
APTAttack Detection Method Based on Traceability Graph

Yihan Yin, Xiangjie He, Yiwei Liao
Institute of Computer Science and Information Engineering, Harbin Normal University, Harbin,

China

Abstract: This article proposes an Advanced
Persistent Threat (APT) attack detection
method based on traceability graphs, aimed
at addressing the complexity and concealment
of APT attacks. This method describes system
behavior by constructing a traceability graph,
optimizing it to reduce redundant
information, converting the traceability
graph sequence into a feature vector sequence,
and using an encoder decoder model to train
the GRU (Gate Recurrent Unit) model to
extract long-term features of the sequence.
Finally, a normal behavior model is
established through clustering to detect APT
attacks.

Keywords: Traceability Graph; APT Attack;
Attack Detection; Sequence Signature

1. Introduction
With the rapid development of information
technology, Advanced Persistent Threat attacks
have become a major challenge in the field of
network security. APT attacks are usually
characterized by strong targeting, tight
organization, long duration, covertness, and
indirect attacks[1].Attackers make use of social
engineering and advanced attacking techniques
to bypass the defenses of traditional security
technologies, such as randomization of the
address space, in order to steal sensitive
information , destroying systems, etc. for the
purpose of bringing serious economic losses and
security threats to enterprises and society.
Currently, many enterprises rely on active
defense techniques to cope with common attacks,
but APT attacks are complex and hidden,
making these tools to detect and prevent APT
attacks have limitations. Suspected attacks in
system operation, security detection system
frequent alarms, a large number of alarms need
to be identified and processed by security
analysts, which not only increases the cost, but
also due to false alarms caused by important
attacks are easy to be omitted from the detection.

Therefore, in order to effectively deal with APT
attacks, it is necessary to study new detection
and analysis methods, summarize the cause and
effect relationship of attacks, and help security
analysts to determine the major invasions, the
attacker's means of evasion and the impact of the
attack. The traceability graph can trace the cause
and effect relationship, and can be used for a
variety of network security tasks after
processing and analysis[2]. In recent years, the
use of traceability graph to detect APT attacks
has received widespread attention, but the
existing methods have shortcomings and need to
be improved. In conclusion, APT attack
detection based on traceability graph is of great
significance and key to improving network
security defense capability.

2. Related Concepts

2.1 APT Attack
According to several APT attack studies[2-3],
the APT attack process usually covers the
following phases:
(1) Implantation phase:
The attacker will first analyze the attack target,
including collecting target information,
clarifying the target's defense mechanism and
determining whether the target has attack value,
and also infiltrate with the help of technical
means to obtain intelligence, and ultimately
determine the attack means used. Then, based on
the determined attack means and the
characteristics of the attack target, develop the
corresponding Trojan virus and malicious code,
and use 0day vulnerability, spear phishing,
mobile storage devices and other ways to
implant malicious programs into the system.
(2) Confirmation stage:
The attacker works to implant the malicious
code built in the previous phase into the system.
(3) Extension stage:
In order to be able to further access and control
the system, attackers will establish attack
strongholds, install backdoor programs and other

82 Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 2, 2024

http://www.stemmpress.com Copyright @ STEMM Institute Press

controls in the system, create software, replace
or hijack legitimate code, or add startup code. In
addition, to explore the network more deeply, an
attacker may exploit bugs or vulnerabilities in
the system configuration, modify notes using
forged tokens, elevate his or her attack
privileges through the registry, and so on.
(4) Mobile phase:
To further expand the scope of the attack, the
attacker observes the network and system, steals
accounts and passwords, and uses these
legitimate credentials to access the system and
create more accounts to help achieve their goal.
(5) Maintenance phase:
The attacker will endeavor to lurk in the system
to avoid detection, thus maintaining his presence
within the system for an extended period of time.
Thereafter, the attacker will carry out a long
period of continuous network infiltration and
gradually obtain internal network privileges in
order to hide in the internal network for a long
period of time and continue to collect various
types of information until important intelligence
is stolen.

