Thermoelastic Dynamic Analysis of Microbeams Under Laser Pulse

Mengyao Cui1,2 , Ming He1,2 , Yanbing Liang2,*

*¹Hebei Key Laboratory of Data Science and Application, North China University of Science and Technology, Tangshan, Hebei, China ²College of Science, North China University of Science and Technology, Tangshan, Hebei, China *Corresponding Author*

Abstract: In this paper the thermoelastic dynamic response of microbeam under laser pulse and the influence by noise interference are investigated for the first time. the governing equations of the microbeam are $(1 + \tau_q D_q^a)q = -K(1$ **established by the fractional order twophase hysteresis model and the Kelvin-Voigt model, and are solved using the shifted Chebyshev polynomials algorithm. Finally, some numerical simulations are provided, which demonstrate the validity the efficiency and robustness by the proposed method.**

Keywords: Microbeams; Fractional Order; Shifted Chebyshev Polynomials; Thermoelasticity

1. Introduction

1. Introduction
Microbeams are significant on the micronanoscale, and are employed extensively in a number of fields, including sensing, actuation and precision control [1]. Although the mechanical properties of viscoelastic materials have been well studied, research on their thermoelastic behaviour remains relatively understudied. Along with the accelerated advancement of laser technology, there has been a growing focus on the utilisation of laser load in viscoelastic structures. Putting a specific degree of laser loading on the microbeam causes increasing the temperature of the microbeam structure, resulting in thermal expansion and subsequent changes in strain and deformation of the microbeam [2].

Fourier's law of heat conduction is a foundational law that describes the heat conduction behaviour in solids. However, it has been observed that the law may have limitations in describing the heat conduction to a load free behaviour of complex materials. To address form of behaviour of complex materials. To address this, two-phase hysteresis model [3] and

fractional order have been introduced to better describe the dynamic behaviour of these materials [4-5].

$$
(1 + \tau_{\alpha} D_{t}^{\alpha}) q = -K \left(1 + \tau_{\tau} D_{t}^{\alpha}\right) \nabla T \tag{1}
$$

where K is the thermal conductivity of the material.

nent (ISSN: 2959-0612) Vol. 2 No. 3, 2024
 crobeams Under Laser
 crobeams Under Laser
 china
 D
 D
 c
 c
 c
 c
 The fractional order two-phase hysteresis model is a more comprehensive analytical tool for examining the temperature change and heat transfer behaviour of materials subjected to thermal shock. In this paper, Caputo fractionalorder derivatives [6-7] are employed to more accurately capture the dynamic response properties of the materials. the shifted Chebyshev polynomial algorithm is used to solve governing equations of the viscoelastic microbeam in the time domain directly and discretises it into a set of linear algebraic Subsequently, numerical simulations of the microbeams are carried out using the MATLAB programme. et is a more comprenents we analytical too
examining the temperature change and heat
for behaviour of materials subjected to
mal shock. In this paper, Caputo fractional-
retervatives [6-7] are employed to more
arately cap Imming the temperature change and near
 t r behaviour of materials subjected to

1 shock. In this paper, Caputo fractional-

derivatives [6-7] are employed to more

telty caputer the dynamic response

ties of the metrai e fractional order two-phase hysteresis
del is a more comprehensive analytical tool
examing the temperature change and heat
examing the temperature change and heat
transl shock. In this paper, Caputo fractional-
urately c The fractional order two-phase hysteresis
model is a more comprehensive analytical tool
for examining the temperature change and heat
transfer behaviour of materials subjected to
thermal shock. In this paper, Caputo fract The tractional order two-phase hysterests

model is a more compenentive analytical tool

for examining the temperature change and heat

transfer behaviour of materials subjected to

for examining the temperature change an model is a more comprehensive analytical tool
for examining the temperature change and heat
transfer behaviour of materials subjected to
thermal shock. In this paper, Caputo fractional-
order derivatives [6-7] are employe mal shock. In this paper, Caputo fractional-
 r derivatives [6-7] are employed to more

rately capture the dynamic response

errites of the materials. the shifted

byshev polynomial algorithm is used to

colonam in the vatives [6-7] are employed to more
capture the dynamic response
of the materials. the shifted
of the materials and the singled to polynomial algorithm is used to
rening equations of the viscoelastic
in the time domain dir rately capture the dynamic response

retries of the materials. the shifted

retries of the materials. the shifted

by sheve polynomial algorithm is used to

governing equations of the viscoelastic

clobeam in the time dom or the materials. the sime
or polynomial algorithm is used to
erning equations of the viscoelastic
in in the time domain directly and
is it into a set of linear algebraic
sites in the sime domain directly and
site of the mining the temperature change and heat

r behaviour of materials subjected to

d shock. In this paper, Caputo fractional-

derivatives [6-7] are employed to more

tely capture the dynamic response

tely capture the dynami ivatives [6-7] are employed to more
y capture the dynamic response
s of the materials. the shifted
v rolynomial algorithm is used to
verming equations of the viscoclastic
m in the time domain directly and
s it into a set ining the temperature change and heat
behaviour of materials subjected to
behaviour of materials subjected to
shock. In this paper, Caputo fractional-
rivatives [6-7] are employed to more
by capture the dynamic response
e i can
ansfer behaviour of materials subjected to
ermal shock. In this paper, Caputo fractional-
der derivatives [6-7] are employed to more
ccurately capture the dynamic response
operties of the materials. the shifted
heby behaviou of materials subjected to
block. In this paper, Caputo fractional-
rivatives [6-7] are employed to more
by capture the dynamic response
ex of the materials. the shifted
every polynomial algorithm is used to
verni der derivatives [6-7] are employed to more
curately capture the dynamic response
operties of the materials. the shifted
heblyshev polynomial algorithm is used to
heblyshev polynomial algorithm is used to
live governing eq

