of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
 GDD-K-Means Text Clustering Algorithm Based on Grid
 Filtering Distance and Density of Outliers

Yao Wang, Bin Wang^{*}, Xiuwen Qi

School re and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
 -Means Text Clustering Algorithm Based on Grid
 Filtering Distance and Density of Outliers

Yao Wang, Bin Wang^{*}, Xiuwen Qi
 Mathematics and Data Sci ge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
 **Yext Clustering Algorithm Based on (Distance and Density of Outliers)

Yao Wang, Bin Wang^{*}, Xiuwen Qi
** *Manghang* **Mang^{*}, Xiuwen Qi
** *Manghang, Changji College, Chan* 59-0620) Vol. 2 No. 3, 2024
**Algorithm Based on Grid
ensity of Outliers**
, Xiuwen Qi
, Xiuwen Qi
gji College, Changji, Xinjiang, China
tuthor. *School of Mathematics and Density of Outliers*
 School of Mathematics and Data Science, Changji College, Changji, Xinjiang, China
 School of Mathematics and Data Science, Changji College, Changji, Xinjiang, China
 Sc Fineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
 **Clustering Algorithm Based on Gric

tance and Density of Outliers**

Vang, Bin Wang^{*}, Xiuwen Qi
 Mang, Bin Wang^{*}, Xiuwen Qi
 Mang, Bin Wang, Xiuwen Qi*
 Mang, China

Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 20
 Abstract: In the era of big data, fully mining
 Abstract: In the era of big data, fully mining
 Abstract: In the era of big data, f Iournal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
 ADD-K-Means Text Clustering Algorithm Based
 Filtering Distance and Density of Outliers

Yao Wang, Bin Wang^{*}, Xiuwen Qi

Schoo **GDD-K-Means Text Clustering Algorithm Based or**
Filtering Distance and Density of Outliers
Xao Wang, Bin Wang^{*}, Xiuwen Qi
Xao Wang, Bin Wang^{*}, Xiuwen Qi
Xao Wang, Bin Wang^{*}, Xiuwen Qi
Xao Wang*i College, Changji, Xi* **GDD-K-Means Text Clustering Algorithm**

Filtering Distance and Density of O

Yao Wang, Bin Wang^{*}, Xiuwen Qi

School of Mathematics and Data Science, Changji College, Chan

*Corresponding Author.

Abstract: In the era of **Filtering Distance and Density of Outli**

Yao Wang, Bin Wang^{*}, Xiuwen Qi

School of Mathematics and Data Science, Changji College, Changji,

*Corresponding Author.

*Corresponding Author.

Abstract: In the era of big da **Example 11 Set of Mathematics and Data Science, Changi College, Chang
** *unsupervised of Mathematics and Data Science, Changji College, Chang***
** *unsupervised to the era of big data, fully mining* **technology application

a learning brownthenomiature School of Mathematics and Data Science, Changji College, Changji, *Corresponding Author.**
 learning the case of big data, fully mining technology application and utilizing the value of big dat **Example 18 School of Mathematics and Data Science, Changji College, Changji, Xinji,

*Corresponding Author.**

*Corresponding Author.
 Abstract: In the era of big data, fully mining technology application have

and utili School of Mathematics and Data Science, Changji College, Changji, Xinjia

*Corresponding Author.

*Corresponding Author.
 Abstract: In the era of big data, fully mining technology application have a

and utilizing the va Schoot of Mathematics and Data Science, Changli College, Changli, Xinjuan,

*Corresponding Author.
 Abstract: In the era of big data in line with

the requirements of big data strategy plays a

the requirements of big da The era of big data, fully mining

technology application

and utilizing the value of big data in line with

the requirements of big data strategy plays a

environment, it becom

significant role in social development.

to Abstract: In the era of big data, fully mining

and utilizing the value of big data in line with

the requirements of big data strategy plays a

environment, it becomes particular

tine requirements of big data strategy pl Abstract: In the era of big data, fully mining

and utilizing the value of big data in line with

the requirements of big data strategy plays a

environment, it becomes particular

the requirements of big data strategy pla **Example 12**
 ABSTRACE: In the era of big data, tuny mining

and utilizing the value of big data in line with

the requirements of big data strategy plays a

environment, it becomes p

significant role in social developm and unizing the value of orgidaa in line with charactery can distribe requirements of big data strategy plays a environment, it becomes particular significant role in social development. Consaize the effective minimal proc Ine requirements of organa strategy prays a

significant role in social development. to realize the effective mining

Clustering algorithm can effectively partition

massive data and grasp the munlabeled data sets through **Supering algorithm can serve in social and the serve the entire the substrate and graphs unalabeled data sets through unsupervised behind the data. In real life, learning process, and traditional K-Means amount of unlabel CURE THE SET AND THE CONSERGATE CONSERGATE CONSERGATE CONSERGATE CONSERGATE CONSERVIDE INTERPRETATION IN THE LIGE INTERPRETATION IN THE STATE AND ABSOLUTION A SURFACT IN THE SET AND A SURFACT AND A SURFACT AND A SURFACT A unancied data sets through unsupervised** benomd the data. In real line
algorithm is still the most widely used mine unsupervised data through
algorithm at present. By studying and to obtain great value has become
learning **incerting** process, and **reading the most wilely used** initial mine using and algorithm is still the most widely used in incertigated data through learning various improved algorithms of topic [1]. **traditional K-Means cl combining the most where the most where** the memberous and the learning various improved algorithms of toolical granit and the obtain great value has beed learning various improved algorithms of topic [1].
 traditional K Example 18 and Solution and the number
 Solutional K-Means clustering algorithms of topic [1].
 Interactional K-Means clustering algorithms, The clustering algorit
 this paper has optimized the problems such as uns **Example 12 Consumer the consumption and Experimentional K-Means clustering algorithm**
 this paper has optimized the problems such as unsupervised data set well an
 unsatisfactory clustering results caused by effecti **Traditional K-Weans custering argorinm**, The custering argorinm
 this paper has optimized the problems such as unsupervised data set well
 unsatisfactory clustering results caused by effectively, which may
 butters this paper has optimized the problems such as

unstablection

outliers and disadvantages of initial center

outliers and disadvantages of initial center

point affecting initial partitioning. Good

information clusters. Th **clustering algorithms** and disadvantage of initial center information accumulation
 opoint affecting initial partitioning. Good information accumulation
 results have been obtained. Firstly, the grid cluster analysis **Multiers and disadvantages of initial center**
 **Means contract in the propertion in the properties are results have been obtained. Firstly, the grid cluster analysis is the p

Means cluster analysis is the p**
 Means dif bend and the set of the matter of the set of Fraction and LOF detection method of objects, where objects the may evaluation and density are used to are similar to each remove outliers. Then, the randomness of different from objects initial center selection is better intering and LOF detection method of objects, where objects withm
 indexerging distance and density are used to
 **increase the similar to each other chindren are interior extent in

initial center selection is better The complement is the calculation is the randomness of** different from objects in the randomness of different from objects combining the "max-min principle" with the high intrinsic consisten strategy of maximum weight, an **reduced.** For the max-film principle with the minder information of clusters is determined according to the 2¹. As a classical clustering algorithms, the proposed GDD-K-

Means algorithm is that compared with the currently popular **Strategy of maximum weight, and the number**
 Griducers is determined according to the
 Griducers is determined according to the
 BWP index. Experimental results have shown Means algorithm is wide
 that compared wit that compared with the currently po
clustering algorithms, the proposed Gl
Means clustering algorithm has acl
better results in different data sets, an
accuracy and F-number and other eval
indexes are improved to a certain

Centers

2959-0620) Vol. 2 No. 3, 2024
 g Algorithm Based on Grid
 Density of Outliers

ng^{*}, Xiuwen Qi

nangji College, Changji, Xinjiang, China

ng Author.

technology application have also brought severe

challenges to data 2959-0620) Vol. 2 No. 3, 2024
 g Algorithm Based on Grid
 Density of Outliers

ng^{*}, Xiuwen Qi

nangji College, Changji, Xinjiang, China

ng Author.

technology application have also brought severe

challenges to dat **g Algorithm Based on Grid**
 Density of Outliers

ng^{*}, Xiuwen Qi

nangji College, Changji, Xinjiang, China

ng Author.

technology application have also brought severe

challenges to data mining technology. In such an **g Algorithm Based on Grid**
 Density of Outliers

ng^{*}, Xiuwen Qi
 aangji College, Changji, Xinjiang, China
 ng Author.

technology application have also brought severe

challenges to data mining technology. In such **Density of Outliers**

ng^{*}, Xiuwen Qi

nanggii College, Changji, Xinjiang, China

ng Author.

technology application have also brought severe

challenges to data mining technology. In such an

environment, it becomes par **Defisity of Outfler's**
 ng^{*}, **Xiuwen Qi**
 dangji College, Changji, Xinjiang, China

technology application have also brought severe

challenges to data mining technology. In such an

environment, it becomes particul **ng^{*}, Xiuwen Qi**

atanggii College, Changji, Xinjiang, China

ag Author.

technology application have also brought severe

challenges to data mining technology. In such an

environment, it becomes particularly important
 ng^{*}, Xiuwen Qi
aangji College, Changji, Xinjiang, China
g Author.
technology application have also brought severe
challenges to data mining technology. In such an
environment, it becomes particularly important
to reali **ng**, **Xiuwen Qi**
 nangji College, Changji, Xinjiang, China
 tg Author.

technology application have also brought severe

challenges to data mining technology. In such an

environment, it becomes particularly importan nangji College, Changji, Xinjiang, China
tig Author.
technology application have also brought sechallenges to data mining technology. In suce
environment, it becomes particularly impo
to realize the effective mining and ap *ng Author.*
technology application have also brought severe
challenges to data mining technology. In such an
environment, it becomes particularly important
to realize the effective mining and application of
massive data a technology application have also brought severe
challenges to data mining technology. In such an
environment, it becomes particularly important
to realize the effective mining and application of
massive data and grasp the technology application have also brought severe
challenges to data mining technology. In such an
environment, it becomes particularly important
to realize the effective mining and application of
massive data and grasp the technology application have also brought severe
challenges to data mining technology. In such an
environment, it becomes particularly important
to realize the effective mining and application of
massive data and grasp the challenges to data mining technology. In such an
environment, it becomes particularly important
to realize the effective mining and application of
massive data and grasp the mystery and mystery
behind the data. In real lif

clustering algorithms, the proposed GDD-K-

Means clustering algorithm has achieved

and strong compatibility.

better results in different data sets, and the research direction for be

accuracy and F-number and other eval Means clustering algorithm has achieved

and strong compatibility. It is

actuared at sets, and the research direction for big d

actuared and the realuation

indexes are improved to a certain extent, and

the calculation decutiver and the model in different data sets, and the research direction for big decutation increasing. However, K-Mean individually has limitations, such as the alcelation time complexity is effectively set the number o accuracy and F-number and other evaluation

index are improved to a certain extent, and

internet internet internet internet internet internet internet internet

internet calculation time complexity is effectively

set the indexes are improved to a certain extent, and

the calculation time complexity is effectively

set the number of categories in

when they do not know enough

Keywords: Data Mining; K-Means Algorithm;

Another limitation i the calculation time complexity is effectively

reduced.

difficult for users to give

Keywords: Data Mining; K-Means Algorithm;

Another limitation is that d

Grid Filtering Outlier; Number of Class

initial center point environment, it becomes particularly important
to realize the effective mining and application of
massive data and grasp the mystery and mystery
behind the data. In real life, there is a large
amount of unlabeled data, and to realize the effective mining and application of
massive data and grasp the mystery and mystery
behind the data. In real life, there is a large
amount of unlabeled data, and how to deeply
mine unsupervised data through b massive data and grasp the mystery and mystery
behind the data. In real life, there is a large
amount of unlabeled data, and how to deeply
mine unsupervised data through big data strategy
to obtain great value has become a behind the data. In real life, there is a large
amount of unlabeled data, and how to deeply
mine unsupervised data through big data strategy
to obtain great value has become an important
The clustering algorithm deals with amount of unlabeled data, and how to deeply
mine unsupervised data through big data strategy
to obtain great value has become an important
topic [1].
The clustering algorithm deals with the
unsupervised data set well and m mine unsupervised data through big data strategy
to obtain great value has become an important
topic [1].
The clustering algorithm deals with the
unsupervised data set well and mining the data
effectively, which makes the to obtain great value has become an important
topic [1].
The clustering algorithm deals with the
unsupervised data set well and mining the data
effectively, which makes the discrete
information accumulate into valuable
inf topic [1].
The clustering algorithm deals with the
unsupervised data set well and mining the data
effectively, which makes the discrete
information accumulate into valuable
information clusters. The clustering generated by The clustering algorithm deals with the
unsupervised data set well and mining the data
effectively, which makes the discrete
information accumulate into valuable
cluster analysis is the process of grouping data
objects, wh unsupervised data set well and mining the data
effectively, which makes the discrete
information accumulate into valuable
information clusters. The clustering generated by
cluster analysis is the process of growing data
ob effectively, which makes the discrete
information accumulate into valuable
information clusters. The clustering generated by
cluster analysis is the process of grouping data
redisting the objects within the same cluster
ar mformation accumulate into valuable
information clusters. The clustering generated by
cluster analysis is the process of grouping data
objects, where objects within the same cluster
are similar to each other but significan information clusters. The clustering generated by
cluster analysis is the process of grouping data
objects, where objects within the same cluster
are similar to each other but significantly
different from objects in other cluster analysis is the process of grouping data
objects, where objects within the same cluster
are similar to each other but significantly
different from objects in other clusters. These
clusters are collections of data o objects, where objects within the same cluster
are similar to each other but significantly
different from objects in other clusters. These
clusters are collections of data objects that have
high intrinsic consistency in fe are similar to each other but significantly
different from objects in other clusters. These
clusters are collections of data objects that have
high intrinsic consistency in features, but exhibit
significant differences bet different from objects in other clusters. These
clusters are collections of data objects that have
high intrinsic consistency in features, but exhibit
significant differences between different clusters.
[2]. As a classical clusters are collections of data objects that have
high intrinsic consistency in features, but exhibit
significant differences between different clusters.
[2]. As a classical clustering algorithm, the K-
Means algorithm is high intrinsic consistency in features, but exhibit
significant differences between different clusters.
[2]. As a classical clustering algorithm, the K-
Means algorithm is widely popular for its
concise ideas and easy impl signiticant differences between different clusters.
[2]. As a classical clustering algorithm, the K-Means algorithm is widely popular for its concise ideas and easy implementation, a wide
range of application scenarios, ea [2]. As a classical clustering algorithm, the K-
Means algorithm is widely popular for its
concise ideas and easy implementation, a wide
range of application scenarios, easy to operate,
and strong compatibility. It is stil Means algorithm is widely popular for its
concise ideas and easy implementation, a wide
range of application scenarios, easy to operate,
and strong compatibility. It is still a valuable
presearch direction for big data ana concise ideas and easy implementation, a wide
range of application scenarios, easy to operate,
and strong compatibility. It is still a valuable
research direction for big data analysis and
processing. However, K-Means algo range of application scenarios, easy to operate,
and strong compatibility. It is still a valuable
research direction for big data analysis and
processing. However, K-Means algorithm also
has limitations, such as the algori and strong compatibility. It is still a valuable
research direction for big data analysis and
processing. However, K-Means algorithm also
has limitations, such as the algorithm needs to
set the number of categories in adva research direction for big data analysis and
processing. However, K-Means algorithm also
has limitations, such as the algorithm needs to
set the number of categories in advance, and it is
difficult for users to give approp processing. However, K-Means algorithm also
has limitations, such as the algorithm needs to
set the number of categories in advance, and it is
difficult for users to give appropriate values
when they do not know enough abo has limitations, such as the algorithm needs to
set the number of categories in advance, and it is
difficult for users to give appropriate values
when they do not know enough about the data.
Another limitation is that the set the number of categories in advance, and it is
difficult for users to give appropriate values
when they do not know enough about the data.
Another limitation is that the randomness of The
initial center point of the al ITEN 114

Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620)

required to be high. Researchers also failed to the initial division, and achiev

screen the noise effectively, resulting in the By comparing w ITEN 14

Sournal of Intelligence and Knowledge Engineering (ISSN: 2959-0620)

required to be high. Researchers also failed to the initial division, and achie

screen the noise effectively, resulting in the By comparing wit 114 Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0

required to be high. Researchers also failed to the initial division, and a

screen the noise effectively, resulting in the By comparing with three c

no Journal of Intelligence and Knowledge Engineering (ISSN: 2959-062

required to be high. Researchers also failed to the initial division, and achiever

screen the noise effectively, resulting in the By comparing with three ITENT 114

114 Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620)

114 Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620)

114 required to be high. Researchers also failed to the initial d IT4 Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620)

required to be high. Researchers also failed to the initial division, and achie

screen the noise effectively, resulting in the By comparing with thr 114 Journal of Intelligence and Knowledge Engineering (ISSN: 29

required to be high. Researchers also failed to the initial division, an-

sicrecen the noise effectively, resulting in the By comparing with three

noise p 114 Journal of Intelligence and Knowledge Engineering (ISSN: 2959-062

required to be high. Researchers also failed to the initial division, and achieveren the noise effectively, resulting in the By comparing with three cl I14 Iournal of Intelligence and Knowledge Engineering (ISSN: 2959-0620

required to be high. Researchers also failed to the initial division, and achie

screen the noise effectively, resulting in the By comparing with thre Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620)

required to be high. Researchers also failed to the initial division, and achiev

screen the noise effectively, resulting in the By comparing with three Juanual of Intelligence and Knowledge Engineering (ISSN: 29)

required to be high. Researchers also failed to the initial division, an

screen the noise effectively, resulting in the By comparing with thre

noise point bei 114 Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620

required to be high. Researchers also failed to the initial division, and achies

sereen the noise effectively, resulting in the By comparing with thr Fractrical to be high. Researchers also failed to the initial division, and ach
serect the noise effectively, resulting in the By comparing with three classes
point being taken as the initial center, four data sets, this p required to be high. Researchers also failed to the initial division, and achies
screen the noise effectively, resulting in the By comparing with three class
invision and increase in the stop and long traversing and long screen the noise effectively, resulting in the By comparing with thre
noise point being taken as the initial center, four data sets, this p
which may lead to inaccurate clustering and long
calculation time [4]. Researcher noise point being taken as the initial center, tour data sets, this pay
which may lead to inaccurate clustering and long proposed algorithm signi
calculation time [4]. Researchers considered the clustering quality and acc which may lead to inaccurate clustering and long
calculation time [4]. Researchers considered the clustering quality and accuracy
influence of density and combined with the the density maximum-minimum principle", thus eff calculation time [4]. Researchers considered the clustering quality and influence of density and combined with the "maximum-minimum principle", thus effectively avoiding local optimality, but data in low-
density regions influence of density and combined with the

"maximum-minimum principle", thus effectively

2. Algorithm Introduction

avoiding local optimality, but data in low-

density regions may be mistaken for outliers [5].