2.2 Traceability Graph
A traceability graph is a data structure extracted
from audit logs that traces the causal
relationships between entities and objects
retrospectively by presenting the dependencies
between the processes. A traceability graph
consists of nodes that represent the entities and
the objects as well as the edges that represent the
actions between them, and it is a directed graph
with edges pointing from the entities to the
objects[3].
(1) Entity
Entities in a causal graph are objects in the
system such as processes, files, network ports,
etc., Entities are unique system subjects or
objects extracted from the causal graph and
represented as nodes. Entities can be processes,
files, and network connections.
(2) Neighborhood graph
Given a traceability graph, if 2 nodes u and v
are connected through an edge, the 2 nodes are
said to be neighboring nodes. The neighbor
graph of 1N is a subgraph consisting of the
node 1N and its neighboring nodes and edges,
and the neighbor graph of a group of nodes

1 2{ , , , }nN N N is a subgraph including the
node 1 2{ , , , }nN N N and its neighboring

nodes and edges.
(3) Event
An event  is a quaternion consisting of a
source (src), an action, a destination (dest), and a
timestamp (t). Where source and target are 2
entities connected by an action, and the
timestamp indicates when the event occurs.
Given an entity e , its events can be extracted
from the adjacency graph of that includes all the
actions associated with the neighboring nodes of
that.
(4) Sequence
Given an entity e , a sequence S can be
extracted from the causal graph. The sequence
S contains all the events in the neighborhood
graph of the entity e in chronological order,
denoted as 1 2{ } { , , , }nS e     . Similarly, if
a set of entities is given, a sequence including all
events in their neighborhood graph can be
extracted.

2.3 Optimization Techniques for Traceability
Graph
(1) Edge reduction techniques
Including Causality Preserving Reduction,
Process-centered Causality Approximation
Reduction and Domain knowledge-based
reduction. PCAR retains causality and removes
repeated read/write operations unrelated to the
target file; DOM mainly removes temporary
files.
(2) Node Reduction Technique
This technique focuses on the life cycle of
objects. For example, NodeMerge, which uses
fixed libraries and read-only resource sets to
reduce system event data.

3. APT Attack Detection Method Based on
Traceability Graph

3.1 Data Preprocessing
(1) Deletion of edge nodes
Some nodes in the traceability graph have no
operations with other nodes, and such nodes will
not be used when learning with the model, so
they are all removed.
(2) Delete duplicate edges
There are a large number of repetitive operations
in the system, resulting in many duplicate edges
between nodes, deleting these redundant edges
will not cause too much loss to the overall
semantics, and can effectively optimize the
traceability graph, so all edges between 2

Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 2, 2024 83

Copyright @ STEMM Institute Press http://www.stemmpress.com

entities in the traceability graph are deleted
except for the first operation, i.e., only the first
event of the two is retained.
(3) Merging identical nodes and edges
If the structure of certain combinations of nodes
and edges in the traceability graph is identical, it
means that they represent the same events that
occurred, and these nodes can be merged into a
single node, and then the earliest operations in
these nodes are retained as edges of the new
node.

3.2 Traceability Graph Feature Extraction
The way of generating the sequence of
traceability graph features in UNICORN[4] is
adopted, which is divided into the following 3
steps:
(1) Collecting system call logs, extracting
subjects and objects as traceability graph nodes
from the logs, generating edges of the
traceability graph based on the call relationships
between the nodes, and generating the
traceability graph using Cam Flow[5].
(2) Using the information of traceability graph
nodes as well as their neighboring nodes, node
labels are generated and the statistical
information of traceability graph node labels is
recorded in the form of histograms.
(3) Since step (2) may generate node labels that
have not appeared, the number of transverse
coordinates of the histogram is uncertain, and
the general algorithm requires a fixed-length
feature vector as input. The HistoSketch[6]
algorithm can effectively solve this problem by
transforming the histogram generated in step (2)
into a fixed-length feature vector. Denote this
sequence of feature vectors as

1 2{ , , , }nS f f f  , where d
if R , its

dimension is d-dimensional and n denotes the
length of the sequence.

3.3 Sequence Feature Extration
(1) Data Dimensionality Reduction
In the sequence S of input features, the feature
if in the sequence describe the state of the

system at the time i , so when two system states
are similar, such as neighboring system states,
the corresponding two feature vectors are also
similar. This makes the features extracted
directly from the traceability graph have high
dimensionality and contain a lot of redundant
information. Therefore, in part 1 of this module,
a multi layer perceptron is first used to reduce

the dimensionality of all features in the sequence
to generate tighter feature vectors in a lower
dimensional space. By this way both the
redundant information can be removed, the
computational amount can be reduced, and the
efficiency of attack detection can be improved,
and at the same time, the proportion of valid
information in the features inputted to the
subsequent module can be improved, and the
feature sequence after dimensionality reduction
can be memorized as 1 2{ , , , }nX x x x  .
(2) Sequence Feature Extraction
In this paper, the encoder-decoder based model
is used to train the GRU model to extract
sequence features. And in the testing phase, only
the model and parameters of the encoder part are
kept.The role of the encoder is to encode the
sequence of features into a feature vector which
contains the information of the whole sequence,
so the encoder module adopts the GRU model
which can efficiently extract the features of the
long term sequence. The formalization of the
encoder module is described as

