracy of final accounting data means that there are no errors in both numerical and content aspects. The approval process of final accounting documents and the response speed to corresponding issues.		
performance appraisal	Fund investment	The change rate of construction safety engineering costs may affect the overall cost of the project.		
index	management	The deviation rate of land acquisition and demolition refers to the difference between actual costs and expected costs.		
		The quality standards of the project, including materials, processes, and structures.		
	Project acceptance, construction safety, and schedule	Whether the safety regulations during the construction process are followed, including personal protection of employees and proper use of equipment.		
		The deviation ratio between the completion time of the project and the plan.		

Table 6. Performance Evaluation Weight Results in the Decision-Making Stage

	Tuble of I crior mance in the pression framing buge						
Criterion layer	weight	Indicator layer	weight	coding	weight		
Dagisian	zero	Planning Decision X11	zero point zero seven	X111	zero point zero three seven		
Decision stage X1	point two	Fiaming Decision ATT	one	X112	zero point zero three four		
Stage A1	two one	Investment Forecast	zero point zero eight	X121	zero point zero one seven		

	Document X12	nine	X122	zero point zero one nine
			X123	zero point zero two four
			X124	zero point zero one six
			X125	zero point zero one three
	Fundraising Dlan V12	zero point zero six one	X131	zero point zero two eight
	rundraising Plan A15	zero pomi zero six one	X132	zero point zero three three

Table 7. Performance Evaluation Weight Results during the Design Phase

Criterion layer	weight	Indicator layer	weight	coding	weight
				X211	zero point zero one one
		Budget material X21	zero point zero four one	X212	zero point zero one three
		Budget material A21	zero ponit zero rour one	X213	zero point zero zero eight
	zero point two zero four			X214	zero point zero zero nine
		Design Quality X22 Appropriately estimated X23	zero point zero five one	X221	zero point zero one eight
Design				X222	zero point zero one six
phase X2				X223	zero point zero one seven
			zero point zero five	X231	zero point zero two five
			nine	X232	zero point zero three four
			Tono maint Tono five	X241	zero point zero one seven
		Appropriate budget X24	zero point zero five three	X242	zero point zero two one
			X24 th	unce	X243

Table 8. Performance Evaluation Weight Results during the Bidding Stage

Criterion layer	weight	Indicator layer	weight	coding	weight
		Rationality of	zero point zero four	X311	zero point zero one six
		engineering project	five	X312	zero point zero one five
		quantity list X31	TIVE	X313	zero point zero one four
		Benchmark cost verification X32	zero point zero three three	X321	zero point zero one five
Bidding	zero			X322	zero point zero one eight
store V2	point one	nt one e zero Standardized bidding process X33	zero point zero five eight	X331	zero point zero one seven
stage A3	nine zero			X332	zero point zero one three
				X333	zero point zero two eight
		Reasonable bidding	zero point zero five four	X341	zero point zero two one
				X341	zero point zero one five
		price X34		X342	zero point zero one eight

During the completion stage, three indicators were obtained, as shown in Table 10:

From this, a complete weight hierarchy table can be obtained in this article. Firstly, the weight indicators and element content for the preparation and circulation of accounting documents are considered as the main influencing dimension X51 for performance evaluation of cost management throughout the entire process of highway projects. This may be because the preparation and circulation of accounting documents can directly affect the cost of the project, including the accuracy of budget preparation, budget implementation, and accuracy of final accounts. These factors directly affect the cost control of the project and the accuracy of the

final accounting results. Project acceptance, safety, construction and schedule considered as the main influencing dimensions of the performance evaluation of cost management throughout the entire process of highway projects. This may be because project acceptance, construction safety, and the rationality of the schedule are crucial for cost and schedule control of the project. The qualification of engineering acceptance, control of construction safety, and accuracy of construction period all directly affect the progress of the project and the execution of the budget. Planned decision-making is considered as the main influencing dimension of the performance evaluation of cost management throughout the entire process of highway

projects. This may be because the rationality and accuracy of planning decisions have a significant impact on the cost and performance of the project. Good planning decisions can ensure that the project budget is fully optimized and controlled, while balancing the risks and benefits of the project. The investment forecast document is considered as the main influencing dimension X12 for the performance evaluation of cost management throughout the entire process of highway projects. This may be because the accuracy and rationality of investment documents play an important role in cost control and benefit evaluation of projects. An accurate investment forecast document can

provide a basis for the project's funding requirements and cost budget, thereby ensuring the accuracy of project funding and cost control. The financing plan is considered as the main influencing dimension X13 for the performance evaluation of cost management throughout the entire process of highway projects. This may be because the rationality and feasibility of the financing plan have a significant impact on the financing cost and fund utilization efficiency of the project. A good financing plan can provide a stable source of funds and reasonable interest costs, thereby reducing the financing costs of the project and improving the return on investment of the project.