2.1 Int "maximum-minimum principle", thus effectively
avoiding local optimality, but data in low-
density regions may be mistaken for outliers [5]. **2.1 Introduction to K-Means**
Ahmad W, et al. combined canopy algorithm In the cl avoiding local optimality, but data in low-
density regions may be mistaken for outliers [5]. **2.1 Introduction to K-Mean**
Ahmad W, et al. combined canopy algorithm
with density, although it could effectively D is divided density regions may be mistaken for outliers [5].

A **Almad With** density, although it could effectively D is divided into several disjoin

a Number data with density, although it could effectively D is divided ano severa Ahmad W, et al. combined canopy algorithm

with density, although it could effectively D is divided into severa

process low-density region data and iteration technology, a

automatically determine the number of class div with density, although it could effectively D is divided into several disp
process low-density region data and iteration technology, and t
automatically determine the number of class divided according to the di
centers, i process low-density region data and iteration technology, an
automatically determine the number of class divided according to the
centers, it would only stop after taversing all sample and the cluster
data points, failing automatically determine the number of class

cartern constants, fit would only stop after traversing all

carterns, it would only stop after traversing all

sample and the cluster

effect and the accuracy of the number of centers, it would only stop atter traversing all sample and the cluster cent
data points, failing to consider the clustering iteration until convergence. T
effect and the accuracy of the number of centers, minimize the sq data points, tailing to consider the clustering

effect and the accuracy of the number of centers, minimize the square error

and lacking in the processing of noise points and

outliers, making it easy to miss key informa effect and the accuracy of the number of centers,

minimize the square error,

and lacking in the processing of noise points and

function is:

coutiers, making it easy to miss key information

[6]. Depth-based methods ca and lacking in the processing of noise points and

tunction is:

coutliers, making it easy to miss key information

[6]. Depth-based methods can solve this problem

by mapping data points into space, assuming that

the da outliers, making it easy to miss key information

[6]. Depth-based methods can solve this problem

by mapping data points into space, assuming that

the data points will be wrapped layer by layer

Traditional K-Means clus [6]. Depth-based methods can solve this problem
by mapping data points into space, assuming that
the data points will be wrapped layer by layer
from the inside out, and the more data points in defects. Cluster k nee
the o by mapping data points into space, assuming that

the data points will be wrapped layer by layer

from the instituted out, and the more data points in defects. Cluster k needs

the outer layer will be defined as more abno the data points will be wrapped layer by layer Traditional K-Means of

the outer layer vill be defined as more abormal, its value is difficult to

but the operation is not practical in high-

given data set cannot lot

dim from the inside out, and the more data points in

the oter layer will be defined as more abnormal,

the studie is difficult to estimate.

but the operation is not practical in high-

given data st cannot be deter-

dimensi the outer layer will be defined as more abnormal, its value is difficult to estimate but the operation is not practical in high-
dimensional data. Researchers have proposed into several classes in advance many detection me but the operation is not practical in high-

given data set cannot be dimensional data. Researchers have proposed

into several classes in adva

many detection methods based on density-

clustering, such as LOF, INFLO, INS dimensional data. Researchers have proposed into several classes in advance.

many detection methods based on density

elagrithm is optimized accordinated accordinated which have high effectiveness and strong intuitive and many detection methods based on density-

clustering, such as LOF, INFLO, INS, etc.,

the distance between cl

which have high effectiveness and strong intuitive and simplification and will be widely used [7]. This increas clustering, such as LOF, INFLO, INS, etc., the distance between cluster
which have high effectiveness and strong intuitive and simple, is extrem
simplification and will be widely used [7]. This increasing the spacing betwe which have high effectiveness and strong intuitive and simple, is extre
simplification and will be widely used [7]. This increasing the spacing betwee
algorithm identifies outlier subsets by evaluating the clustering effe simplification and will be widely used [$\frac{1}{l}$]. This increasing the spacing betwee
the degree of abnormality of each data point in the tightness within each
the degree of abnormality of each data point in the tightnes algorithm identifies outlier subsets by evaluating
the clustering effect ca
the dataset, they also have some shortcoming
that cannot be ignored. This algorithm identifies well improves the ran
and determines a subset of ou the degree of abnormality of each data point in the tightness within each c
the dataset, they also have some shortcoming discrimination between different
that cannot be ignored. This algorithm identifies well improves the the dataset, they also have some shortcomings

and determining that cannot be ignored. This algorithm identifies

and the degree of abnormality of each data point in

After determining the i

the dataset, and usually selec that cannot be ignored. This algorithm identities

and determines a subset of outliers by evaluating

the data scale of aboromlily of each data point and After determining the

the data set, and usually selects several dat and determines a subset of outliers by evaluating

the degree of abnormality of each data point in After determining the initial p

the dataset, and usually selects several data are consistent with the or

points with larg the degree of abnormality of each data point in
the dataset, and usually selects several data are con
points with large outlier value as outlier points.
This method, which uses outlier factors to implement
determine outlie the dataset, and usually selects several data

reaconsistent with the

points with large outlier value as outlier points.

This method, which uses outlier factors to implement for K-Means+

determine outlier subsets, has h points with large outlier value as outlier points.

This method, which uses outlier factors to implement for K-Means-

determine outlier subsets, has high detection

efficiency in small-scale data sets where the data, so i This method, which uses outlier factors to implement for K-Means
determine outlier subsets, has high detection it on large data, and it
efficiency in small-scale data sets where the data, so its applicability
number of ou determine outlier subsets, has high detection it on large data, an efficiency in small-scale data sets where the data, so its applicabile number of outliers is known. However, most [8]. Noise points in loutlier detection a number of outliers is known. However, most [8]. Noise points in low-doutlier detection algorithms do not pre-set the likely to be selected as cl specific number of outliers during execution, the data belonging to such dete

ge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
the initial division, and achieved good results.
By comparing with three classical algorithms in
four data sets, this paper verifies that the
proposed algorithm significa ge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
the initial division, and achieved good results.
By comparing with three classical algorithms in
four data sets, this paper verifies that the
proposed algorithm significa ge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
the initial division, and achieved good results.
By comparing with three classical algorithms in
four data sets, this paper verifies that the
proposed algorithm significa ge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
the initial division, and achieved good results.
By comparing with three classical algorithms in
four data sets, this paper verifies that the
proposed algorithm significa ge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
the initial division, and achieved good results.
By comparing with three classical algorithms in
four data sets, this paper verifies that the
proposed algorithm significa ge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
the initial division, and achieved good results.
By comparing with three classical algorithms in
four data sets, this paper verifies that the
proposed algorithm significa ge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
the initial division, and achieved good results.
By comparing with three classical algorithms in
four data sets, this paper verifies that the
proposed algorithm significa ge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
the initial division, and achieved good results.
By comparing with three classical algorithms in
four data sets, this paper verifies that the
proposed algorithm significa

ge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
the initial division, and achieved good results.
By comparing with three classical algorithms in
four data sets, this paper verifies that the
proposed algorithm significa ge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
the initial division, and achieved good results.
By comparing with three classical algorithms in
four data sets, this paper verifies that the
proposed algorithm significa divided according to the simulation of the initial division, and achieved good results.
By comparing with three classical algorithms in four data sets, this paper verifies that the proposed algorithm significantly improves the initial division, and achieved good results.
By comparing with three classical algorithms in
four data sets, this paper verifies that the
proposed algorithm significantly improves the
clustering quality and accuracy.
 By comparing with three classical algorithms in
four data sets, this paper verifies that the
proposed algorithm significantly improves the
clustering quality and accuracy.
2. **Algorithm Introduction**
In the classics k-mea four data sets, this paper verifies that the
proposed algorithm significantly improves the
clustering quality and accuracy.
2. **Algorithm Introduction**
2.1 Introduction to K-Means ++ **Algorithm**
In the classics k-means proposed algorithm significantly improves the
clustering quality and accuracy.
2. **Algorithm Introduction**
2.1 **Introduction to K-Means** ++ **Algorithm**
In the classics k-means algorithm, the sample so
D is divided into se ssics k-means algorithm, the sample set
led into several disjoint subsets through
technology, and the cluster class is
ccording to the distance between the
nd the cluster center point, and the
until convergence. The final k-means algorithm, the sample set
to several disjoint subsets through
nology, and the cluster class is
ding to the distance between the
he cluster center point, and the
convergence. The final goal is to
square error, and **2.1 Introduction to K-Means ++ Algorithm**
In the classics k-means algorithm, the sample set
D is divided into several disjoint subsets through
iteration technology, and the cluster class is
divided according to the dista **2.1 Introduction to K-Means** $++$ **Algorithm**

In the classics k-means algorithm, the sample set

D is divided into several disjoint subsets through

divided according to the distance between the

sample and the cluster c In the classics *K*-means algorithm, the sample set

D is divided into several disjoint subsets through

iteration technology, and the cluster class is

divided according to the distance between the

sample and the cluste

$$
E = \sum_{i=1}^{K} \sum_{x=C_i} ||x - \mu_i||^2
$$
 (1)

efficiency in small-scale data sets where the data, so its applicability to lar
number of outlier ais known. However, most [8]. Noise points in low-density
specific number of outliers during execution,
the data belonging t D is alvided according to the distance between the divided accordination
teration technology, and the cluster class is
divided according to the distance between the
sample and the cluster center point, and the
iteration u iteration technology, and the cluster class is
divided according to the distance between the
sample and the cluster center point, and the
iteration until convergence. The final goal is to
minimize the square error, and th divided according to the distance between the
sample and the cluster center point, and the
trattion until convergence. The final goal is to
trantion is:
 $E = \sum_{i=1}^{K} \sum_{x=C_i} ||x - \mu_i||^2$ (1)
Traditional K-Means clustering al sample and the cluster center point, and the
iteration until convergence. The final goal is to
minimize the square error, and the objective
function is:
 $E = \sum_{i=1}^{K} \sum_{x=C_i} ||x - \mu_i||^2$ (1)
Traditional K-Means clustering al iteration until convergence. Ine mail goal is to
minimize the square error, and the objective
function is:
 $E = \sum_{i=1}^{K} \sum_{x=C_i} ||x - \mu_i||^2$ (1)
Traditional K-Means clustering algorithm has
defects. Cluster k needs to be set minimize the square error, and the objective
function is:
 $E = \sum_{i=1}^{K} \sum_{x=C_i} ||x - \mu_i||^2$ (1)
Traditional K-Means clustering algorithm has
defects. Cluster k needs to be set in advance, and
its value is difficult to estima Function is:
 $E = \sum_{i=1}^{K} \sum_{x=C_i} ||x - \mu_i||^2$ (1)

Traditional K-Means clustering algorithm has

defects. Cluster k needs to be set in advance, and

its value is difficult to estimate. In many cases, a

given data set cann $E = \sum_{i=1}^{n} \sum_{x=C_i} ||x - \mu_i||^2$ (1)

Traditional K-Means clustering algorithm has

defects. Cluster k needs to be set in advance, and

its value is difficult to estimate. In many cases, a

given data set cannot be determin $E = \sum_{i=1}^{n} \sum_{x=C_i} ||x - \mu_i||^2$ (1)

Traditional K-Means clustering algorithm has

defects. Cluster k needs to be set in advance, and

its value is difficult to estimate. In many cases, a

given data set cannot be determin Fraditional K-Means clustering algorithm has
defects. Cluster k needs to be set in advance, and
its value is difficult to estimate. In many cases, a
given data set cannot be determined to cluster
into several classes in a Traditional K-Means clustering algorithm has
defects. Cluster k needs to be set in advance, and
its value is difficult to estimate. In many cases, a
given data set cannot be determined to cluster
into several classes in ad detects. Cluster k needs to be set in advance, and
its value is difficult to estimate. In many cases, a
given data set cannot be determined to cluster
into several classes in advance. The K-Means ++
algorithm is optimized Its value is difficult to estimate. In many cases, a
given data set cannot be determined to cluster
into several classes in advance. The K-Means ++
algorithm is optimized accordingly. Maximizing
the distance between cluste given data set cannot be determined to cluster
into several classes in advance. The K-Means ++
algorithm is optimized accordingly. Maximizing
the distance between cluster centers, although
intuitive and simple, is extremel into several classes in advance. The K-Means ++
algorithm is optimized accordingly. Maximizing
the distance between cluster centers, although
intuitive and simple, is extremely effective. By
increasing the spacing between algorithm is optimized accordingly. Maximizing
the distance between cluster centers, although
intuitive and simple, is extremely effective. By
increasing the spacing between cluster centers,
the clustering effect can be im the distance between cluster centers, although
intuitive and simple, is extremely effective. By
increasing the spacing between cluster centers,
the clustering effect can be improved, ensuring
the tightness within each clus mututive and simple, is extremely effective. By
increasing the spacing between cluster centers,
the clustering effect can be improved, ensuring
the tightness within each cluster and the
discrimination between different clu increasing the spacing between cluster centers,
the clustering effect can be improved, ensuring
the tightness within each cluster and the
discrimination between different clusters, and it
well improves the randomness of th the clustering effect can be improved, ensuring
the tightness within each cluster and the
discrimination between different clusters, and it
well improves the randomness of the initial
center point selection of K-Means algo the tightness within each cluster and the
discrimination between different clusters, and it
well improves the randomness of the initial
center point selection of K-Means algorithm.
After determining the initial point, the discrimination between different clusters, and it
well improves the randomness of the initial
center point selection of K-Means algorithm.
After determining the initial point, the rest parts
are consistent with the origina well improves the randomness of the initial
center point selection of K-Means algorithm.
After determining the initial point, the rest parts
are consistent with the original clustering
algorithm. Researchers although it is center point selection of K-Means algorithm.
After determining the initial point, the rest parts
are consistent with the original clustering
algorithm. Researchers although it is easy to
implement for K-Means++, it is not After determining the initial point, the rest parts
are consistent with the original clustering
algorithm. Researchers although it is easy to
implement for K-Means++, it is not easy to use
it to n large data, and it requir are consistent with the original clustering
algorithm. Researchers although it is easy to
implement for K-Means++, it is not easy to use
it on large data, and it requires traversal of all
data, so its applicability to larg algorithm. Researchers although it is easy to
implement for K-Means++, it is not easy to use
it on large data, and it requires traversal of all
data, so its applicability to large data is limited
[8]. Noise points in low-d implement for K-Means++, it is not easy to use
it on large data, and it requires traversal of all
data, so its applicability to large data is limited
[8]. Noise points in low-density regions are more
likely to be selected it on large data, and it requires traversal of all
data, so its applicability to large data is limited
[8]. Noise points in low-density regions are more
likely to be selected as clustering centers, so that
the data belongi data, so its applicability to large data is limited [8]. Noise points in low-density regions are more likely to be selected as clustering centers, so that the data belonging to such centers is too small, the ansishility of [8]. Noise points in low-density regions are more likely to be selected as clustering centers, so that the data belonging to such centers is too small, and the possibility of change in the subsequent K-Means algorithm iter

Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 3,
good clustering effect. For a data set composed generated by canopy. H
of two clusters, one of which contains a noise initial values such as Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
good clustering effect. For a data set composed generated by canopy. Howe
of two clusters, one of which contains a noise initial values Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
good clustering effect. For a data set composed generated by canopy. However
of two clusters, one of which contains a noise initial va Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
good clustering effect. For a data set composed generated by canopy. Howe
of two clusters, one of which contains a noise initial values Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
good clustering effect. For a data set composed generated by canopy. Howeve
of two clusters, one of which contains a noise initial valu Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
good clustering effect. For a data set composed
generated by canopy. However,
of two clusters, one of which contains a noise initial va Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
good clustering effect. For a data set composed
of two clusters, one of which contains a noise initial values such as the initia
point, Lournal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
good clustering effect. For a data set composed
generated by canopy. However
of two clusters, one of which contains a noise initial val **FREE 100**
 Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
 good clustering effect. For a data set composed

of two clusters, one of which contains a noise initial values such as Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024

good clustering effect. For a data set composed enerated by canopy. Howe

of two clusters, one of which contains a noise initial value Journal of Intelligence and Knowledge Engineerin
good clustering effect. For a data set comport
of two clusters, one of which contains a n
point, the K-Means++ algorithm will divide
data set into two cases. In the first ca good clustering effect. For a data set composed

of two clusters, one of which contains a noise

initial values such as the initial

point, the K-Means++ algorithm will divide the

point and Canopy area size has a g

data of two clusters, one of which contains a noise

mutial values such as the in

point, the K-Means++ algorithm will divide the

point and Canopy area size h

data set into two cases. In the first case, the noise

points will point, the K-Means ++ algorithm will divide the
point and Canopy ar
data set into two cases. In the first case, the noise on the clustering qu
points will be classified into a single class, and
algorithm class in the secon data set into two cases. In the first case, the noise

on the clustering quality when

points will be classified into a single class, and

the remaining points will be classified into a

class. In the second case, the nois

Introduction

points will be classitied into a single class, and

the remaining points will be classified into a

classified into a

classified into a class with the surrounding data

classified into a class with the surrounding data
 the remanning points will be classified into a

class. In the second case, the noise points will be

classification of the surrounding data

points, resulting in the misclassification of the Many researchers have dorigina class. In the second case, the noise points will be

classified into a class with the surrounding data

points, resulting in the misclassification of the Many researchers have

original data points. The correct clustering classified into a class with the surrounding data

points, resulting in the misclassification of the Many researchers have different

original data points. The correct clustering result

is not obtained.

2.2 Canopy + K-M points, resulting in the misclassification of the Many researchers have different
original data points. The correct clustering result outliers according to different
is not obtained.
2.2 Canopy + **K-Means Algorithm** d original data points. The correct clustering result

is not obtained.
 Cao about the correct clustering result
 Cao about the constrained a the most
 Canopy algorithm pre-classifies data on the basis

currence canop 1s not obtained.