, ()Output feature Encoder X . The feature
sequence X after dimensionality reduction is
input into the encoder module composed of the
GRU model, and the output includes the feature
sequence Output and the feature vector
feature , where n dOutput R  is a sequence
composed of feature vectors whose feature
dimension is equal to the dimension of the
feature vector in the input sequence, and the
length of the sequence is equal to the length of
the input sequence. During each round of
iteration, the GRU model outputs a feature
vector which contains the local feature
information of the input feature sequence. These
output feature vectors are put together in order
to form the output feature sequence Output ,
which is the optimization of the input feature
sequence. At the same time, the output after the
last iteration is used as the feature vector
feature , which incorporates the features of the
whole sequence, contains the long-term history
information of the sequence, and can reflect the
characteristics of the whole sequence. In the
attack detection stage, the direct output is used
as the input of the subsequent clustering
module.The function of the decoder module is to
reconstruct the input feature sequence X
according to the sequence features feature

84 Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 2, 2024

http://www.stemmpress.com Copyright @ STEMM Institute Press

generated by the encoder.

3.4 Attack Behavior Modeling
Since only the normal behavioral data of the
system is available during the training process,
this paper uses clustering to gather all the feature
vectors extracted from the training set into K
classes. Where the K value is a hyperparameter
that needs to be set in advance. Through the
parameter experiment, it can be seen that K has
a better performance in the range around 7. In
this paper, the number of clusters is set to 7.
These feature vectors contain the system
behavior characteristics, and the system
behaviors with similar behavioral properties will
be closer in the feature space[6]. In the attack
detection phase, the distance between the
extracted feature vectors and the clustering
center is calculated, and the behaviors exceeding
the threshold are judged as attacks.

4. Conclusion
In this paper, we propose an APT attack
detection method on traceability graph. The
method uses a sequence of traceability graphs to
describe the changes in system behavior and
transforms the sequence of traceability graphs
into a sequence of features, after which a GRU
model is used to capture the long-term change
characteristics of the sequence. In the model
training phase, a model based on
encoder-decoder architecture is used to train the
GRU network model; in the attack detection
phase, the trained GRU model is used directly to
extract sequence features. Finally, a clustering
algorithm is used on the training data to model
the normal behavior of the system, and in the
attack detection phase, sequences far from the
center of the clusters are identified as attacks.

Acknowledgment
This present research work was supported by
Harbin Normal University Higher Education
Teaching Reform Research Project(No.
XJGZ202409).

References
[1] Anjum M M, Iqbal S, Hamelin B. ANUBIS:

a provenance graph-based framework for
advanced persistent threat detection[C]//
Proceedings of the 37th ACM/SIGAPP
Symposium on Applied Computing. New
York: ACM Press, 2022: 1684-1693.

[2] Liu J X, Shen Y, Simsek M, et al. A new
realistic benchmark for advanced persistent
threats in network traffic[J]. IEEE
Networking Letters, 2022, 4(3): 162-166.

[3] Corallo A, Lazoi M, Lezzi M, et al.
Cybersecurity awareness in the context of
the industrial Internet of things: a systematic
literature review[J]. Computers in Industry,
2022, 137: 103614.

[4] Han X Y, Pasquier T F J M, Bates A, et al.
UNICORN: runtime provenance-based
detector for advanced persistent threats. In:
Proceedings of the 27th Annual Network
and Distributed System Security
Symposium, San Diego, 2020.

[5] Pasquier T F J M, Han X Y, Goldstein M, et
al. Practical whole-system provenance
capture. In: Proceedings of Symposium on
Cloud Computing, Santa Clara, 2017.
405-418.

[6] Yang D Q, Li B, Rettig L, et al. Histosketch:
fast similarity-preserving sketching of
streaming histograms with concept drift. In:
Proceedings of IEEE International
Conference on Data Mining, New Orleans,
2017. 545-554.

Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 2, 2024 85

Copyright @ STEMM Institute Press http://www.stemmpress.com