Table 9. Weight Results of Performance Evaluation during Construction Stage

	Table 7. Weight Results of 1 criormance Evaluation during Construction Stage						
Criterion layer	weight	Indicator layer	weight	coding	weight		
				X411	zero point zero one three		
		Engineering cost	zero point zero four two	X412	zero point zero one zero		
		record X41	zero pomit zero rour two	X413	zero point zero one one		
				X414	zero point zero zero eight		
		Budget Approval	zero point zero three	X421	zero point zero two one		
		Implementation X42	nine	X422	zero point zero one eight		
	zero	Cost Control and Fund Utilization Plan X43	zero point zero three five	X431	zero point zero one zero		
				X432	zero point zero one four		
Construction				X433	zero point zero one one		
phase X4		one Engineering Change Management X44 Engineering claim	zero point zero three five	X441	zero point zero zero nine		
				X442	zero point zero one one		
				X443	zero point zero one five		
			zero point zero two four	X451	zero point zero one three		
				X452	zero point zero one one		
		Cattlemant De symant		X461	zero point zero zero six		
		Settlement Document		X462	zero point zero zero eight		
		Production and	zero point zero two six	X463	zero point zero zero seven		
		Allowing X46		X464	zero point zero zero five		

Table 10. Weight Results of Performance Evaluation during Completion Stage

Criterion layer	weight	Indicator layer	weight	coding	weight
		Preparation and circulation	zero point zero	X511	zero point zero two five
		of accounting documents	seven nine	X512	zero point zero three three
Completion	point one eight four	X51	seven nine	X513	zero point zero two one
		Fund Investment	zero point zero	X521	zero point zero two two
stage X5		Management X52	four one	X522	zero point zero one nine
		Project acceptance	zero point zero six four	X531	zero point zero two five
				X532	zero point zero two one
		schedule X53	1001	X533	zero point zero one eight

For the main secondary influencing factors, the rationality of construction standards X111 and the rationality of construction scale X112 are considered as the main influencing dimensions. This may be because the rationality of construction standards and the scientificity of construction scale have a

significant impact on the investment returns and cost-effectiveness of the project. Reasonable construction standards and scale can ensure the quality and efficiency of the project, reduce investment risks and cost waste. The financing cost ratio X132 is considered a secondary influencing factor, which may be

because the high or low financing cost ratio directly affects the funding cost and financing efficiency of the project. Low financing cost ratio can reduce the financing cost of a project, improve its profitability and investment return rate. The analysis of estimated deviation X232 and the deviation rate between final accounts and budgets X512 are considered as secondary influencing factors. This may be because the analysis of estimated deviations and the deviation rate between final accounts and budgets play an important role in cost control and benefit evaluation of projects. Accurate analysis of budget deviation and final accounting deviation rate can provide cost control information for projects, thereby management guiding project decision-making.

In summary, based on the given Analytic Hierarchy Process weight table, this article can conclude that the reasons for the weight of these results are based on their impact and importance on the overall cost management performance of highway projects. These weight indicators and element contents reflect the attention and importance placed on cost control, benefit evaluation, and fund management in the performance evaluation of the entire process.

5. Conclusions

This study successfully constructed comprehensive weight hierarchy table by analyzing multiple dimensions of cost management performance throughout the entire process of highway projects. The results show that the preparation and circulation of accounting documents, project acceptance, schedule, construction safety, planning decisions, investment forecast documents, and financing plans have a significant impact on cost management performance evaluation. Among them, the accuracy and circulation of accounting documents directly affect the accuracy of project cost control and final acceptance, accounting, while project construction safety, and the rationality of the schedule are crucial to the progress and budget execution of the project. In addition, the rationality and accuracy of planning decisions, the accuracy of investment forecast documents, and the feasibility of fundraising plans all have a profound impact on the overall performance of the project. Among the secondary

influencing factors, the rationality of construction standards and the scientificity of construction scale have been proven to play a crucial role in the investment returns and cost-effectiveness of the project. At the same time, the financing cost rate directly affects the funding cost and financing efficiency of the project, while the analysis of estimated deviations and the final accounting and budget deviation rate provide important references for cost control and benefit evaluation of the project.

Overall, this study reveals the key influencing factors of cost management performance throughout the entire process of highway projects. It not only provides strong theoretical basis for project management and decision-making, but also emphasizes the core position of cost control, benefit evaluation, and fund management in project management. This research achievement has important practical significance for improving the management level and investment return rate of highway projects.

References

- [1] Deng Feng. Research on Interface Management in the Whole Process Cost Management of Construction Projects. Wuhan: School of Civil Engineering, Wuhan University of Technology, 2007, 3-4
- [2] Ke Hong, Zhou Fuyan. Research on the Performance Evaluation Index System of Engineering Cost Management. Highway Transportation Technology, 2012, 29 (12): 48-54
- [3] Liu Yan. Research on the Evaluation Method of the Whole Process Cost Control Plan for Highway Construction Projects. Changsha: School of Technology, Economics and Management, Central South University, 2010
- [4] Lu Lihong. The Whole Process Cost Management of Cost Consulting Units in Engineering Projects. Science and Technology Information, 2009 (27): 56-58
- [5] Peng Haiyan, Li Zhihui. Construction and Evaluation of Maturity Model for Engineering Cost Management. Journal of Chongqing University of Business and Technology (Natural Science Edition), 2012, 29 (6): 57-62

- [6] Wang Hun, Liu Chengzhi, Shi Qiongxian. Research on Performance Evaluation of Highway Engineering Cost Management. Logistics Technology, 2012 (10): 115-120
- [7] Yang Jing. Performance Evaluation of Highway Cost Management Based on Fuzzy Matter Elements: Changsha: Changsha University of Technology, 2011
- [8] Yuan Ping. On the Whole Process Management and Control of Construction Project Cost by Construction Units.

- Journal of Hunan University of Economics and Management, 2006, 17 (3): 47-48
- [9] Zuo Ming (2024). Exploration of Full Process Cost Control and Management Measures for Expressway Projects. Continental Bridge Perspective (02), 128-130
- [10] Liu Xinchao (2023). Research on Cost Control Measures for the Whole Process of Expressway Engineering Construction. Transportation World (36), 166-168