2.2 Canopy + K-Means Algorithm deviates so badl

Introduction

2.2 Canopy + K-Means Algorithm deviates so badl

5. Canopy algorithm pre-classifies data on the basis

3. mechanisms. The algorithm, and can 2.2 Canopy + K-Means Algorithm duiters: an outlier represents a

Introduction

Introduction

Canopy algorithm pre-classifies data on the basis

suspected to be generated

of K-Means algorithm, and can be approximated dete 2.2 Canopy + K-Means Algorithm deviates so badly from other control
action suspected to be generated of K-Means algorithm, and can be approximated detection algorithm calculat
by the number of large circles generated by d **Introduction**

suspected to be generat

Canopy algorithm pre-classifies data on the basis

of K-Means algorithm, and can be approximated detecton algorithm calculat

by the number of large circles generated by dispersion Canopy algorithm pre-classities data on the basis mechanisms. The density-base
of K-Means algorithm, and can be approximated detection algorithm calculate
by the number of large circles generated by compy when the number

of K-Means algorithm, and can be approximated

by the number of large circles generated by dispersion obtained by c

canopy when the number of cluster centers

cluster centers

cannot be determined artificially [9]. Canop by the number of large circles generated by

cannot be determined artificially [9]. Canopy density of an object P with

cannot be determined artificially [9]. Canopy density. [11]. The following

processes data sets throu canopy when the number of cluster centers

density of an object P with

cannot be determined artificially [9]. Canopy

density. [11]. The followin

determined thresholds 11 and t2(e.g., Figure 1. (1) Reach distance

Effec cannot be determined artificially [9]. Canopy density. [11]. The followin
processes data sets through two artificially involved:
determined thresholds t1 and t2(e.g., Figure 1. (1) Reach distance
chaotic data into several processes data sets through two artificially involved:

determined thresholds t1 and t2(e.g, Figure 1. (1) Reach distance

Effect of canopy classification), which can sort The KTH reachable distance

chaotic data into sev determined thresholds t1 and t2(e.g., Figure 1. (1) Reach distance

Effect of canopy classification), which can sort in the KTH reachable distance

chaotic data into several data piles with certain point P is defined as f Effect of canopy classification), which can sort

chaotic data into several data piles with certain

rules. The algorith flow is as follows:

and (1) Determine the two thresholds tl and t2

(1) Determine the two threshold chaotic data into several data piles with certain

point P is defined as follows:

rules. The algorithm flow is as follows:
 $RD_K(p, o) = mc$

(11) Determine the two thresholds t1 and t2

(t1>t2). (2) Select a data at random fr rules. The algorithm flow is as follows:

(1) Determine the two thresholds t1 and t2

(1)->2). C) Select a data tradical transform from the data

set and calculate the distance between this data

P and O. distance indicat (1) Determine the two thresholds t1 and t2 - distance (t1>t2). (2) Select a data at random from the data Where: d (p, o) represents t and calculate the distance eversent this data per and calculate the distance incidents (1)-t2). (2) Select a data at random from the data

set and calculate the distance between this data

paral O. distance indicates the set and canopy id ff there is no canopy at present, this

point is directly used as the set and calculate the distance between this data P and O. dis
and canopy (if there is no canopy at present, this KTH point
point is directly used as the canopy center point). distance rep
(3) If this distance is less than

2959-0620) Vol. 2 No. 3, 2024 115
generated by canopy. However, the selection of
initial values such as the initial Canopy center
point and Canopy area size has a great influence
on the clustering quality when the algorith $2959-0620$) Vol. 2 No. 3, 2024 115
generated by canopy. However, the selection of
initial values such as the initial Canopy center
point and Canopy area size has a great influence
on the clustering quality when the algor 2959-0620) Vol. 2 No. 3, 2024 115
generated by canopy. However, the selection of
initial values such as the initial Canopy center
point and Canopy area size has a great influence
on the clustering quality when the algorit 2959-0620) Vol. 2 No. 3, 2024 115
generated by canopy. However, the selection of
initial values such as the initial Canopy center
point and Canopy area size has a great influence
on the clustering quality when the algorit 2959-0620) Vol. 2 No. 3, 2024

115

generated by canopy. However, the selection of

initial values such as the initial Canopy center

point and Canopy area size has a great influence

on the clustering quality when the alg 2959-0620) Vol. 2 No. 3, 2024

2959-0620) Vol. 2 No. 3, 2024

2015

2016 generated by canopy. However, the selection of

initial values such as the initial Canopy center

point and Canopy area size has a great influence

o 2959-0620) Vol. 2 No. 3, 2024

115

generated by canopy. However, the selection of

initial values such as the initial Canopy center

point and Canopy area size has a great influence

on the clustering quality when the alg 2959-0620) Vol. 2 No. 3, 2024

115

generated by canopy. However, the selection of

initial values such as the initial Canopy center

point and Canopy area size has a great influence

on the clustering quality when the alg

2959-0620) Vol. 2 No. 3, 2024 115
generated by canopy. However, the selection of
initial values such as the initial Canopy center
point and Canopy area size has a great influence
on the clustering quality when the algorith 2959-0620) Vol. 2 No. 3, 2024 115
generated by canopy. However, the selection of
initial values such as the initial Canopy center
point and Canopy area size has a great influence
on the clustering quality when the algorit 2959-0620) Vol. 2 No. 3, 2024 115
generated by canopy. However, the selection of
initial values such as the initial Canopy center
point and Canopy area size has a great influence
on the clustering quality when the algorit 2009 0020) 00121601, 1020

generated by canopy. However, the selection of

initial values such as the initial Canopy center

point and Canopy area size has a great influence

any philed in practice [10].

2.3 Local Anomaly generated by canopy. However, the selection of
initial values such as the initial Canopy center
point and Canopy area size has a great influence
on the clustering quality when the algorithm is
applied in practice [10].
2. mttal values such as the initial Canopy center
point and Canopy area size has a great influence
on the clustering quality when the algorithm is
applied in practice [10].
2.3 Local Anomaly Detection Method of LOF
Based o point and Canopy area size has a great influence
on the clustering quality when the algorithm is
applied in practice [10].
2.3 Local Anomaly Detection Method of LOF
Based on Density
Many researchers have different definiti on the clustering quality when the algorithm is
applied in practice [10].
2.3 Local Anomaly Detection Method of LOF
Based on Density
Many researchers have different definitions of
outliers according to different detection applied in practice [10].
 2.3 Local Anomaly Detection Method of LOF
 Based on Density

Many researchers have different definitions of

outliers according to different detection methods.

Researchers gave the most clas **2.3 Local Anomaly Detection Method of LOF**
Based on Density
Many researchers have different definitions of
outliers according to different detection methods.
Researchers gave the most classic definition of
outliers: an involved: **Based on Density**
Many researchers have different definitions of
outliers according to different detection methods
Researchers gave the most classic definition of
outliers: an outlier represents a data point that
deviate Many researchers have different definitions of
outliers according to different detection methods.
Researchers gave the most classic definition of
outliers: an outlier represents a data point that
deviates to bed if from o outliers according to different detection methods.
Researchers gave the most classic definition of
outliers: an outlier represents a data point that
deviates so badly from other data points that it is
suspected to be gene deviates so badly from other data points that it is
suspected to be generated by different
mechanisms. The density-based LOF anomaly
detection algorithm calculates the degree of
dispersion obtained by comparing the local
 suspected to be generated by different
mechanisms. The density-based LOF anomaly
detection algorithm calculates the degree of
dispersion obtained by comparing the local
density of an object P with the surrounding
density.

$$
D_K(p, o) = max{k
$$

- distance(o), d(p, o) (2)

Frame dianomology and the set of the set of the set of the set of point of the set of obtained by comparing the local an object P with the surrounding and object P with the surrounding definitions are stance eachable dist ithm calculates the degree of

ined by comparing the local

object P with the surrounding

The following definitions are

ce

ce

aable distance from point O to

d as follows:
 $\chi(p, o) = max\{k$
 $-$ distance(o), $d(p, o)\}$ (2) mechanisms. The density-based LOP anomaly
detection algorithm calculates the degree of
dispersion obtained by comparing the local
density of an object P with the surrounding
density. [11]. The following definitions are
in detection algorithm calculates the degree of
dispersion obtained by comparing the local
density of an object P with the surrounding
density. [11]. The following definitions are
involved:
 (1) Reach distance
The KTH reach dispersion obtained by comparing the local
density of an object P with the surrounding
density. [11]. The following definitions are
involved:
 (1) Reach distance
 (1) Reach distance
 $\frac{B_K(p, o) = max\{k}{o}$
 $\frac{distance(o), d(p, o)\}$
Whe density of an object P with the surrounding
density. [11]. The following definitions are
involved:
(1) Reach distance
point P is defined as follows:
 $RD_K(p, o) = max\{k$
 $- distance(o), d(p, o)\}$
Where: d (p, o) represents the distance betwe density. [11]. The following definitions are
involved:
(1) Reach distance
The KTH reachable distance from point O to
point P is defined as follows:
 $R D_K(p, o) = max\{k$
 $- distance(o), d(p, o)\}$
Where: d (p, o) represents the distance betwe mvolved:

(1) Reach distance

The KTH reachable distance from point O to

point P is defined as follows:
 $RD_K(p, o) = max\{k$
 $-$ distance (o) , $d(p, o)$ } (2)

Where: d (p, o) represents the distance between

P and O. distance (1) Reach distance

The KTH reachable distance from point O to

point P is defined as follows:
 $RD_K(p, o) = max\{k$
 $- distance(o), d(p, o)\}$

Where: d (p, o) represents the distance between

P and O. distance indicates the distance from t The KIH reachable distance from point O to
point P is defined as follows:
 $RD_K(p, o) = max\{k$
 $- distance(o), d(p, o)\}$ (2)
Where: d (p, o) represents the distance between
P and O. distance indicates the distance from the
KTH point of point point P is defined as follows:
 $RD_K(p, o) = max\{k$
 $- distance(o), d(p, o)\}$ (2)

Where: d (p, o) represents the distance between

P and O. distance indicates the distance from the

KTH point of point P, excluding point P; K-

distance re $RD_K(p, o) = max\{R$
 $- distance(o), d(p, o)\}$

Where: d (p, o) represents the distance between

P and O. distance indicates the distance from the

KTH point of point P, excluding point P; K-

distance represents the k th distance, and the KIT point of point 1, executing point 1, K-

distance represents the k th distance, and the K

distance of P is also the distance from the K th

point of P, excluding the point P. By definition,

the KTH reachable distanc distance represents the k in distance, and the K th
point of P, excluding the point P. By definition,
the KTH reachable distance from point O to
point P is at least the KTH distance from O, or
the true distance between OP

$$
LRD_k(p) = \frac{1}{\left(\frac{\sum_{o \in N_K(P)} reach - dist_k(p, o)}{|N_K(P)|}\right)}
$$
(3)

ccluding the point P. By definition,

cchable distance from point O to

least the KTH distance from O, or

ce between OP's.

chability density

accessible density of point P is

s follows:

1
 $\frac{\sum_{o \in N_K(P)} reach - dist_k(p, o)}{|N_K(P)|}$ In urstance of P is also the ustance Hom the K the
point of P, excluding the point P. By definition,
the KTH reachable distance from point O to
point P is at least the KTH distance from O, or
the true distance between OP' bom of the KTH reachable distance from point O to
the KTH reachable distance from point O to
point P is at least the KTH distance from O, or
the true distance between OP's.
(2) Local reachability density
The locally acces number of K field points of P; local reachability
density of point P is at least the KTH distance from O, or
the true distance between OP's.
(2) Local reachability density of point P is
represented as follows:
 $LRD_k(p) = \frac{1$ point 1 is at least the KTH ustance Hom O, or
the true distance between OP's.
(2) Local reachability density
The locally accessible density of point P is
represented as follows:
LRD_k(p) = $\frac{1}{\sqrt{\frac{\sum_{o \in N_K(P)} reach - dist_k(p, o)}{|N_K$ (2) Local reachability density

The locally accessible density of point

represented as follows:

LRD_k(p) = $\frac{1}{\sqrt{\sum_{o \in N_K(P)} reach - dist_k(p, o)}}$

Where: Reach-distance (p) represents

relative distance between point P and K fiel (2) Local reachability density

The locally accessible density of point P is

represented as follows:

LRD_k(p) = $\frac{1}{\left(\frac{\sum_{o \in N_K(P)} reach - dist_k(p, o)}{|N_K(P)|}\right)}$ (3)

Where: Reach-distance (p) represents the

relative distance bet The locally accessible delistry of point 1 is
represented as follows:
 $LRD_k(p) = \frac{1}{\left(\frac{\sum_{o \in N_K(P)} reach - dist_k(p, o)}{|N_K(P)|}\right)}$ (3)
Where: Reach-distance (p) represents the
relative distance between point P and K field; K-
distance nei

$$
LOF_{K}(P) = \frac{\sum_{O \in N_{K}(P)} \frac{lrd(o)}{lrd(p)}}{|N_{K}(P)|} = \frac{\sum_{O \in N_{K}(P)} lrd_{K}(o)}{|N_{K}(P)|} / lrd_{K}(p)
$$
(4)

116 Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620)

LOF represents the local outlier factor. The increase, and the density value of $LOF_K(P)$ approaches 1, indicating that correspondingly larger. Only p 116 Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620)

LOF represents the local outlier factor. The increase, and the density value of $LOF_K(P)$ approaches 1, indicating that correspondingly larger. Once t 116 Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620

LOF represents the local outlier factor. The increase, and the density value of $LOF_K(P)$ approaches 1, indicating that correspondingly larger. O

poin 116 Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620)

LOF represents the local outlier factor. The increase, and the density value of $LOF_K(P)$ approaches 1, indicating that correspondingly larger. On poi 116 Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620)

LOF represents the local outlier factor. The increase, and the density through

value of $LOF_K(P)$ approaches 1, indicating that correspondingly large 116 Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620)

LOF represents the local outlier factor. The increase, and the density throught P is close to its domain density value and impossible to ensure that 116 Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620)

LOF represents the local outlier factor. The increase, and the density through

value of $LOF_R(P)$ approaches 1, indicating that correspondingly large 116 Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620)

LOF represents the local outlier factor. The increase, and the density three of $LOF_K(P)$ approaches 1, indicating that correspondingly larger. Other LOF represents the local outlier factor. The increase, and the density through

LOF represents the local outlier factor. The increase, and the density three

value of LOF_K(P) approaches 1, indicating that corresponding 116 Journal of Intelligence and Knowledge Engineering

LOF represents the local outlier factor. The increase, and

value of $LOF_K(P)$ approaches 1, indicating that corresponding

point P is close to its domain density valu 116 Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vo

LOF represents the local outlier factor. The increase, and the density thres

value of $LOF_R(P)$ approaches 1, indicating that correspondingly lar LOF represents the local outlier factor. The increase, and the density the value of $LOF_K(P)$ approaches 1, indicating that correspondingly larger. Ot point P is close to its domain density value and impossible to ensure th value of $LOF_K(P)$ approaches 1, indicating that
point P is close to its domain density value and
belongs to a cluster. The more its ratio is less
than 1, the higher the density of the point P is
defined as a dense point. T point *P* is close to its domain density value and

belongs to a cluster. The more its ratio is loss of filtering effect of

than 1, the higher the density of the point *P* is in the loss of filtering effect of

than 1, t belongs to a cluster. The more its ratio is less

than 1, the higher the density of the point P is

than its domain density, and the point P is

then its domain density threshold

defined as a dense point. The greater the

than 1, the higher the density of the point P is

than its domain density, and the point P is

defined as a dense point. The greater the ratio is

functional relationship with the

than 1, the lower the density of point P than its domain density, and the point P is

Ihen the density threshold of the

defined as a dense point. The greater the ratio is

the density threshold fu

than 1, the lower the density of point P is

set, and the densi defined as a dense point. The greater the ratio is

than 1, the lower the density of point P is

set, and the density threshol

compared to its domain density, and point P is

as:

defined as a dispersion point [12].
 3. than 1, the lower the density of point P is

set, and the density thresho

compared to its domain density, and point P is

defined as a dispersion point [12].
 3. GDD-K-Means Clustering Algorithm
 Improved Based on compared to its domain density, and point P is
defined as a dispersion point [12].

3. **GDD-K-Means** Clustering Algorithm

Improved Based on Traditional Algorithm

3.1 Outlier Removal

5.1 Outlier Removal

Firstly, a grid defined as a dispersion point [12].
 3. GDD-K-Means Clustering Algorithm

Improved Based on Traditional Algorithm
 $\mathbf{3}$ is the threshold of mess
 $\mathbf{3}$.**1 Outlier Removal**
 $\mathbf{3}$ a grid-based outlier filtering 3. **GDD-K-Means Clustering Algorithm** $\beta = \sqrt{\frac{3}{10}}$
 Improved Based on Traditional Algorithm Where: β is the threshold of

is the size of the data set. The

Firstly, a grid-based outlier filtering method is

the me **3. GDD-K-Means Clustering Algorithm**
 Improved Based on Traditional Algorithm
 IMEGEF 10 is the size of the data set. The m
 3.1 Outlier Removal
 Einzyly, a grid-based outlier filtering method is
 Einzyly, a g Improved Based on Traditional Algorithm

is the size of the algos of the data set. T

Firstly, a grid-based outlier filtering method is

the mesh density threshold fu

subset through grid filtering. The algorithm

density 3.1 Outlier Removal

is used to initially screen the candidate outlier

in the mesh density threshold

subset through grid filtering. The algorithm

sused to initially screen the candidate outlier

mesh density threshold **3.1 Outlier Removal**

Firstly, a grid-based outlier filtering method is reasonably by the mesh division

use to initially screen the candidate outlier mesh density threshold funct

subset through grid filtering. The algo Firstly, a grid-based outlier filtering method is

used to initially screen the candidate outlier

mesh density threshold can

subset through grid filtering. The algorithm

focuses on considering the density threshold of
 used to initially screen the candidate outlier
subset through grid filtering. The algorithm
from emsile are the mesh is dense.
focuses on considering the density threshold of the mesh is dense.
the grid distribution of da subset through grid tiltering. The algorithm
focuses on considering the density threshold of the mesh is dense is decomes
the grid distribution of data points in the global
range to determine whether there is an outlier. T tocuses on considering the density threshold of
the grid distribution of data points in the global
range to determine whether there is an outlier. The liminary subset of candidate
The density threshold is taken as a filter the grid distribution of data points in the global

multe technine whether there is an outlier.

The density threshold is taken as a filter, and the obtained, and then a density

data set with a density less than the thres range to determine whether there is an outlier.

The density threshold is taken as a filter, and the

data set with a density less than the threshold is

taken as the candidate outlier subset. This stage in the ε

can The density threshold is taken as a filter, and the
data set with a density less than the threshold is
taken as the candidate outlier subset. This stage in the a
can effectively reduce the amount of the density
computatio data set with a density less than the threshold is

the data set of decect outlier

taken as the candidate outlier subset. This stage

computation to a certain extent. Then the density points per unit area. The mo

comput taken as the candidate outlier subset. This stage

can effectively reduces the amount of given the density is represented by

computation to a certain extent. Then the density points per unit area. The more

computation t can effectively reduce the amount of

computation to a certain extent. Then the density is represented by

outlier detection method is used to determine points per unit area, the greater

more accurate abnormal data point computation to a certain extent. Then the density

outlier detection method is used to determine

more accurate abormal data points. The the greater the probability

more accurate abormal data points. The grid point. On t outlier detection method is used to determine pound at position of accurate abovement and the performance of the algorithm is improved point. On the contrary, the more effectively, and the time complexity of the become a

more accurate abnormal data points. The unegreated the probability of dependent of the algorithm is improved point. On the contrary, the manifestive dialgorithm is related. In the grid filtering stage, classification rend performance of the algorithm is improved point. On the contrary, the effectively, and the time complexity of the become a noise point (e.g. desirfication rendering).

the data set is scanned and each data point is mapped effectively, and the time complexity of the second a loose por
algorithm is reduced. In the grid filtering stage, classification render
in data set is scanned and each data point is
mapped to the corresponding grid cell t parameter setting

data set into each grid, and set the

of data sets as

2, n3, ..., n_n}, The number of grids is

the number of grids and the number

are mutually dependent. There is a

relationship between the size of setting

to each grid, and set the

data sets as

3, The number of grids is

c of grids and the number

ly dependent. There is a

between the size of the

f the grid, and the mesh

n be defined as:
 $\left[\frac{3 + |N|^{1/4}}{1}\right]$ mapped to the corresponding grid cell to

complete the mapping task.

(1)Grid step parameter setting

Divide the data set into each grid, and set the

number of grids as

N = { $n1$, $n2$, $n3$, ..., n_n }, The number of g complete the mapping task.

(1)Grid step parameter setting

Divide the data set into each grid, and set the

number

of data sets as
 $N = {n1, n2, n3, ..., n_n}$, The number of grids is
 $m * m$, and the number of grids and the numb (1) Grid step parameter setting

Divide the data set into each grid, and set the

number

of data sets as
 $N = {n1, n2, n3, ..., n_n}$, The number of grids is
 $m * m$, and the number of grids and the number

of datasets are mutuall

$$
m = [IN]^{1/3} + [N]^{1/4}
$$
 (5)

ge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
increase, and the density threshold will be
correspondingly larger. Otherwise, it is
impossible to ensure that the non-dense grid data
will be integrated as candidate out ge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
increase, and the density threshold will be
correspondingly larger. Otherwise, it is
impossible to ensure that the non-dense grid data
will be integrated as candidate out ge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
increase, and the density threshold will be
correspondingly larger. Otherwise, it is
impossible to ensure that the non-dense grid data
will be integrated as candidate out ge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
increase, and the density threshold will be
correspondingly larger. Otherwise, it is
impossible to ensure that the non-dense grid data
will be integrated as candidate out ge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
increase, and the density threshold will be
correspondingly larger. Otherwise, it is
impossible to ensure that the non-dense grid data
will be integrated as candidate out ge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
increase, and the density threshold will be
correspondingly larger. Otherwise, it is
impossible to ensure that the non-dense grid data
will be integrated as candidate ou ge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
increase, and the density threshold will be
correspondingly larger. Otherwise, it is
impossible to ensure that the non-dense grid data
will be integrated as candidate ou ge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
increase, and the density threshold will be
correspondingly larger. Otherwise, it is
impossible to ensure that the non-dense grid data
will be integrated as candidate ou as: lingly larger. Otherwise, it is

to ensure that the non-dense grid data

egrated as candidate outliers, resulting

s of filtering effect of grid filtering.

lensity threshold of the grid will have a

relationship with th density threshold will be
rger. Otherwise, it is
that the non-dense grid data
candidate outliers, resulting
mg effect of grid filtering.
shold of the grid will have a
p with the size of the data
rreshold function is defin ge Engineering (ISSN, 2959-0020) vol. 2 1No. 3, 2024
increase, and the density threshold will be
correspondingly larger. Otherwise, it is
impossible to ensure that the non-dense grid data
will be integrated as candidate increase, and the density threshold will be
correspondingly larger. Otherwise, it is
impossible to ensure that the non-dense grid data
will be integrated as candidate outliers, resulting
in the loss of filtering effect of correspondingly larger. Otherwise, it is
impossible to ensure that the non-dense grid data
will be integrated as candidate outliers, resulting
in the loss of filtering effect of grid filtering.
Then the density threshold impossible to ensure that the non-dense grid data
will be integrated as candidate outliers, resulting
in the loss of filtering effect of grid filtering.
Then the density threshold of the grid will have a
functional relat

$$
\beta = \left[\frac{|N|^{1/3} + |N|^{1/4}}{3} \right] \tag{6}
$$

will be integrated as candidate outliers, resulting
in the loss of filtering effect of grid filtering.
Then the density threshold of the grid will have a
functional relationship with the size of the data
set, and the dens in the loss of filtering effect of grid filtering.
Then the density threshold of the grid will have a
functional relationship with the size of the data
set, and the density threshold function is defined
as:
 $\beta = \left[\frac{|M|^{1/$ Then the density threshold of the grid will have a
functional relationship with the size of the data
set, and the density threshold function is defined
as:
 $\beta = \left[\frac{|N|^{1/3} + |N|^{1/4}}{3}\right]$ (6)
Where: β is the threshold functional relationship with the size of the data
set, and the density threshold function is defined
as:
 $\beta = \left[\frac{|N|^{1/3} + |N|^{1/4}}{3}\right]$ (6)
Where: β is the threshold of mesh density and N
is the size of the data set. set, and the density threshold function is defined
as:

 $\beta = \left[\frac{|N|^{1/3} + |N|^{1/4}}{3}\right]$ (6)
Where: β is the threshold of mesh density and N
is the size of the data set. The mesh step size and
the mesh density threshold as:
 $\beta = \left[\frac{|N|^{1/3} + |N|^{1/4}}{3}\right]$ (6)

Where: β is the threshold of mesh density and N

is the size of the data set. The mesh step size and

the mesh density threshold are calculated

reasonably by the mesh division

 $\beta = \left[\frac{|N|^{1/3} + |N|^{1/4}}{3}\right]$ (6)
Where: β is the threshold of mesh density and N
is the size of the data set. The mesh step size and
the mesh density threshold are calculated
reasonably by the mesh division function $\beta = \frac{1}{\sqrt{3}}$ (6)

Where: β is the threshold of mesh density and N

is the size of the data set. The mesh step size and

the mesh density threshold are calculated

reasonably by the mesh division function and the

me Where: β is the threshold of mesh density and N
is the size of the data set. The mesh step size and
the mesh density threshold are calculated
treasonably by the mesh division function and the
mesh density threshold fun Where: β is the threshold of mesh density and N
is the size of the data set. The mesh step size and
the mesh density threshold are calculated
reasonably by the mesh division function and the
mesh density threshold can is the size of the data set. The mesh step size and
the mesh density threshold are calculated
reasonably by the mesh division function and the
mesh density threshold function, and the mesh
density threshold can be used to the mesh density threshold are calculated
reasonably by the mesh division function and the
mesh density threshold function, and the mesh
density threshold can be used to judge whether
the mesh is dense.
In the technique o reasonably by the mesh division function and the
mesh density threshold function, and the mesh
density threshold can be used to judge whether
the mesh is dense.
The technique of grid filtering outliers, a
preliminary subse mesh density threshold function, and the mesh
density threshold can be used to judge whether
the mesh is dense.
In the technique of grid filtering outliers, a
preliminary subset of candidate outliers has been
obtained, an density threshold can be used to judge whether
the mesh is dense.
In the technique of grid filtering outliers, a
preliminary subset of candidate outliers has been
obtained, and then a density-based detection
method is use

than that formed by the field of P2 points.
Taking the ratio of the number of fields to the Divide the data set into each grid, and set the

number
 $N = {n1, n2, n3, ..., n_n}$, The number of grids is
 $N = {n1, n2, n3, ..., n_n}$, The number of grids is

financial relationship dependent. There is a

financial relationship between number
 $N = {n1, n2, n3, ..., n_n}$, The number of grids is
 $N = {n1, n2, n3, ..., n_n}$, The number of grids is
 $m * m$, and the number of grids and the number

functional relationship between the size of the

functional relationship betwe N = {n1, n2, n3, ..., n_n}, The number of grids is

m * m, and the number of grids and the number

of datasets are mutually dependent. There is a

functional relationship between the size of the

data set and the size of m * m, and the number of grids and the number
of datasets are mutually dependent. There is a
functional relationship between the size of the Figure 2. Canopy Classifica
partitioning function can be defined as:
 $m = [M_1^{1/3$ of datasets are mutually dependent. There is a

functional relationship between the size of the

data set and the size of the grid, and the mesh

partitioning function can be defined as:
 $m = [N1^{1/3} + N1^{1/4}]$ (5) than tha functional relationship between the size of the

data set and the size of the grid, and the mesh

partitioning function can be defined as:
 $m = [N_1^{1/2} + |N_1^{1/4}]$ (5) than that formed by the field of PI poi

Where: N is The ration of the ration of the algorithm and improves the efficiency of the algorithm and improves the field of P1 points is much larger than that formed by the field of P1 points is much larger than that formed by the f Figure 2. Canopy Classification Rendering
Figure 2. Canopy Classification Rendering
As shown in Figure 2, the area of the unit circle
formed by the field of PI points is much larger
than that formed by the field of P2 poi Figure 2. Canopy Classification Rendering
Figure 2. Canopy Classification Rendering
As shown in Figure 2, the area of the unit circle
formed by the field of PI points is much larger
than that formed by the field of P2 poi Figure 2. Canopy Classification Rendering
Figure 2. Canopy Classification Rendering
As shown in Figure 2, the area of the unit circle
formed by the field of PI points is much larger
than that formed by the field of P2 poin **Example 12**
 Example 2. Canopy Classification Rendering
 Example 2. Canopy Classification Rendering

As shown in Figure 2, the area of the unit circle

formed by the field of P1 points is much larger

than that formed **Example 12**
 Example 2. Canopy Classification Rendering
 Example 2. Canopy Classification Rendering

formed by the field of PI points is much larger

than that formed by the field of P2 points.

Taking the ratio of th Figure 2. Canopy Classification Rendering
As shown in Figure 2, the area of the unit circle
formed by the field of PI points is much larger
than that formed by the field of P2 points.
Taking the ratio of the number of fie Figure 2. Canopy Classification Rendering
As shown in Figure 2, the area of the unit circle
As shown in Figure 2, the area of the unit circle
formed by the field of PI points is much larger
than that formed by the field o Figure 2. Canopy Classification Rendering
As shown in Figure 2, the area of the unit circle
formed by the field of PI points is much larger
funn that formed by the field of PI points is much larger
Taking the ratio of the Figure 2. Canopy Classification Rendering
As shown in Figure 2, the area of the unit circle
formed by the field of PI points is much larger
than that formed by the field of P2 points.
Taking the ratio of the number of fie Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024 117

Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
the judgment basis of the density between data
points.
3.2 Center Point Selection Method Where: p indicates the number of Indicates th points.

3.2 Center Point Selection Method
 3.3 Center Point Selection Method
 5.4 Center Point Selection Method
 Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
the judgment basis of the density between data
points.
 $W_P = \sum_{q=1}^{m} \frac{range -}{ran}$
3.2 Center Point Selection Method
In the traditional k-Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 3,
the judgment basis of the density between data
points.
3.2 Center Point Selection Method Where: p indicates the 1
In the traditional k-Me Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
the judgment basis of the density between data
points.
 $W_P = \sum_{q=1}^{m} \frac{range - d(p) - d(p)}{range}$
3.2 Center Point Selection Method
In the traditi Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
the judgment basis of the density between data
points.
2.2 Center Point Selection Method
3.2 Center Point Selection Method
1.1 th Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, \hat{p}

the judgment basis of the density between data

points.
 3.2 Center Point Selection Method

In the traditional k-Means algorithm Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
the judgment basis of the density between data
points.
 $W_P = \sum_{q=1}^{m} \frac{range - \frac{1}{q}}{randg}$
2.2 Center Point Selection Method
In the tradit Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2the judgment basis of the density between data $W_P = \sum_{q=1}^{m} \frac{range}{r}$
points. $W_P = \sum_{q=1}^{m} \frac{range}{r}$
3.2 Center Point Selection Method In Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
the judgment basis of the density between data
points.
 $W_P = \sum_{q=1}^{m} \frac{range - a}{range - a}$
3.2 Center Point Selection Method
In the tradition **Samma or intelligential controlling results.** We points.

the judgment basis of the density between data

points.
 3.2 Center Point Selection Method

In the traditional k-Means algorithm, an initial points; m represent the judgment basis of the density between data

points.
 $W_P = \sum_{q=1}^{n} \frac{range - d_1}{range - d_2}$

and $\sum_{r=1}^{n} \frac{range - d_2}{range - d_1}$

Tange $\sum_{r=1}^{n} \frac{range - d_1}{range - d_2}$
 $\sum_{r=1}^{n} \frac{range - d_2}{range - d_1}$
 $\sum_{r=1}^{n} \frac{range - d_2}{map - d_2}$
 $\sum_{r=$ points.
 $W_P = \sum_{q=1}^{\infty} \frac{1}{\tan q}$

3.2 Center Point Selection Method

In the traditional k-Means algorithm, an initial

cluster center is randomly selected to determine

cluster center is randomly selected to determine
 3.2 Center Point Selection Method
In the traditional k-Means algorithm, at
cluster center is randomly selected to de
an initial partition, and then the clu
performed by iterative technology and th
partition is continuou on is continuously optimized. Ho
lection of the initial center has a
nce on the result, and the eff
on of the initial value plays a cruci
clustering result. Therefore, we will
nter points successively according
mum-minimu inuously optimized. However, calce
the initial center has a great follower, calce
net result, and the effective
nitial value plays a crucial role
result. Therefore, we will select
successively according to the
num princip initial center has a great

sult, and the effective

value plays a crucial role

Therefore, we will select

essively according to the

principle", which is shown

Where: x re

Range repre
 d_{i1}, d_{i2}]
 $> \theta * ||z_1 - z_2||$
 an initial partition, and then the cluster is

performed by iterative technology and the initial

performed by iterative technology and the initial

the vector space. Adopts the

partition is continuously optimized. Howev mindent of the initial value plays a crucial role
since the centering result. Therefore, we will select
the center points successively according to the
"maximum-minimum principle", which is shown Where: x repres
as follow partition is continuously optimized. However, calculation method, the c
the selection of the initial center has a great follows:
influence on the result, and the effective
selection of the initial value plays a crucial ro the selection of the initial center has a great

influence on the result, and the effective

selection of the initial value plays a crucial role

in the clustering result. Therefore, we will select

the center points succ

$$
d_{l} = \max_{i} \left[\min [d_{i1}, d_{i2}] \right] > \theta * ||z_{1} - z_{2}||
$$
 (7)

Where: θ is the selected scale coefficient, passed
by $d_i = min[d_{i1}, d_{i2}]$, $i = 1, 2, ..., N$ The
minimum value between samples is obtained,
the larger the weight va
minimum value between samples is obtained,
the fuger the weig ta point with the largest index value of
point is used as the clustering center
perimental data for pre-classification. T
tion methods of the distance in t
hm all use Euclidean distance, and
of the data point is continuo Figure 1. The cluster center, the closer

is used as the clustering center of

is used as the clustering center of

intil data for pre-classification. The

methods of the distance in this

use Euclidean distance, and the where the distance between samples is expressed

by $d_{ij} = ||x_i - z_j||_p = 1.2$.

The data point with the largest index value of the

calue, the farther away

cluster center, the closer the

centeral point is used as the cluste by $d_{ij} = ||x_i - z_j||_i = 1.2$.

The data point with the largest index value of the cluster center, the closer the cl

echral point is used as the clustering center of

the experimental data for pre-classification. The differen The data point with the largest index value of the

the central point is used as the clustering center of

the capcimental data for pre-classification. The difference between the two cluster

calculation methods of the di

$$
\varepsilon = \frac{1}{K} \sum_{P_{I \in \mathcal{C}}} d(P_i, P_{K-nearrst(i)}) \tag{8}
$$

central point is used as the clustering center of

calculation methods of the distance, and the interiore between the two clustering algorithm all use Euclidean distance, and the clustering effect. The time

radius of the the experimental data for pre-classification. The

calculation methods of the distance in this

algorithm all use Euclidean distance, and the

algorithm all use Euclidean distance, and the mainly determined by the number
 calculation methods of the distance in this
algorithm all use Euclidean distance, and the
algorithm all use Euclidean distance, and the mainly determined by the
adaptively calculated according to the greedy
strategy. The algorithm all use Euclidean distance, and the

mainly determined by the nun

adaptively calculated according to the greedy

strategy. The calculation formula is as follows:
 $\epsilon = \frac{1}{K} \sum_{p_{\text{i}\in\mathcal{C}}} d(P_{i}, P_{K-nearrst}(i))$ (8) radius of the data point is continuously and
adaptively calculated according to the greedy
strategy. The calculation formula is as follows:
time performance of the alg
 $\epsilon = \frac{1}{K} \sum_{P \in \mathcal{C}} d(P_i, P_{K-nearrst}(i))$ (8) improved b adaptively calculated according to the greedy

strategy. The calculation formula is as follows:
 $\epsilon = \frac{1}{K} \sum_{P_{i\in C}} d(P_i, P_{K-nearrst(i)})$ (8) improved by effectively selective

where: $P_{K-nearrst(i)}$ represents the K points There is strategy. The calculation formula is as follows:
 $\epsilon = \frac{1}{K} \sum_{P_{i\in\mathcal{L}}} d(P_{i}, P_{K-nearrst(i)})$ (8) improved by effectively select

where: $P_{K-nearrst(i)}$ represents the K points

There is no cluster center point index

Where: $P_{$ $\epsilon = \frac{1}{K} \sum_{P_{\text{IEC}}} d(P_i, P_{K-nearrst(i)})$ (8) improved

where: $P_{K-nearrst(i)}$ represents the K points

nearest to the point; In general, the value of K is

4 in the two-dimensional spatial cluster, and in

other cases the value of mensional spatial cluster, and in

value of $[n/25]$ in the data set is

(n is the total number of data

is rounded down). The weight

is calculated according to the

in the object and the data object of

m, and the weight Where: $P_{K-nearrst(i)}$ represents the K points

4 in the two-dimensional spatial cluster, and in

4 in the two-dimensional spatial cluster, and in

4 in the two-dimensional spatial cluster, and in

4 in the two-dimensional sp where: P_K -*nearest*(i) represents the value of $\lfloor n/25 \rfloor$ in the data set, and the value of $\lfloor n/25 \rfloor$ in the data set, and the value of $\lfloor n/25 \rfloor$ in the data set, and the value of $\lfloor n/25 \rfloor$ in the data set, which is more complete between the object and the object is calculated according to the value of $\lfloor n/25 \rfloor$ in the $\lfloor n/25 \rfloor$ in the data set, which is more complete. The number of data is the value of $\lfloor n/25 \rfloor$ in the $\lfloor n/25 \rfloor$ in the data setmearest to the point; in general, the value of K is

4 in the two-dimensional spatial cluster, and in

other cases the value of $[n/25]$ in the data set is

taken. Where (n is the total number of data within a given rang
 ct is calculated according to the
veen the object and the data object q
main, and the weight is processed to
ral point index of each data, the
ormula is as follows:
 $C_P = W_P * \theta_P$ (9)
epresents the distance between the
and t calculated according to the

ne object and the data object q

int index of each data, the

is as follows:
 $= W_P * \theta_P$ (9)

intial cent

the center point i closest to

no formula is as follows:
 $\min_{1 \le i \le k} d(i, p)$ (10)
 \lim taken. Where (n is the total number of data

samples and [] is rounded down). The weight

which is more conducive

of the object is calculated according to the

the object is calculated according to the

Therefore, selec samples and [I is rounded down). The weight
of the object is calculated according to the distance between the object and the data object q
in the ε -domain, and the weight is processed to
weight as the initial
calcula of the object is calculated according to the
distance between the object and the data object q
in the ε -domain, and the weight is processed to
get the central point index of each data, the
calculation formula is as fo

$$
C_P = W_P * \theta_P \tag{9}
$$

$$
\theta_p = \min_{1 \le i \le k} d(i, p) \tag{10}
$$

20) Vol. 2 No. 3, 2024 117
\n
$$
W_P = \sum_{q=1}^{m} \frac{range - d(p,q)}{range}
$$
 (11)
\np indicates the number of current center
\nm represents the number of objects of the
\nect in the field of ε - of the data point p.
\ntts the dimension size of the dataset in
\ntor space. Adopts the Euclidean distance
\nion method, the calculation formula is as

2959-0620) Vol. 2 No. 3, 2024 117
 $W_P = \sum_{q=1}^{m} \frac{range - d(p,q)}{range}$ (11)

Where: *p* indicates the number of current center

points; m represents the number of objects of the

data object in the field of ε – of the data po 2959-0620) Vol. 2 No. 3, 2024 117
 $W_P = \sum_{q=1}^{m} \frac{range - d(p,q)}{range}$ (11)

Where: p indicates the number of current center

points; m represents the number of objects of the

data object in the field of ε – of the data poin

2959-0620) Vol. 2 No. 3, 2024 117
 $W_P = \sum_{q=1}^{m} \frac{range - d(p, q)}{range}$ (11)

Where: p indicates the number of current center

points; m represents the number of objects of the

data object in the field of ε − of the data poin 2959-0620) Vol. 2 No. 3, 2024 117
 $W_P = \sum_{q=1}^{m} \frac{range - d(p, q)}{range}$ (11)

Where: p indicates the number of current center

points; m represents the number of objects of the

data object in the field of ε – of the data poi 2959-0620) Vol. 2 No. 3, 2024 117
 $W_P = \sum_{q=1}^{m} \frac{range - d(p,q)}{range}$ (11)

Where: p indicates the number of current center

points; m represents the number of objects of the

data object in the field of ε – of the data poin 2959-0620) Vol. 2 No. 3, 2024 117
 $W_P = \sum_{q=1}^{m} \frac{range - d(p,q)}{range}$ (11)

Where: *p* indicates the number of current center

points; m represents the number of objects of the

data object in the field of ε – of the data po follows:

$$
\text{range} = \sqrt{\sum_{z=0}^{x} \left\| \max_{z} - \min_{z} \right\|^2} \qquad (12)
$$

dimension range of the dataset. The contribution
degree of each data point in the ε -field of the selection of the initial value plays a crucial role

in the clustering result. Therefore, we will select

"maximum-minimum principle", which is shown

"maximum-minimum principle", which is shown
 $d_l = \max \left[\min \left[d_{i1}, d_{i2} \$ in the clustering result. Therefore, we will select

the center points successively according to the

"maximum-minimum principle", which is shown
 $d_l = \max \left[\min [d_{l1}, d_{l2}] \right]$
 $\downarrow = \max \left[\min [d_{l1}, d_{l2}] \right]$

Where: θ is th the center points successively according to the

"maximum-minimum principle", which is shown

as follows:
 $d_l = \max \left[\min [d_{i1}, d_{i2}] \right]$ (7)

Where: *x* represents the modul
 $d_l = \max \left[\min [d_{i1}, d_{i2}] \right]$ (7)

Where: θ is the "maximum-minimum principle", which is shown

as follows:

as follows:
 $d_l = \max \left[\min [d_{i1}, d_{i2}] \right]$ (7) $\theta * ||z_1 - z_2||$ (7) degree of each data point in t

Where: 0 is the selected scale coefficient, passed

by $d_i = \min [d_{i1}, d$ algorithm all use Euclidean distance, and the $d_l = \max \left[\min[d_{i1}, d_{i2}]\right]$ (7) dimension range of the dataset
 $\forall \theta \in \mathbb{R}$. Where: θ is the selected scale coefficient, passed

by $d_i = \min[d_{i1}, d_{i2}], i = 1, 2, ..., N$ The contribution degree range is [

minimum value between **EXECUTE:** θ is the selected scale coefficient, passed by $d_i = min[d_{i1}, d_{i2}], i = 1, 2, ..., N$ The contribution degree range minimum value between samples is obtained, the larger the weight value, where the distance between samp e: *p* indicates the number of current center

; m represents the number of objects of the

bject in the field of ε – of the data point *p*.

ects the dimension size of the dataset in

cetor space. Adopts the Euclidea es the number of current center
the number of objects of the
field of ε − of the data point *p*.
mension size of the dataset in
Adopts the Euclidean distance
d, the calculation formula is as
 $\sum_{z=0}^{x} \left\|\max_{z} - \min_{z}\$ We = $\frac{q}{q=1}$ range (11)

Where: p indicates the number of current center

points; m represents the number of objects of the

data object in the field of ε – of the data point p.

It reflects the dimension size of Where: *p* indicates the number of current center
points; m represents the number of objects of the
data object in the field of ε – of the data point *p*.
It reflects the dimension size of the dataset in
the vector sp where: *p* indicates the number of current center
points; m represents the number of objects of the
data object in the field of ε – of the data point *p*.
It reflects the dimension size of the dataset in
the vector sp points; m represents the number of objects of the
data object in the field of ε – of the data point *p*.
It reflects the dimension size of the dataset in
the vector space. Adopts the Euclidean distance
calculation met data object in the field of ε - of the data point *p*.
It reflects the dimension size of the dataset in
the vector space. Adopts the Euclidean distance
calculation method, the calculation formula is as
follows:
 $\text{range} =$ It reflects the dimension size of the dataset in
the vector space. Adopts the Euclidean distance
calculation method, the calculation formula is as
follows:
 $\text{range} = \sqrt{\sum_{z=0}^{x} ||\text{max}_z - \text{min}_z||}$ (12)
Where: x represents the the vector space. Adopts the Euclidean distance
calculation method, the calculation formula is as
follows:
 $\text{range} = \sqrt{\sum_{z=0}^{x} ||\text{max}_z - \text{min}_z||^2}$ (12)
Where: x represents the dimension of the data;
Range represents the mo calculation method, the calculation formula is as
follows:

 $\text{range} = \sqrt{\sum_{z=0}^{x} ||\text{max}_z - \text{min}_z||^2}$ (12)
Where: x represents the dimension of the data;
Range represents the modulus of the whole
dimension range of the datas follows:

range = $\sqrt{\sum_{z=0}^{x} ||max_z - min_z||}$ (12)

Where: x represents the dimension of the data;

Range represents the modulus of the whole

dimension range of the dataset. The contribution

degree of each data point in the range = $\left|\sum_{z=0}^{x} \left\|\max_{z} - \min_{z}\right\|\right|^2$ (12)
Where: x represents the dimension of the data;
Range represents the modulus of the whole
dimension range of the dataset. The contribution
degree of each data point in the \v range = $\sum_{z=0} \|\text{max}_z - \text{min}_z\|$ (12)
Where: x represents the dimension of the data;
Range represents the modulus of the whole
dimension range of the dataset. The contribution
degree of each data point in the ε - fiel Where: x represents the dimension of the data;
Range represents the modulus of the whole
dimension range of the dataset. The contribution
degree of each data point in the ε — field of the
point is greater the closer Where: x represents the dimension of the data;
Range represents the modulus of the whole
dimension range of the dataset. The contribution
dimension range of the dataset. The contribution
point is greater the closer the Where: x represents the dimension of the data;

Range represents the modulus of the whole

dimension range of the dataset. The contribution

degree of each data point in the ε - field of the

point is greater the clo Range represents the modulus of the whole
dimension range of the dataset. The contribution
degree of each data point in the ε -- field of the
point is greater the closer the point is, and the
contribution degree range dimension range of the dataset. The contribution
degree of each data point in the ε -- field of the
point is greater the closer the point is, and the
contribution degree range is [0,1]. In summary,
the larger the weigh degree of each data point in the ε -- field of the
point is greater the closer the point is, and the
contribution degree range is [0,1]. In summary,
the larger the weight value, the more data around
value, the more den point is greater the closer the point is, and the contribution degree range is [0,1]. In summary, the larger the weight value, the more data around the object point, the more dense. The larger the dauster center way from t contribution degree range is [0,1]. In summary,
the larger the weight value, the more data around
the object point, the more dense. The larger the
cluster center, the closer the cluster clustering.
Chuster center, the clo the larger the weight value, the more data around
the object point, the more dense. The larger the
value, the farther away from the generated
cluster center, the closer the cluster clustering.
The larger the central index the object point, the more dense. The larger the value, the farther away from the generated cluster center, the closer the cluster clustering. The larger the central index obtained by multiplication, the higher the degree value, the farther away from the generated
cluster center, the closer the cluster clustering.
The larger the central index obtained by
multiplication, the higher the degree of
difference between the two clusters, the bett cluster center, the closer the cluster clustering.
The larger the central index obtained by
multiplication, the higher the degree of
difference between the two clusters, the better
the clustering effect. The time consumpt The larger the central index obtained by
multiplication, the higher the degree of
difference between the two clusters, the better
the clustering effect. The time consumption is
mainly determined by the number of iteration

multiplication, the higher the degree of difference between the two clusters, the better the clustering effect. The time consumption is mainly determined by the number of iterations, and the number of iterations of K-neans difference between the two clusters, the better
the clustering effect. The time consumption is
mainly determined by the number of iterations,
and the number of iterations of K-means
algorithm can be effectively reduced an the clustering effect. The time consumption is
mainly determined by the number of iterations,
and the number of iterations of K-means
algorithm can be effectively reduced and the
time performance of the algorithm can be
i manly determined by the number of iterations,
and the number of iterations of K-means
algorithm can be effectively reduced and the
time performance of the algorithm can be
time performance of the algorithm can be
center o and the number of iterations of K-means
algorithm can be effectively reduced and the
time performance of the algorithm can be
improved by effectively selecting the clustering
Center of the center point index.
There is no algorithm can be effectively reduced and the
time performance of the algorithm can be
improved by effectively selecting the clustering
conter of the center point index.
There is no cluster center point at the beginning
of time performance of the algorithm can be
improved by effectively selecting the clustering
center of the center point index.
There is no cluster center point index of
data
cannot be calculated due to the lack of θ
param mproved by effectively selecting the clustering
center of the center point index.
There is no cluster center point at the beginning
of clustering, and the center point index of data
cannot be calculated due to the lack of center of the center point index.
There is no cluster center point at the beginning
of clustering, and the center point index of data
cannot be calculated due to the lack of θ
parameter. The more times a data point,
wh There is no cluster center point at the beginning
of clustering, and the center point index of data
cannot be calculated due to the lack of θ
parameter. The more times a data point appears
within a given range, the den of clustering, and the center point index of data
cannot be calculated due to the lack of θ
parameter. The more times a data point appears
within a given range, the denser the data point,
which is more conducive to the cannot be calculated due to the lack of θ
parameter. The more times a data point appears
within a given range, the denser the data point,
thich is more conducive to the convergence of
the objective function as the clus parameter. The more times a data point appears
within a given range, the denser the data point,
which is more conducive to the convergence of
the objective function as the cluster center point.
Therefore, selecting the poi within a given range, the denser the data point,
which is more conducive to the convergence of
the objective function as the cluster center point.
Therefore, selecting the point with the largest
weight as the initial cente which is more conducive to the convergence of
the objective function as the cluster center point.
Therefore, selecting the point with the largest
weight as the initial center point is also
conducive to improving the tightn the objective tunction as the cluster center point.
Therefore, selecting the point with the largest
weight as the initial center point is also
conducive to improving the tightness within the
cluster, and conforms to the id

Copyright @ STEMM Institute Press http://www.stemmpress.com

ITEN 18

118 Journal of Intelligence and Knowledge Engineering (ISSN: 2959-062)

clustering effect. According to the central point not participate in the subsection.

index, it can be seen that the greater the density

aro Index, it can be seen that the greater the density
index, it can be seen that the greater the density
index, it can be seen that the greater the density
around the cluster central point, the greater the density
weight of t ITE 18 Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620)

clustering effect. According to the central point in the subsequendex, it can be seen that the greater the density selection. Compare the change
 Journal of Intelligence and Knowledge Engineering (ISSN: 295
clustering effect. According to the central point is not participate in the
index, it can be seen that the greater the density selection. Compare the e
around th Journal of Intelligence and Knowledge Engineering (ISSN: 2959-06

clustering effect. According to the central point in the participate in the subs

index, it can be seen that the greater the density selection. Compare the 118 Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620)
clustering effect. According to the central point and the subseque
index, it can be seen that the greater the density selection. Compare the change
ar Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620)
clustering effect. According to the central point and point intervalses
index, it can be seen that the greater the density selection. Compare the change
a Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) v
clustering effect. According to the central point anticipate in the subseque
index, it can be seen that the greater the density selection. Compare the ITENT 18

118 Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620)

clustering effect. According to the central point into participate in the subsequender, it can be seen that the greater the density selecti ITEN 118

118 Journal of Intelligence and Knowledge Engineering (ISSN: 2959-06

clustering effect. According to the central point to participate in the subs

index, it can be seen that the greater the density

around the c I18 Journal of Intelligence and Knowlect Clustering effect. According to the central point index, it can be seen that the greater the density around the cluster central point. If the "max-min principle" is applied to the c clustering effect. According to the central point

index, it can be seen that the greater the density

around the cluster central point, the greater the of BWP index of data

weight of the data point. If the "max-min pre-c clustering effect. According to the central point
index, it can be seen that the greater the density
according to HOBO around the cluster central point, the greater the change
of BWP index of data point
weight of the data mate the cluster central point in greater the density

are around the cluster central point, the greater the of BWP index of data points be

are weight of the data point. If the "max-min pre-classification. If the mean

pr able to the data point. The section of the cluster central point. If the "max-min pre-classification. If the r
principle is applied to the central point index, index increases, this point
the larger the weight of a data po

weight of the data point. If the "max-min pre-classification. If the mean
principle" is applied to the central point index, index increases, this point will
greater the distance from other central points, the clustering ce principle" is applied to the central point index, index increases, this point
the larger the weight of a data point and the clustering center, and
greater the distance from other central points, the clustering center will the larger the weight of a data point and the clustering center, and the greater the distance from other central points, the clustering center will cause compare a greater the interest of the set manually be new cluster ce greater the distance from other central points, the
greater the possibility of this point becoming a
new clustering center point
new clustering between the cluster centres, the better caregory of the center point
clusterin greater the possibility of this point becoming a
new cluster central point, the greater the category of the center point
clustering between the cluster centers, the better Therefore, the center point
the clustering result. new cluster central point, the greater the category of the center point clustering between the cluster centers, the better Therefore, the center point in the clustering result.

3.3 Selection of K Value of Cluster Number
 clustering between the cluster centers, the better

the clustering result.
 as 3.3 Selection of K Value of Cluster Number

or no data points exist, the

After the data is pre-classified by the central

point will stop.
 the clustering result.
 3.3 Selection of K Value of Cluster Number

After the data is pre-classified by the central

point index, that is, all data points will be

classified into the category of the nearest central

poi 3.3 Selection of K Value of Cluster Number

After the data is pre-classified by the central

point vill stop.

After the data is pre-classified by the central

point vill stop.

classified into the category of the nearest 3.3 Selection of K Value of Cluster Number

or no data points exist, the select

After the data is pre-classified by the central

point index, that is, all data points will select

classified into the category of the near After the data is pre-classified by the central point will stop.

point index, that is, all data points will be

classified into the category of the nearest central

point. The K-means algorithm belongs to the **Algorithm** point index, that is, all data points will be
classified into the category of the nearest central
3.4 Basic Ideas of GDD-K-Me
class. The K-means algorithm belongs to the **Algorithm**
unsupervised clustering method, and the classitied into the category of the nearest central
point. The K-means algorithm belongs to the
unsupervised clustering method, and the cluster
number k needs to be set manually, but it is
difficult to estimate. Therefore m to divide a given data set into several

ries. This paper will refer to a new

the introduction of BWP index and the

mation of canopy algorithm, the algorithm

utomatically determine the number of

s. The average value ect K clustering centers. outliers are

ion of BWP index and the with the la

by algorithm, the algorithm

etermine the number of selected st

value of BWP index is point inde

generated,
 $\sum_{i=1, j \in j}^{n} \frac{b(j,i)-w(j,i)}{b(j,i)+$ number k needs to be set manually, but it is preliminary screening of
difficult to estimate. Therefore, it is an urgent
data whose density is
problem to divide a given data set into several
thustening index BWP proposed i difficult to estimate. Therefore, it is an urgent

data whose density is le

problem to divide a given data set into several

categories. This paper will refer to a new the classical density-based

clustering index BWP pr problem to divide a given data set into several

threshold is divided into c

categories. This paper will refer to a new

the classical density-bas

clustering index BWP proposed in the literature

to automatically select categories. This paper will refer to a new the classical density-base
clustering index BWP proposed in the literature used to accurately remove
to automatically select K clustering centers. outliers are removed from
Throu

$$
\overline{BWP}(j,i) = \frac{1}{n} \sum_{i=1, j \in j}^{n} \frac{b(j,i) - w(j,i)}{b(j,i) + w(j,i)} \qquad (13) \qquad \text{d}s
$$

clustering index BWP proposed in the literature

to automatically select K clustering centers.

Through te introduction of BWP index and the with the largest weight is selected

combination of canopy algorithm, the algori to automatically select K clustering centers. outliers are removed from

Through the introduction of BWP index and the with the largest weight is

combination of canopy algorithm, the algorithm center point, and then

cal Through the introduction of BWP index and the

combination of canopy algorithm, the algorithm

center point, and then n

center point, and then n

can automatically determine the number of

selected successively accord

c combination of canopy algorithm, the algorithm

centre point, and then n ce

calculated so the average value of BWP index is point index. When $n+2$ cell

calculated as follows:
 $\overline{BWP}(j, i) = \frac{1}{n} \sum_{i=1, j \in j}^{n} \frac{b(j,i)$ can automatically determine the number of selected successively accordical
classes. The average value of BWP index is point index. When n+2 calculated as follows:
calculated as follows: generated, the average value
 $\overline{B$ classes. The average value of BWP index is point index. When n+2 calculated as follows:
 $\overline{BWP}(j, i) = \frac{1}{n} \sum_{i=1, j \in j}^{n} \frac{b(j,i) - w(j,i)}{b(j,i) + w(j,i)}$ (13) decreases, then the selection is under points are obtained. Firm the calculated as follows:
 EWP(j, i) = $\frac{1}{n} \sum_{i=1, j \in j}^{n} \frac{b(j,i) - w(j,i)}{b(j,i) + w(j,i)}$ (13) decreases, then the selection is

where: n represents the size of the dataset, center point is used as the interpolism are obtained follows: , to be the minimum value of the avera

, to be the minimum value of the avera

of samples from this sample to every oth

and define the intra-class distance

i of class j, to be the average value of t

ce between this da $\begin{aligned}\n &\text{if } \mathbf{r} \text{ is a simple to every other} \\
 &\text{if } \mathbf{r} \text{ is a simple to every other} \\
 &\text{if } \mathbf{r} \text{ is a positive, and } \mathbf{r} \text{ is a$ value of samples from this sample to every other

class, and define the intra-class distance of

class, and define the intra-class distance of

distance between this data object and other data

objects of class j. The cal class, and define the intra-class distance of

object i of class j, to be the average value of the

distance between this data object and other data

objects of class j. The calculation formula is as
 $\text{GDD-K-Means algorithm}$ algori

$$
b(j, i) = \min_{1 \le c \le k, c \ne j} \left(\frac{1}{n}\right)^n \sum_{p=1}^c \|x_p(c)\| \tag{14}
$$

- x.(j) \|2

$$
w(j, i) = \left(\frac{1}{n_j - 1}\right)^2 \sum_{p=1, p \neq i}^{j} \|x_p(j) - x_i(j)\|^2 \tag{15}
$$

given to class j, to be the average variate
stance between this data object and other
jects of class j. The calculation formulal
llows:
 $b(j, i) = \min_{1 \leq c \leq k, c \neq j} \left(\frac{1}{n}\right)^n \sum_{p=1}^c \|x_p(c) - x_i(j)\|^2$
 $w(j, i) = \left(\frac{1}{n_j - 1}\right)^2 \$ ween this data object and other da

ass j. The calculation formula is
 $=\min_{1 \leq c \leq k, c \neq j} \left(\frac{1}{n}\right)^n \sum_{p=1}^c \|x_p(c)$
 $-x_i^{(j)}\|^2$
 $\frac{1}{n_j - 1} \sum_{p=1, p \neq i}^{j} \|x_p(j) - x_i^{(j)}\|^2$ (1

of BWP index determines wheth

next clu ge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
not participate in the subsequent center point
selection. Compare the change of the mean value
of BWP index of data points before and after the
pre-classification. If the ge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
not participate in the subsequent center point
selection. Compare the change of the mean value
of BWP index of data points before and after the
pre-classification. If the ge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
not participate in the subsequent center point
selection. Compare the change of the mean value
of BWP index of data points before and after the
pre-classification. If the ge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
not participate in the subsequent center point
selection. Compare the change of the mean value
of BWP index of data points before and after the
pre-classification. If the ge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
not participate in the subsequent center point
selection. Compare the change of the mean value
of BWP index of data points before and after the
pre-classification. If the ge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
not participate in the subsequent center point
selection. Compare the change of the mean value
of BWP index of data points before and after the
pre-classification. If the ge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
not participate in the subsequent center point
selection. Compare the change of the mean value
of BWP index of data points before and after the
pre-classification. If the ge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
not participate in the subsequent center point
selection. Compare the change of the mean value
of BWP index of data points before and after the
pre-classification. If the ge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
not participate in the subsequent center point
selection. Compare the change of the mean value
of BWP index of data points before and after the
pre-classification. If the ge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
not participate in the subsequent center point
selection. Compare the change of the mean value
of BWP index of data points before and after the
pre-classification. If the ge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
not participate in the subsequent center point
selection. Compare the change of the mean value
of BWP index of data points before and after the
pre-classification. If the ge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
not participate in the subsequent center point
selection. Compare the change of the mean value
of BWP index of data points before and after the
pre-classification. If the not participate in the subsequent center point
of BWP index of data points before and after the
of BWP index of data points before and after the
pre-classification. If the mean value of BWP
index increases, this point will not participate in the subsequent center point
selection. Compare the change of the mean value
of BWP index of data points before and after the
pre-classification. If the mean value of BWP
index increases, this point will 3.4 Basic Ideas of GDD-K-Means Clustering
pre-classification. If the mean value of BWP
index increases, this point will be used as a new
clustering center, and the generation of
clustering center will cause changes of data

index increases, this point will be used as a new
clustering center, and the generation of
clustering center will cevantly be divided into the
points, which will eventually be divided into the
Category of the center point

Algorithm

clustering center, and the generation of
clustering center will cause changes of data
points, which will eventually be divided into the
category of the center point closest to itself.
Therefore, the center point index need clustering center will cause changes of data
points, which will eventually be divided into the
category of the center point iclosest to itself.
Therefore, the center point index needs to be
updated every time a new center points, which will eventually be divided into the
category of the center point closest to itself.
Therefore, the center point index needs to be
updated every time a new center point is
generated. If the BWP indicator becom category of the center point closest to itself.
Therefore, the center point index needs to be
updated every time a new center point is
generated. If the BWP indicator becomes smaller
or no data points exist, the selection Theretore, the center point index needs to be
updated every time a new center point is
generated. If the BWP indicator becomes smaller
or no data points exist, the selection of the center
point will stop.
3.4 Basic Ideas o updated every time a new center point is
generated. If the BWP indicator becomes smaller
or no data points exist, the selection of the center
point will stop.
3.4 Basic Ideas of GDD-K-Means Clustering
Algorithm
Firstly, th generated. If the BWP indicator becomes smaller
or no data points exist, the selection of the center
point will stop.
3.4 Basic Ideas of GDD-K-Means Clustering
Algorithm
Firstly, the grid filtering method is used for
prel or no data points exist, the selection of the center
point will stop.
3.4 Basic Ideas of GDD-K-Means Clustering
Algorithm
Firstly, the grid filtering method is used for
preliminary screening of the data set, and the
data **3.4 Basic Ideas of GDD-K-Means Clustering**
Algorithm
Algorithm
Firstly, the grid filtering method is used for
Firstly, the grid filtering method is used for
preliminary screening of the data set, and the
data w **3.4 Basic Ideas of GDD-K-Means Clustering Algorithm**
Algorithm
Firstly, the grid filtering method is used for preliminary screening of the data set, and the data whose density is less than a specific threshold is divi 3.4 Basic Ideas of GDD-K-Means Clustering
Algorithm
Firstly, the grid filtering method is used for
preliminary screening of the data set, and the
data whose density is less than a specific
threshold is divided Algorithm
Firstly, the grid filtering method is used for
preliminary screening of the data set, and the
data whose density is less than a specific
threshold is divided into candidate subsets. Then,
the classical density-b Firstly, the grid filtering method is used for
preliminary screening of the data set, and the
data whose density is less than a specific
threshold is divided into candidate subsets. Then,
the classical density-based LOF a preliminary screening of the data set, and the
data whose density is less than a specific
threshold is divided into candidate subsets. Then,
the classical density-based LOF algorithm is
used to accurately remove the outlie data whose density is less than a specific
threshold is divided into candidate subsets. Then,
the classical density-based LOF algorithm is
used to accurately remove the outliers. When the
outliers are removed from the dat threshold is divided into candidate subsets. Then,
the classical density-based LOF algorithm is
used to accurately remove the outliers. When the
outliers are removed from the data set, the point
with the largest weight is the classical density-based LOF algorithm is
used to accurately remove the outliers. When the
outliers are removed from the data set, the point
with the largest weight is selected as the initial
center point, and then n ce butters are removed from the data set, the point
with the largest weight is selected as the initial
center point, and then n center points are
selected successively according to the central
point index. When $n+2$ center p center point, and then n center points are
selected successively according to the central
point index. When $n+2$ center points are
generated, the average value of BWP index
decreases, then the selection is stopped and n selected successively according to the central
point index. When $n+2$ center points are
generated, the average value of BWP index
decreases, then the selection is stopped and $n+1$
center point is used as the initial clu point index. When n+2 center points are
generated, the average value of BWP index
decreases, then the selection is stopped and n+1
center points are obtained. Finally, the generated
center point is used as the initial clus generated, the average value of BWP index
decreases, then the selection is stopped and n+1
center points are obtained. Finally, the generated
center point is used as the initial clustering
center to execute the k-means clu

 $\sum_{n=1}^{\infty} |x_p^{(c)}(14)|$ Anaconda3&Spyder3 as development decreases, then the selection is stopped and n+1
center points are obtained. Finally, the generated
center point is used as the initial clustering
center to execute the k-means clustering
algorithm, and the final clusterin center points are obtained. Finally, the generated
center point is used as the initial clustering
center to execute the k-means clustering
algorithm, and the final clustering result is
obtained to end the operation.
4. **Ex** center point is used as the initial clustering
center to execute the k-means clustering
algorithm, and the final clustering result is
obtained to end the operation.
4. Experimental Results and Analysis
4.1 Experimental Env argorium, and the mail custering result is
obtained to end the operation.
4. Experimental Results and Analysis
4.1 Experimental Environment
of K-means, k-means ++, canopy + K-means,
GDD-K-Means algorithm is: Core i3720M
(1 obtained to end the operation.

4. Experimental Results and Analysis

4.1 Experimental Environment

The experimental environment building platform

of K-means, k-means ++, canopy + K-means,

GDD-K-Means algorithm is: Core **4. Experimental Results and Analysis**
 4.1 Experimental Environment

The experimental environment building platform

of K-means, k-means $++$, canopy $+$ K-means,

GDD-K-Means algorithm is: Core i3720M

(1.80GHz) proces

Let us a verify the experimental environment

(1.80GHz) processor, The
 $-\frac{x_i}{n}\sum_{p=1}^{n} ||x_p(c) - x_i(t)||^2$

(1.80GHz) processor, The
 $-\frac{x_i}{n}||x_p(t) - x_i(t)||^2$

(1.80GHz) processor, The
 $-\frac{x_i}{n}||x_p(t) - x_i(t)||^2$

(1.80GHz) processor object i of class j, to be the average value of the

distance between this data object and other data

of K-means, k-means ++, ca

objects of class j. The calculation formula is as
 $\frac{1}{2} \int_{1 \leq c \leq k, c \neq j} \left(\frac{1}{n} \right$ distance between this data object and other data

objects of class j. The calculation formula is as
 $b(j,i) = \min_{1 \leq i \leq k, c \neq j} \left(\frac{1}{n}\right)^n \sum_{p=1}^c ||x_p(c)$
 $w(j,i) = \left(\frac{1}{n_j - 1}\right)^2 \sum_{p=1}^j ||x_p(j) - x_i(j)||^2$
 $w(j,i) = \left(\frac{1}{n_j - 1}\right$ 4. Experimental Results and Analysis

4.1 Experimental Environment

The experimental environment building platform

of K-means, k-means $++$, canopy $+$ K-means,

GDD-K-Means algorithm is: Core i3720M

(1.80GHz) processor, **4.1 Experimental Environment**
The experimental environment building platform
of K-means, k-means $++$, canopy $+$ K-means,
GDD-K-Means algorithm is: Core i3720M
(1.80GHz) processor, The algorithms are
developed using pyth 4.1 Experimental Environment
The experimental environment building platform
of K-means, k-means $++$, canopy $+$ K-means,
GDD-K-Means algorithm is: Core i3720M
(1.80GHz) processor, The algorithms are
developed using python The experimental environment building platform
of K-means, k-means $++$, canopy $+$ K-means,
GDD-K-Means algorithm is: Core i3720M
(1.80GHz) processor, The algorithms are
developed using python3.6 language and
Anaconda3&Sp of K-means, k-means $++$, canopy $+$ K-means,
GDD-K-Means algorithm is: Core i3720M
(1.80GHz) processor, The algorithms are
developed using python3.6 language and
Anaconda3&Spyder3 as development tools.
4.2 Experimental D

Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
performance of the algorithm in different data candidate subset of the data s
scales and different data structures. The data will
be ve Sournal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
performance of the algorithm in different data
scales and different data structures. The data will
be verified by selecting a synthetic be verified by selecting a synthetic leads of the algorithm in different data
scales and different data structures. The data will
be verified by selecting a synthetic UCI data set.
the shold of grid density. This a databas Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
performance of the algorithm in different data candidate subset of the data set
scales and different data structures. The data will
be Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024

performance of the algorithm in different data

scales and different data structures. The data will

be verified by selecting a synthe Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 N

performance of the algorithm in different data candidate subset of

scales and different data structures. The data will

be verified by selecti Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 20

performance of the algorithm in different data

scales and different data structures. The data will

be verified by selecting a synthet Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 202-
performance of the algorithm in different data candidate subset of the dat
scales and different data structures. The data will calcula Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024

performance of the algorithm in different data

scales and different data structures. The data will

calculates the number of grid

b Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024

performance of the algorithm in different data

scales and different data structures. The data will

be verified by selecting a synth Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024

performance of the algorithm in different data candidate subset of the data secales and different data structures. The data will

let Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No.

performance of the algorithm in different data

candidate subset of t

scales and different data structures. The data will

calculates the nu performance of the algorithm in different
scales and different data structures. The dat
be verified by selecting a synthetic UCI dat
It is a database proposed by the Universi
California for machine learning.
experimental From the different data structures. The data will

verified by selecting a synthetic UCI data set.

were trieshold of grid

sa a database proposed by the University of follows:

ifornia for machine learning. The **Table 2.** Experimental data sets factor clear enassinearions
so the quality of clustering can be directly
observed. Experimental data will select Seeds
Wine two data sets of different data size
detection, Dataset1, Dataset2 are used

enceution, Datasett, Datasetz are used to the density offficient four data sets. Table 1 describes the density coefficient density the deform of the density coefficient of the density of the Datasets Samples Attributes Cat represent ure nout data sets. Table 1 describes ure
data sets.
data sets.
Table 1. Experimental Data Description
data sets.
Table 1. Experimental Data Description
data sets.
Through given the density thressets
 $\frac{3}{210}$ of the feature is at the same end of the total and the set and the set and the set and the to the them the distingent than the density threshold, we defined a dense subset. If the d
 Datasets Samples Attributes Categorie The transfer of the date asset.

Table 1. Experimental Data Description

Datasets Samples Attributes Categories

Seeds 210 7 3

Seeds 210 7 3

The mean subset, which dates uses the whole through seeds that are to be used a **Table 1. Experimental Data Description**

Datasets Samples Attributes Categories a dense subset, which does

Seeds 210 7 3 candidate subset. Through grid

set is initially screened to effect

Different feature values in a **Exerces Exerces E** Seeds 210 $\frac{3}{4}$ candidate subset. Inrough gr

wine 178 13 4 candidate subset. Inrough gr

and most dense part of the data

data set to be used as much

Different feature values in a data set often have

different dime **Example 18** and the most discussing the Min-Max Scaling most discussion of the data set part of the second and different feature values in a data set often have data set to be used as different dimensions. When different 4.3 Data Processing

most dense part of the

different feature values in a data set often have

different dimensions. When different features

points are more accuracy

are listed together, small data in absolute values

i **4.3 Data Processing**
 Example 1.4 Confident intensions. When different features through density-based detection

different dimensions. When different features points are more accuracy

of the listed together, small d Different feature values in a data set often have

different dimensions. When different features points are more accurately

are listed together, small data in absolute values improves the accuracy of the

are listed in t different dimensions. When different features points are more are listed together, small data in absolute values improves the accura will be ignored by big data in data mining reduces the running processing due to the dif are listed together, small data in absolute values

process improves the accuracy of

will be ignored by big data in data mining reduces the running tim

processing due to the different expression ways

of the features th

algorithm, the impact of carry out left
iminated. The data were method effect
ne Min-Max Scaling method. sets. Because
with a feature, by traversing the sparse g
ture vector, Max and Min are feature of th
-min is used as that each feature reasonably participates in the
execution of the algorithm, the impact of carr
dimension is eliminated. The data were metl
normalized using the Min-Max Scaling method. sets.
For the data set with a featur

$$
x_{normalization} = \frac{x_i - \text{Min}(x_i)}{\text{Max}(x_i) - \text{Min}(x_i)} \qquad (16) \qquad \text{shortence}
$$

For the data set with a feature, by traversing

each data in the feature vector, Max and Min are

recorded, and max-min is used as the base (that

is, Min=0, Max=1) for data normalization cluster center, and the rem-

is, each data in the feature vector, Max and Min are

recorded, and max-min is used as the base (that

is, Min=0, Max=1) for data normalization cluster center, and the removal

is, Min=0, Max=1) for data normalization cluster recorded, and max-min is used as the base (that density, the is, Min=0, Max=1) for data normalization cluster cervicessing. The calculation formula is as follows: selection of $x_i - \text{Min}(x_i)$ the selection of $x_i - \text{Min}(x_i)$ processing. The calculation formula is as follows: selection of the cluster
 $x_{normalization} = \frac{x_i - \text{Min}(x_i)}{\text{Max}(x_i) - \text{Min}(x_i)}$ (16) shortend the execution

the selection of

the selection of

the selection of

the selection of

the $x_{normalization} = \frac{1}{\text{Max}(xi) - \text{Min}(xi)}$ (16) shortened the execution time
thereby significantly impreced. (e.g., Figure 3. Cluster
for the execution in the stream of the sets).
In order to perform effective cluster evaluation
on clu **4.4 Experimental Evaluation**

In order to perform effective cluster evaluation

commonly used evaluation criteria in data

mining field: BWP index, Rand index, contour

coefficient, recall rate, accuracy rate and F-

mea Filtering algorithm screens the preliminary $\frac{12}{100}$

Commonly used evaluation criteria in data
 $\frac{1}{200}$
 \frac

Results

2959-0620) Vol. 2 No. 3, 2024 119
candidate subset of the data set in Table 2, and
calculates the number of grid divisions and the
threshold of grid density. The results are as
follows:
Table 2. Experimental Data Statisti 2959-0620) Vol. 2 No. 3, 2024 119

candidate subset of the data set in Table 2, and

calculates the number of grid divisions and the

threshold of grid density. The results are as

follows:
 Table 2. Experimental Data St 2959-0620) Vol. 2 No. 3, 2024 119

candidate subset of the data set in Table 2, and

calculates the number of grid divisions and the

threshold of grid density. The results are as

follows:
 Table 2. Experimental Data St follows: **Table 2. Experimental Data Statistics**
 Table 2. Experim

: 2959-0620) Vol. 2 No. 3, 2024 119			
candidate subset of the data set in Table 2, and			
calculates the number of grid divisions and the			
threshold of grid density. The results are as			
follows:			
Table 2. Experimental Data Statistics			
Datasets		Number of Grid density	The threshold
	meshing	threshold	is partially
			reached
Seeds	$9*9$	3	5
Wine	$9*9$	3	
If the density coefficient is lower than the			
density threshold, we define it as a candidate			
anomaly subset. If the density coefficient is			
higher than the density threshold, we define it as			
a dense subset, which does not fit into the			

a dense subset, which does not fit into the candidate subset. Through grid filtering, the data set is initially screened to effectively remove the So the quality of clustering can be directly

Datasets

Wine two data sets of different data size

Wine two data sets of different data size

detection, Dataset1, Dataset2 are used to

The density coefficient

basic chara Wine two data sets of different discusses

Wine two data sets of different data size

detection, Dataset1, Dataset2 are used to

represent the four data sets. Table 1 describes the

data sets.
 Table 1. Experimental Data whe two causes of uniterint data size

detection, Dataset1, Dataset2 are used to Wine 9% and

represent the four data sets. Table 1 describes the

density threshold, we defin

density the shold, we defin

data sets.
 Tab 2959-0620) Vol. 2 No. 3, 2024 119

candidate subset of the data set in Table 2, and

calculates the number of grid divisions and the

threshold of grid density. The results are as

follows:
 Table 2. Experimental Data St candidate subset of the data set in Table 2, and
calculates the number of grid divisions and the
threshold of grid density. The results are as
follows:
Table 2. Experimental Data Statistics
 $\begin{array}{r} \n\text{Table 2. Experimental Data Statistics} \\
\text{Substituting the$ canonical subset of the data set in Table 2, and
calculates the number of grid divisions and the
threshold
of grid density. The results are as
follows:
Table 2. Experimental Data Statistics
 $\begin{array}{r} \n\text{Table 2. Experimental Data Statistics} \\
\text{The threshold} \\$ calculates the number of grid divisions and the
threshold of grid density. The results are as
follows:
Table 2. Experimental Data Statistics
meshing threshold is partially
meshing threshold is partially
seeds $9*9$ 3 5
Wi threshold of grid density. The results are as
follows:
Table 2. Experimental Data Statistics
Datasets Number of Grid density $\begin{bmatrix} \text{The threshold} \\ \text{is partially} \\ \text{reached} \end{bmatrix}$
signarially
seeds $9*9$ 3 5
The density coefficient is lowe Table 2. Experimental Data Statistics

Datasets

Number of Grid density

meshing

meshing

threshold

set is partially

reached

Seeds
 $9*9$
 3
 5

The density coefficient is lower than the

density threshold, we def Table 2. Experimental Data statistics

Datasets Number of Grid density The threshold

meshing threshold is partially

reached

Seeds $9*9$ 3 5

The density coefficient is lower than the

density threshold, we define it as Datasets Number of Grid density

meshing threshold is partially

seeds $9*9$ 3 5

The density coefficient is lower than the

density threshold, we define it as a candidate

anomaly subset. If the density coefficient is

h Datasets meshing threshold reached

Seeds $9*9$ 3 5

Wine $9*9$ 3 5

If the density coefficient is lower than the

density threshold, we define it as a candidate

anomaly subset. If the density coefficient is

higher than Fraction Seeds $9*9$ 3 5

Wine $9*9$ 3 5

If the density coefficient is lower than the

density threshold, we define it as a candidate

anomaly subset. If the density coefficient is

higher than the density threshold, we Seeds $9*9$ 3 5

Wine $9*9$ 3 5

If the density coefficient is lower than the

density threshold, we define it as a candidate

anomaly subset. If the density coefficient is

higher than the density threshold, we define it **EXECUTE:** The density coefficient is lower than the density threshold, we define it as a candidate anomaly subset. If the density coefficient is higher than the density threshold, we define it as a dense subset, which do It the density coefficient is lower than the
density threshold, we define it as a candidate
anomaly subset. If the density coefficient is
higher than the density threshold, we define it as
a dense subset, which does not fi density threshold, we define it as a candidate
anomaly subset. If the density coefficient is
higher than the density threshold, we define it as
a dense subset, which does not fit into the
candidate subset. Through grid fit anomaly subset. It the density coefficient is
higher than the density threshold, we define it as
a dense subset, which does not fit into the
candidate subset. Through grid filtering, the data
to set is initially screened t higher than the density threshold, we define it as
a dense subset, which does not fit into the
candidate subset. Through grid filtering, the data
set is initially screened to effectively remove the
most dense part of the d a dense subset, which does not fit into the
candidate subset. Through grid filtering, the data
set is initially screened to effectively remove the
most dense part of the data set and reduce the
data set to be used as smuch

execution of the algorithm, the impact of carry out removal proced
imension is eliminated. The data were method effectively red
normalized using the Min-Max Scaling method. sets. Because the local
for the data set with a dimension is eliminated. The data were method effectively reduces to
normalized using the Min-Max Scaling method
sets. Because the local density
for the data in the feature vector, Max and Min are feature of the cluster c normalized using the Min-Max Scaling method. sets. Because the local densit
For the data set with a feature, by traversing the sparse grid is small, whi
each data in the feature vector, Max and Min are feature of the clus candidate subset. Through grid filtering, the data
set is initially screened to effectively remove the
most dense part of the data set and reduce the
data set to be used as much as possible. Then,
through density-based det set is initially screened to effectively remove the
most dense part of the data set and reduce the
data set to be used as much as possible. Then,
through density-based detection method, noise
points are more accurately scr most dense part of the data set and reduce the
data set to be used as much as possible. Then,
through density-based detection method, noise
points are more accurately screened, which
improves the accuracy of the algorithm, data set to be used as much as possible. Then,
through density-based detection method, noise
points are more accurately screened, which
improves the running time and improves the
efficiency of the algorithm.
In the second through density-based detection method, noise
points are more accurately screened, which
improves the accuracy of the algorithm, greatly
reduces the running time and improves the
efficiency of the algorithm.
In the second points are more accurately screened, which
improves the accuracy of the algorithm, greatly
reduces the running time and improves the
efficiency of the algorithm.
In the second stage, based on the density-based
outlier dete mproves the accuracy of the algorithm, greatly
reduces the running time and improves the
efficiency of the algorithm.
In the second stage, based on the density-based
abnormal data set from the candidate subset and
carry ou reduces the running time and improves the efficiency of the algorithm.
In the second stage, based on the density-based outlier detection method, we finally calculate the abhormal data set from the candidate subset and carr efficiency of the algorithm.
In the second stage, based on the density-based
outlier detection method, we finally calculate the
abnormal data set from the candidate subset and
abnormal data set from the candidate subset a In the second stage, based on the density-based
outlier detection method, we finally calculate the
abnormal data set from the candidate subset and
carry out removal processing. The grid filtering
method effectively reduce outlier detection method, we finally calculate the
abnormal data set from the candidate subset and
carry out removal processing. The grid filtering
method effectively reduces the number of data
sets. Because the local dens results).

Journal of Intelligence and Knowledge Engineering (ISSN: 2959-C

clusters the initial central point of the cluster, clustering results of

improves the tightness within the cluster, clustering algorithm and

eliminates the Iournal of Intelligence and Knowledge Engineering (ISSN: 2959-C

clusters the initial central point of the cluster, clustering results of

improves the tightness within the cluster, clustering algorithm and

eliminates th 120 Journal of Intelligence and Knowledge Engineering (ISSN: 2959-06

clusters the initial central point of the cluster, clustering results of the improves the tightness within the cluster, clustering algorithm and

elimi 120 Journal of Intelligence and Knowledge Engineering (ISSN: 2959-

clusters the initial central point of the cluster, clustering results of

improves the tightness within the cluster, clustering algorithm and

eliminates 120 Journal of Intelligence and Knowledge Engineering (ISSN:

clusters the initial central point of the cluster, clustering results

improves the tightness within the cluster, clustering algorithm

eliminates the randomne 120 Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620

clusters the initial central point of the cluster, clustering results of the

improves the tightness within the cluster, clustering algorithm and the 120 Journal of Intelligence and Knowledge Engineering (ISSN: 2959-06

clusters the initial central point of the cluster, clustering results of the

improves the tightness within the cluster, clustering algorithm and the
 120

algorithms, and the clustering effect can be eliminates the initial central point of the cluster, clustering results of the

improves the tightness within the cluster, clustering algorithm and the

eliminates the ran evaluated. The experimental results clearly indicate that, in the experimental results control in this paper and the selection, and makes the clustering also within the cluster, clustering algorithm and the election, and makes the c Figure 3, the BWP index, have all also entired the substrate the significantly better than K-Means also entired the Substrate of the substrate of the initial center and makes the cluster can be divided as shown in Figure 4 120 Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620)

clusters the initial central point of the cluster, clustering results of the

improves the tightness within the cluster, clustering algorithm and th Clusters the initial central point of the cluster, clustering results
improves the transmess of the initial center algorithms introduced
election, and makes the cluster can be divided as shown in Figure
in one stage. Figur

clusters the mittal central point of the cluster, clustering results of the eimproves the rightmass within the cluster, clustering algorithm and the eimental selection, and makes the other can be divided as shown in Figur mproves the tightness within the cluster, clustering algorithm and the eliminates the randomness of the initial center algorithms introduced previous in one stage. Figure 3 shows the experimental results of the other thre eliminates the randomness of the initial center

selection, and makes the cluster can be divided

in one stage. Figure 4 and Figure 4 and Figure 4 and Figure 3, the mproved clustering algorithm and

the performance indica selection, and makes the cluster can be divided
in one stage. Figure 3 shows the experimental
in one stage. Figure 3 shows the experimental
the performance indicators of the other three
algorithms, and the clustering effec algorithm randomly selects the initial center of distance in the energiential results of the intervention of the other three $\frac{1}{2}$ and index, accuracy rate and recall rate of clustering results obtained by the GPD-K-m results of the improved clustering algorithm and
algorithms, and the clustering effect can be
algorithms, and the clustering effect can be
evaluated.
The experimental results clearly indicate that, in
Figure 3, the BWP in factor of distance in the selection of the center point, the generated data with far distance in the selection of the center point, the generated data with far distance from the center point, the generated data with far di algorithms, and the clustering effect can be

avalated.

The experimental results clearly indicate that, in

Figure 3, the BWP index, contour coefficient,

Rand index, accuracy rate and recall rate of

clustering results Experimental results clearly indicate that, in

The experimental results clearly indicate that, in

Figure 3, the BWP index, contour coefficient,

Rand index, accuracy rate and recall rate of

clustering results obtained The experimental results clearly indicate that, in

Figure 3, the BWP index, contains and read red and read red of

clustering results obtained by the GPD-K-means

algorithm proposed in this paper are

significantly bette Figure 3, the BWP index, contour coefficient,

Rand index, accuracy rate and recall rate of

algorithm proposed in this paper are

significantly better than K-Means algorithm, K-

Means $++$ algorithm and Canopy $+$ means
 Rand mdex, accuracy rate and recell rate of

algorithm proposed in this paper are

algorithm proposed in this paper are

algorithm randomly selects the initial center

Means $++$ algorithm and Canopy $+$ means

algorithm ra clustering results obtained by the GPD-K-means

algorithm proposed in this paper are

significantly better than K-Means algorithm, K-

Means $++$ algorithm and Canopy $+$ means

algorithm. The reason is that the traditiona algorithm proposed in this paper are significantly better than K-Means algorithm. The reason is that the traditional
algorithm and Canopy + means
algorithm The reason is that the traditional
algorithm randomly selects the Experimently better than K-Means algorithm, K-

Means $++$ algorithm and Canopy $+$ means

algorithm The reason is that the traditional

algorithm randomly selects the initial center

point. Although K-Means $++$ incorporat Means $++$ algorithm and Canopy $+$ means
algorithm. The reason is that the traditional
algorithm randomly selects the initial center
point, Although K-Means $++$ incorporates the
factor of distance in the selection of the algorithm. The reason is that the traditional
algorithm randomly selects the initial center
factor of distance in the selection of the center
point, the generated data with far distance from
the center point, the generate algorithm randomly selects the initial center

fractor of distance the

point, Although K-Means $+$ incorporates the

point, the generated data with far distance from

the center point is more likely to be selected as

th point. Although K-Means $+$ incorporates the
factor of distance in the selection of the center
the center point, is more likely to be selected as
the enert point is more likely to be selected as
the next clustering center and F value are greatly improved, which is effective improvement of
clustering results of the influence in the effective improvement of the effective improvement of
and F value are greatly improvement of
the effective impr point, the generated data with far distance from
the center point is more likely to be selected as
still random. In the four data sets, the proposed
algorithm has the best performance in the
evaluation index, and the BWP i the center point is more likely to be selected as

the next clustering center, and the selection is

algorithm has the best performance in the

evaluation index, and the BWP index is

obviously higher than other clusterin the next clustering center, and the selection is

still random. In the four data sets, the proposed

algorithm has the best performance in the

evaluation index, and the BWP index is

obviously higher than other clusterin Still random. In the four data sets, the proposed
algorithm has the best performance in the WP index is
obviously higher than other clustering
algorithms, which indicates that the intra-class
precision is stronger and the algorithm has the best performance in the

evaluation index, and the BWP index is

algorithms, which indicates that the intra-class

algorithms, which indicates that the inter-class

separation is stronger and the inter-c evaluation index, and the BWP index is
obviously higher than other clustering
algorithms, which indicates that the intra-class
generation is stronger and the inter-class
separation is better. Through performance
indicators by the detection is stronger and the interactions and the interaction of stronger and the interaction of th algorithms, which indicates that the intra-class

separation is storter. Through performance

indicators, it is found that accuracy, recall rate

indicators, it is found that accuracy, recall rate

and F value are greatly precision is stronger and the inter-class

indicators, it is found hat accuracy, recall rate

indicators, it is found that accuracy, recall rate

and F value are greatly improved, which

indicates that the effective impro separation is better. Through performance

indicators, it is found that accuracy, recall rate

and F value are greatly improved, which

indicates that the effective improved, which

indicates that the effective improvemen Indicators, it is found that accuracy, recall rate

ind F value are greatly improved, which

indicates that the effective improvement of

clustering results depends on the effective From the observation of dat

indicators, and F value are greatly improved, which

indicates that the effective improvement of

clustering results depends on the effective From the observation of dat

selection of initial clustering enter by central

indicators, r Indicates that the effective improvement of

clustering results depends on the effective

selection of initial clustering center by central

indicators, reasonable selection of cluster

indicators, reasonable selection of clustering results depends on the effective

selection of diate

selection of climal clustering centre by central

indicators, reasonable selection of cluster

number and removal of the influence of noise

effect in this p selection of initial clustering center by central

indicators, reasonable selection of cluster focusing and small span, are

number and removal of the influence of noise

points. It indicates that Canopy + K-Means

still a mdicators, reasonable selection of cluster

points. It indicates that Canopy + K-Means

effect in this paper is good. μ

edustering algorithm can obtain better clustering

edustering algorithm can obtain better clusteri number and removal of the influence of noise

effect in this paper is

colustreing algorithm can obtain better clustering

clustering dignotine and that in better clustering

effect. Secondly, the data is de-noised in the points. It indicates that Canopy + K-Means still a few singular values, clustering algorithm can obtain better clustering quality is high, and canceflect. Secondly, the data is de-noised in the observing Figure 5, we can c clustering algorithm can obtain better clustering
equality is high, and
effect. Secondly, the data is de-noised in the
obviously not applicate
the calculation process, which consumes a
discribution of
erration amount of ti effect. Secondly, the data is de-noised in the obviously not a
early stage, and the initial center is selected in observing Figure
the calculation process, which consumes a linear distributio
certain amount of time, but th early stage, and the initial center is selected in observing Figure 5, we can clear
the calculation process, which consumes a linear distribution of data in
certain amount of time, but the determination of small span of co

ge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
clustering results of the GDD-K-Means
clustering algorithm and the three clustering
algorithms introduced previously are compared,
as shown in Figure 4 and Figure 5. ge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
clustering results of the GDD-K-Means
clustering algorithm and the three clustering
algorithms introduced previously are compared,
as shown in Figure 4 and Figure 5. ge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
clustering results of the GDD-K-Means
clustering algorithm and the three clustering
algorithms introduced previously are compared,
as shown in Figure 4 and Figure 5. ge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024
clustering results of the GDD-K-Means
clustering algorithm and the three clustering
algorithms introduced previously are compared,
as shown in Figure 4 and Figure 5.

Visualization

Visualization

From the observation of data distribution in Figure 4, we can see that the data set has poor focusing and small span, and the cluster center of the intervalse of the paper is good. Although there are still a few singular strikted a few singular values, the cluster center quality is high, and canopy algorithm is observing Figure 5, we can see that the cluster center quality is high, and canopy algorithm is polyeuring the cluster center qua Figure 5. Wine Data Clustering Class Result
Figure 5. Wine Data Clustering Class Result
Figure 4, we can see that the data set has poor
focusing and small span, and the clustering
effect in this paper is good. Although th Figure 5. Wine Data Clustering Class Result
Figure 5. Wine Data Clustering Class Result
Figure 4, we can see that the data set has poor
focusing and small span, and the clustering
effect in this paper is good. Although th Figure 5. Wine Data Clustering Class Result
Figure 5. Wine Data Clustering Class Result
Figure 4, we can see that the data set has poor
focusing and small span, and the clustering
effect in this paper is good. Although th Figure 5. Wine Data Clustering Class Result
Figure 5. Wine Data Clustering Class Result
Visualization
From the observation of data distribution in
Figure 4, we can see that the data set has poor
focusing and small span, a Figure 5. Wine Data Clustering Class Result
Figure 5. Wine Data Clustering Class Result
Figure 5. Wine Data Clustering Class Result
From the observation of data distribution in
Figure 4, we can see that the data set has p Figure 5. Wine Data Clustering Class Result
Visualization
From the observation of data distribution in
Figure 4, we can see that the data set has poor
focusing and small span, and the clustering
effect in this paper is goo Figure 5. Wine Data Clustering Class Result
Visualization
From the observation of data distribution in
Figure 4, we can see that the data set has poor
focusing and small span, and the clustering
effect in this paper is goo **Visualization**
 From the observation of data distribution in

Figure 4, we can see that the data set has poor

focusing and small span, and the clustering

effect in this paper is good. Although there are

still a few s From the observation of data distribution in
Figure 4, we can see that the data set has poor
focusing and small span, and the clustering
effect in this paper is good. Although there are
still a few singular values, the clu Figure 4, we can see that the data set has poor
focusing and small span, and the clustering
effect in this paper is good. Although there are
still a few singular values, the cluster center
still a few singular values, the focusing and small span, and the clustering
effect in this paper is good. Although there are
still a few singular values, the cluster center
quality is high, and canopy algorithm is
obviously not applicable to this data se effect in this paper is good. Although there are
still a few singular values, the cluster center
quality is high, and canopy algorithm is
obviously not applicable to this data set. By
observing Figure 5, we can clearly see still a few singular values, the cluster center
quality is high, and canopy algorithm is
obviously not applicable to this data set. By
observing Figure 5, we can clearly see that, the
linear distribution of data integratio quality is high, and canopy algorithm is
obviously not applicable to this data set. By
observing Figure 5, we can clearly see that, the
linear distribution of data integration and the
small span of coordinate interval can obviously not applicable to this data set. By
observing Figure 5, we can clearly see that, the
linear distribution of data integration and the
small span of coordinate interval can be
considered as concentrated distributio observing Figure 5, we can clearly see that, the linear distribution of data integration and the small span of coordinate interval can be considered as concentrated distribution. For linear distribution data, through the a

By examining the visualization chart of the Cluster Head selection fra

above clustering results, it can be clearly also examined K-m

observed that the improved GDD-K-Means

clustering algorithm proposed in this paper and Fournal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 202

By examining the visualization chart of the Cluster Head selection

above clustering results, it can be clearly using enhanced F

obser Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 N

By examining the visualization chart of the Cluster Head

above clustering results, it can be clearly using enhar

observed that the improved GD Cournal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024

By examining the visualization chart of the Cluster Head selection

above clustering results, it can be clearly using enhanced K-

obs Forms With the rapid increase of Internet data, the angle 2024, 13(18): 267-3677, and the rapid increase of Internet data clustering and has a cluster performs well in data clustering and has election fraction of Angle and Sournal of Intelligence and Knowledge Engineering (ISSN: 2959-0

By examining the visualization chart of the

above clustering results, it can be clearly

observed that the improved GDD-K-Means

methods of the method of th **5. Closing Remarks**
 5. Closing Remarks and Knowledge Engineering (IS
 By examining the visualization chart of the

above clustering results, it can be clearly

observed that the improved GDD-K-Means

clustering algor Using the rapid increase of Internet data, the same of order the rapid increase of the same of the same of the same of the clustering results, it can be clearly above clustering results, it can be clearly using enhanced K-Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024

By examining the visualization chart of the Cluster Head selection

above clustering results, it can be clearly using enhanced K

obse

Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 2024

By examining the visualization chart of the Cluster Head selection fra

above clustering results, it can be clearly using enhanced K-m Dournal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 3, 20

By examining the visualization chart of the Cluster Head selection

above clustering results, it can be clearly using enhanced

observed By examine the visualization chart of the Cluster Head selection fractions
above clustering results, it can be clearly using enhanced K-m
observed that the improved GDD-K-Means mechanism. Journal of Am
clustering algorithm By examining the visualization chart of the Cluster Head selection fra

observed dat the improved GDD-K-Means

clustering algorithm proposed in this paper

eclustering algorithm proposed in this paper

performs well in dat above clustering results, it can be clearly

observed that the improved GDD-K-Means

clustering algorithm proposed in this paper

performs well in data clustering and has

significant clustering effects.

[4] Sabbagh A A, observed that the improved GDD-K-Means mechanism. Journal clustering algorithm proposed in this paper and Smart Environm performs well in data clustering and has significant clustering effects. [4] Sabbagh A A, Hamzs Enhan clustering algorithm proposed in this paper
performs well in data clustering and has 335.
significant clustering effects. [4] Sabbagh A A, I
Enhanced K-M
for Phishing At A, I
manced K-M
for Phishing At A, Bonco
noise point performs well in data clustering and has 335.

significant clustering effects. [4] Sabbagh A A, I

Enhanced K-M

for Phishing At A, I

with the rapid increase of Internet data, the

vith the rapid increase of Internet data significant clustering effects.

5. Closing Remarks

With the rapid increase of Internet data, the

19 Sabbagh A A, Hamze K,

Enhanced K-Means Clu

19 Sabbagh A A, Hamze K,

will also increase of Internet data, the

2024, 5. Closing Remarks

With the rapid increase of Internet data, the

With the rapid increase of Internet data, the

2024, 13(18): 3677-3677.

noise points of data will also increase, which [5] Klen M A, Bonduà S, Kasn

will **S. Closing Remarks** for Phishing Attack D
With the rapid increase of Internet data, the 2024, 13(18): 3677-36'
will affect the clustering effect of data. In this
will affect the clustering effect of data. In this A fuzzy With the rapid increase of Internet data, the 2024 , $13(18)$: $367/366$
noise points of data will also increase, which [5] Klen M A, Bonduà S, K
will affect the clustering effect of data. In this A fuzzy K-Means algor
n noise points of data will also increase, which

will affect the clustering effect of data. In this A fuzzy K-Means algorithm

paper, the method based on grid filtering outliers

and so provides a guarantee for the accuracy will attect the clustering eftect of data. In this

napper, the method based on grid filtering outliers

not only ensures the purity of sample data, but

also provides a guarantee for the accuracy and

timeliness of k-mean paper, the method based on grid filtering outliers

and the other discontinuity sets. Internalses provides a guarantee for the accuracy and the discontinuity sets. Internalses of k-means clustering algorithm in 182105879-1 not only ensures the purity of sample data, but

discontinuity sets. In

discontinuity sets. It

dischains a glorithm in

selecting the initialization center. Through [6] Ahmad W, Singh

dynamic outlier detection, the comp also provides a guarantee for the accuracy and

the constrained and Mining

selecting the initialization center. Through [6] Ahmad W, Singh A, Ki

dynamic outlier detection, the computational Optimizing Energy Efficier

co tmeliness of K-means clustering algorithm in $1821058/9-1058/9$.

selecting the initialization center. Through [6] Ahmad W, Singh A, K

selecting to direct the computational optimizing Energy Efficie

complexity is reduce selecting the initialization center. Through [6] Ahmad W, Singt
dynamic outlier detection, the computational Sensor Networks u
compensity is reduced and the computational Sensor Networks u
efficiency is improved to some ex dynamic outlier detection, the computational

complexity is reduced and the computational

effeciency is improved to some extent. The

effeciency is improved to some extent. The

computations

relationship between distance complexity is reduced and the computational

efficiency is improved to some extent. The Cluster Head Selection

GPD-K-Means algorithm weighs the of Communication

relationship between distance and density Information Secur efficiency is improved to some extent. The Cluster Head Selecti

GPD-K-Means algorithm weighs the of Communicatie

relationship between distance and density Information Security

through the weight and the central point in GPD-K-Means algorithm weighs the of Communication I

relationship between distance and density Information Security, 2024, The

intough the weight and the central point index, [7] Zeng B, Li S, Gao X. Thr

and solves the relationship between distance and density

thromation Security, 2024,

through the veight and solves the problem that randomly select the

mans sector clustering

number of initial central points due to the

wireless senso through the weight and the central point index,

and solves the problem that randomly select the

number of initial central points due to the wireless sensor ne

influence of the initial center selection, so that

influenc miluence of the initial center selection, so that

the improved clustering effect is better. Through

the results of different evaluation indicators, it

can be found that the proposed algorithm

achieves better results th the improved clustering effect is better. Through

the results of different evaluation indicators, it

can be found that the proposed algorithm

achieves better results than the traditional images using K-means

algorithm algorithm in the processing of different data

improvement and improvement in the screening

improvement in the screening

of noisy data. The next step of this paper will be

of noisy data. The next step of this paper will unts, but there is still room for further

overnent and improvement in the screening

organization of Retension

organization of Patterns in

e processing and analysis of text data.
 Example 19 Preciado J L A, Aké C S

e

Acknowledgments

KYLK030).

References

- or and South The next step of this paper will be

e processing and analysis of text data.

In the processing and analysis of text data.

In the processing and analysis of text data.

In the Processing and analysis of text
- to remove outliers more accurately and apply it

thentification of Pattern

to the processing and analysis of text data.

Combined with PCA am

Combined Wisualization. Mathems

This paper is supported by Changii College

V e processing and analysis of text data. among 208 Countries: K-N
 nowledgments

spaper is supported by Changji College 2591-2591.

3 Campus level Research Project (No. [10] Jahandoost A, Torghabeh

LK030). S, et al. Crud mowledgments

spaper is supported by Changii College

3 Campus level Research Project (No. [10] Jahandoost A,

LK030).

S. et al. Crude one

means cluster

emhanced by command of Big L

Performance of Cluster Heads Selecti nowledgments

Subsetted by Changii College

Subsetted by Changii College

Subsetted and the communisation. N

S. et al. Crude of

means cluster Heads Selection in [11] Nowak A B, C

DEC Protocol Using K-Means Algorithm

Su This paper is supported by Changii College 2591-2591.

2023 Campus level Research Project (No. [10] Jahandoost A, Torg

KYLK030). S. et al. Crude oil pr

means clustering

enhanced by dense

[1] Juwaied A, Strumillo J L. I Fuzzy-based States and Benderick Communication

Examples level Research Project (No. [10] Jahandoost A,

LK030).

S, et al. Crude

means cluster

means cluster

means cluster

Performance of Cluster Heads Selection in [11] LK030).

S, et al. Crude oil primes

emhanced by dense.

Juwaied A, Strumillo J L. Improving

plannal of Big Data, 2

Performance of Cluster Heads Selection in [11] Nowak A B, Czesła

DEC Protocol Using K-Means Algorithm

-

9-0620) Vol. 2 No. 3, 2024
Cluster Head selection framework in WSN
using enhanced K-means clustering
mechanism. Journal of Ambient Intelligence
and Smart Environments, 2024, 16(3): 309-
335. 9-0620) Vol. 2 No. 3, 2024

Cluster Head selection framework in WSN

using enhanced K-means clustering

mechanism. Journal of Ambient Intelligence

and Smart Environments, 2024, 16(3): 309-

335.

Sabbagh A A. Hamze K. Kha 9-0620) Vol. 2 No. 3, 2024

121

Cluster Head selection framework in WSN

using enhanced K-means clustering

mechanism. Journal of Ambient Intelligence

and Smart Environments, 2024, 16(3): 309-

335.

Sabbagh A A, Hamze K 9-0620) Vol. 2 No. 3, 2024

121

Cluster Head selection framework in WSN

using enhanced K-means clustering

mechanism. Journal of Ambient Intelligence

and Smart Environments, 2024, 16(3): 309-

335.

Sabbagh A A, Hamze K 335. 2959-0620) Vol. 2 No. 3, 2024 121

Cluster Head selection framework in WSN

using enhanced K-means clustering

mechanism. Journal of Ambient Intelligence

and Smart Environments, 2024, 16(3): 309-

335.

[4] Sabbagh A A, H 9-0620) Vol. 2 No. 3, 2024

121

Cluster Head selection framework in WSN

using enhanced K-means clustering

mechanism. Journal of Ambient Intelligence

and Smart Environments, 2024, 16(3): 309-

335.

Ehanced K-Means Clus 9-0620) Vol. 2 No. 3, 2024

121

Cluster Head selection framework in WSN

using enhanced K-means clustering

mechanism. Journal of Ambient Intelligence

and Smart Environments, 2024, 16(3): 309-

335.

Sabbagh A A, Hamze K 9-0620) Vol. 2 No. 3, 2024

121

Cluster Head selection framework in WSN

using enhanced K-means clustering

mechanism. Journal of Ambient Intelligence

and Smart Environments, 2024, 16(3): 309-

335.

Sabbagh A A, Hamze K

-
- 2959-0620) Vol. 2 No. 3, 2024

Cluster Head selection framework in WSN

using enhanced K-means clustering

mechanism. Journal of Ambient Intelligence

and Smart Environments, 2024, 16(3): 309-

335.

[4] Sabbagh A A, Hamze 9-0620) Vol. 2 No. 3, 2024

121

Cluster Head selection framework in WSN

using enhanced K-means clustering

mechanism. Journal of Ambient Intelligence

and Smart Environments, 2024, 16(3): 309-

335.

Sabbagh A A, Hamze K 9-0620) Vol. 2 No. 3, 2024 121

Cluster Head selection framework in WSN

using enhanced K-means clustering

mechanism. Journal of Ambient Intelligence

and Smart Environments, 2024, 16(3): 309-

335.

Sabbagh A A, Hamze K Cluster Head selection framework in WSN

using enhanced K-means clustering

mechanism. Journal of Ambient Intelligence

and Smart Environments, 2024, 16(3): 309-

335.

Sabbagh A A, Hamze K, Khan S, et al. An

Enhanced K-M Cluster Head selection framework in WSN
using enhanced K-means clustering
mechanism. Journal of Ambient Intelligence
and Smart Environments, 2024, 16(3): 309-
335.
Sabbagh A A, Hamze K, Khan S, et al. An
Enhanced K-Means C 182105879-105879. mechanism. Journal of Ambient Intelligence

and Smart Environments, 2024, 16(3): 309-

335.

[4] Sabbagh A A, Hamze K, Khan S, et al. An

Enhanced K-Means Clustering Algorithm

for Phishing Attack Detections. Electronics,
 and Smart Environments, 2024, 16(3): 309-

335.

Sabbagh A A, Hamze K, Khan S, et al. An

Enhanced K-Means Clustering Algorithm

for Phishing Attack Detections. Electronics,

2024, 13(18): 3677-3677.

Klen M A, Bonduà S, K 335.

Sabbagh A A, Hamze K, Khan S, et al. An

Enhanced K-Means Clustering Algorithm

for Phishing Attack Detections. Electronics,

2024, 13(18): 3677-3677.

Klen M A, Bonduà S, Kasmaeeyazdi S, et al.

A fuzzy K-Means algo Sabbagh A A, Hamze K, Khan S, et al. An
Enhanced K-Means Clustering Algorithm
for Phishing Attack Detections. Electronics,
2024, 13(18): 3677-3677.
Klen M A, Bonduà S, Kasmaeeyazdi S, et al.
A fuzzy K-Means algorithm based Enhanced K-Means Clustering Algorithm
for Phishing Attack Detections. Electronics,
2024, 13(18): 3677-3677.
Klen M A, Bonduà S, Kasmaeeyazdi S, et al.
A fuzzy K-Means algorithm based on Fisher
distribution for the identifi for Phishing Attack Detections. Electronics,
2024, 13(18): 3677-3677.
Klen M A, Bonduà S, Kasmaeeyazdi S, et al.
A fuzzy K-Means algorithm based on Fisher
distribution for the identification of rock
discontinuity sets. Int 2024, 13(18): 36//-36//.

[5] Klen M A, Bonduà S, Kasmaeeyazdi S, et al.

A fuzzy K-Means algorithm based on Fisher

distribution for the identification of rock

discontinuity sets. International Journal of

Rock Mechanic
- Klen M A, Bondua S, Kasmaeeyazdı S, et al.

A fuzzy K-Means algorithm based on Fisher

distribution for the identification of rock

discontinuity sets. International Journal of

Rock Mechanics and Mining Sciences, 2024,

1 A fuzzy K-Means algorithm based on Fisher
distribution for the identification of rock
discontinuity sets. International Journal of
Rock Mechanics and Mining Sciences, 2024,
182105879-105879.
Ahmad W, Singh A, Kumar S, et a distribution for the identification of rock
discontinuity sets. International Journal of
Rock Mechanics and Mining Sciences, 2024,
182105879-105879.
Ahmad W, Singh A, Kumar S, et al.
Optimizing Energy Efficiency in Wireles discontinuity sets. International Journal of

Rock Mechanics and Mining Sciences, 2024,

182105879-105879.

Ahmad W, Singh A, Kumar S, et al.

Optimizing Energy Efficiency in Wireless

Sensor Networks using Enhanced K-Mean Rock Mechanics and Mining Sciences, 2024,
182105879-105879.

[6] Ahmad W, Singh A, Kumar S, et al.

Optimizing Energy Efficiency in Wireless

Sensor Networks using Enhanced K-Means

Cluster Head Selection. International Jo 1821058/9-1058/9.

Ahmad W, Singh A, Kumar S, et al.

Optimizing Energy Efficiency in Wireless

Sensor Networks using Enhanced K-Means

Cluster Head Selection. International Journal

of Communication Networks and

Informat
-
- Ahmad W, Singh A, Kumar S, et al.

Optimizing Energy Efficiency in Wireless

Sensor Networks using Enhanced K-Means

Cluster Head Selection. International Journal

of Communication Networks and

Information Security, 2024, Optimizing Energy Efficiency in Wireless

Sensor Networks using Enhanced K-Means

Cluster Head Selection. International Journal

of Communication Networks and

Information Security, 2024, 16(3): 565-573.

Zeng B, Li S, Gao Sensor Networks using Enhanced K-Means
Cluster Head Selection. International Journal
of Communication Networks and
Information Security, 2024, 16(3): 565-573.
Zeng B, Li S, Gao X. Threshold-driven K-
means sector clusterin 930-953. of Communication Networks and

Information Security, 2024, 16(3): 565-573.

[7] Zeng B, Li S, Gao X. Threshold-driven K-

means sector clustering algorithm for

wireless ensor networks. EURASIP Journal

on Wireless Communi Information Security, 2024, 16(3): 565-573.
Zeng B, Li S, Gao X. Threshold-driven K-
means sector clustering algorithm for
wireless sensor networks. EURASIP Journal
on Wireless Communications and
Networking, 2024, 2024(1):
- rowement and improvement in the screening and the server of this paper will be [9] Preciado J L A, Aké C S.

emove outliers more accurately and apply it allentification of Patterns in

emoves outliers more accurately and a Zeng B, L1 S, Gao X. Threshold-driven K-
means sector clustering algorithm for
wireless sensor networks. EURASIP Journal
on Wireless Communications and
Networking, 2024, 2024(1): 68-68.
Kaizheng W, Yitong F, Shunzhen Z, et means sector clustering algorithm for
wireless sensor networks. EURASIP Journal
on Wireless Communications and
Networking, 2024, 2024(1): 68-68.
Kaizheng W, Yitong F, Shunzhen Z, et al.
Cloud detection from Himawari-8 spec wireless sensor networks. EURASIP Journal

on Wireless Communications and

Networking, 2024, 2024(1): 68-68.

Kaizheng W, Yitong F, Shunzhen Z, et al.

Cloud detection from Himawari-8 spectral

images using K-means ++ clus 2591-2591. Networking, 2024, 2024(1): 68-68.

[8] Kaizheng W, Yitong F, Shunzhen Z, et al.

Cloud detection from Himawari-8 spectral

images using K-means $+$ clustering with

the convolutional module. International

Journal of Remo Kaizheng W, Yitong F, Shunzhen Z, et al.
Cloud detection from Himawari-8 spectral
images using K-means ++ clustering with
the convolutional module. International
Journal of Remote Sensing, 2024, 45(3):
930-953.
Preciado J Cloud detection from Himawari-8 spectral
images using K-means ++ clustering with
the convolutional module. International
Journal of Remote Sensing, 2024, 45(3):
930-953.
Preciado J L A, Aké C S, Martínez V F.
Identificatio images using K-means ++ clustering with
the convolutional module. International
Journal of Remote Sensing, 2024, 45(3):
930-953.
Preciado J L A, Aké C S, Martínez V F.
Identification of Patterns in CO2 Emissions
among 208 the convolutional module. International
Journal of Remote Sensing, 2024, 45(3):
930-953.
Preciado J L A, Aké C S, Martínez V F.
Identification of Patterns in CO2 Emissions
among 208 Countries: K-Means Clustering
Combined w Journal of Remote Sensing, 2024, 45(3):

930-953.

[9] Preciado J L A, Aké C S, Martínez V F.

Identification of Patterns in CO2 Emissions

among 208 Countries: K-Means Clustering

Combined with PCA and Non-Linear t-SNE

V 930-953.

Preciado J L A, Aké C S, Martínez V F.

Identification of Patterns in CO2 Emissions

among 208 Countries: K-Means Clustering

Combined with PCA and Non-Linear t-SNE

Visualization. Mathematics, 2024, 12(16):

25 Preciado J L A, Akè C S, Martinez V F.
Identification of Patterns in CO2 Emissions
among 208 Countries: K-Means Clustering
Combined with PCA and Non-Linear t-SNE
Visualization. Mathematics, 2024, 12(16):
2591-2591.
Jahando
	- Identification of Patterns in CO2 Emissions

	among 208 Countries: K-Means Clustering

	Combined with PCA and Non-Linear t-SNE

	Visualization. Mathematics, 2024, 12(16):

	2591-2591.

	Jahandoost A, Torghabeh A F, Hosseini A
 among 208 Countries: K-Means Clustering

	Combined with PCA and Non-Linear t-SNE

	Visualization. Mathematics, 2024, 12(16):

	2591-2591.

	[10] Jahandoost A, Torghabeh A F, Hosseini A

	S, et al. Crude oil price forecasting us Combined with PCA and Non-Linear t-SNE
Visualization. Mathematics, 2024, 12(16):
2591-2591.
Jahandoost A, Torghabeh A F, Hosseini A
S, et al. Crude oil price forecasting using K-
means clustering and LSTM model
enhanced by Visualization. Mathematics, 2024, 12(16):
2591-2591.
Jahandoost A, Torghabeh A F, Hosseini A
S, et al. Crude oil price forecasting using K-
means clustering and LSTM model
enhanced by dense-sparse-dense strategy.
Journal o 2591-2591.

	Jahandoost A, Torghabeh A F, Hosseini A

	S, et al. Crude oil price forecasting using K-

	means clustering and LSTM model

	enhanced by dense-sparse-dense strategy.

	Journal of Big Data, 2024, 11(1): 117-117.

	No
	-
	- Jahandoost A, Torghabeh A F, Hossemi A
S, et al. Crude oil price forecasting using K-
means clustering and LSTM model
enhanced by dense-sparse-dense strategy.
Journal of Big Data, 2024, 11(1): 117-117.
Nowak A B, Czesław H