2. Modeling

The equations of motion and fractional order heat transfer equations are derived as follows by establishing the thermal stresses defined by the Kelvin-Voigt model [8], bending moment equations, the law of conservation of energy and the fractional order two-phase hysteresis model. quations. Subsequently, numerical
imulations of the microbeams are carried out
sing the MATLAB programme.
 .. Modeling

The equations of motion and fractional order

eat transfer equations are derived as follows

y esta 3 of the microbeams are carried out

1ATLAB programme.
 g

ons of motion and fractional order

er equations are derived as follows

ining the thermal stresses defined by

-Voigt model [8] bending moment

the law of cons IATLAB programme.

g

ons of motion and fractional order

r equations are derived as follows

ing the thermal stresses defined by

Voigt model [8] bending moment

the law of conservation of energy

ctional order two-phase **h h MATLAB** programme.
 lodeling

equations of motion and fractional order

transfer equations are derived as follows

stablishing the thermal stresses defined by

Kelvin-Voigt model [8] bending moment

trions, the microbeam in the time domain directly and
discretises it into a set of linear algebraic
equations. Subsequently, numerical
equations of the microbeams are carried out
simulations of the microbeams are carried out
sing the

$$
\left(1+\tau_{d}\frac{\partial}{\partial t}\right)\left[\frac{\partial^{4}\omega}{\partial x^{4}}+\frac{24\alpha_{r}}{h\pi^{2}}\frac{\partial^{2}T}{\partial x^{2}}\right]+\frac{\rho A}{EI}\frac{\partial^{2}\omega}{\partial t^{2}}+\frac{\sigma_{0}A}{EI}\frac{\partial^{2}\omega}{\partial x^{2}}=0, (2)
$$
\n
$$
\left(1+\tau_{r}D_{t}^{\alpha}\right)\left(\frac{\partial^{2}}{\partial x^{2}}-\frac{\pi^{2}}{h^{2}}\right)T+\frac{\pi^{2}}{2Kh^{2}}\left(1+\tau_{q}D_{t}^{\alpha}\right)\int_{-2/h}^{2/h}zFdz=\left(1+\tau_{q}D_{t}^{\alpha}\right)\left[\frac{\rho C}{K}\frac{\partial T}{\partial t}-\frac{\alpha_{r}\pi^{2}hT_{0}E}{24K}\left(1+\tau_{d}\frac{\partial}{\partial t}\right)\left(\frac{\partial^{3}\omega}{\partial t\partial x^{2}}\right)\right]
$$
\n(3)

It is assumed that the microbeam is subjected to a load from a heat source applied in the $laser$ pulse $[9-10]$ $F = F_0 \delta(x - vt) F(t)$, where F_0 represent the

http://www.stemmpress.com Copyright @ STEMM Institute Press

power density.

3. Solution Process

3.1 Shift Chebyshev Polynomials

The shifted Chebyshev polynomials is derived
the recurrence relation in the interval $[0, 1]$ $[1]$ ¹¹ the recurrence relation in the interval $[0, L]$ $[1]$ [:] $\qquad \qquad$ \qquad \qquad :

$$
D_{i+1}(t) = 2\left(\frac{2t}{L} - 1\right)D_i(t) - D_{i-1}(t), \quad i \in N_+.\tag{4}
$$

and of Industry and Engineering Management (ISSN: 2959-0612) Vol. 2

wer density.
 Definition 2
 Solution Process
 Solution Process
 Solution Process
 Solution Process
 Solution Process
 Solution Process
 S The vector consisting of the shifted Chebyshev polynomials is given a^{α} by the contract of the contrac

$$
\Phi_n(t) = [D_0(t), D_1(t), \dots, D_n(t)]^T = KG_n(t) ,
$$

where
$$
k_{ii} = 1
$$
 if $i = j = 0$

where
$$
G_n(t) = [1, t, t^2, \dots, t^n]^T
$$
, $K = [k_{ij}]_{i,j=0}^n$,
\nwhere $k_{ij} = 1$ if $i = j = 0$;
\nwhere $k_{ij} = 0$ if $i < jori < 0ori < 0$;
\n $k_{ij} = 2\left(\frac{2}{L}k_{i-1,j-1} - k_{i-1,j}\right) - k_{i-2,j}$ else.
\n3.2 Function Approximation
\nThe truncated sequence of two-dimensional
\ncontinuous function $\omega(x, t)$ can be expressed:

3.2 Function Approximation

The truncated sequence of two-dimensional

$$
\Phi_n(t) = [D_0(t), D_1(t), ..., D_n(t)] = KG_n(t) ,
$$
\nwhere $G_n(t) = [1, t, t^2, ..., t^n]^T$, $K = [k_{ij}]_{i,j=0}^n$,
\nwhere $k_{ij} = 1$ if $i = j = 0$;
\nwhere $k_{ij} = 0$ if $i < jori < 0ori < 0$;
\n $k_{ij} = 2\left(\frac{2}{L}k_{i-1,j-1} - k_{i-1,j}\right) - k_{i-2,j}$ else.
\n3.2 Function Approximation
\nThe truncated sequence of two-dimensional
\ncontinuous function $\omega(x, t)$ can be expressed:
\n $\omega(x, t) \approx \sum_{i=0}^n \sum_{j=0}^n u_{ij}D_i(x)D_j(t) = \Phi_n^T(x)U\Phi_n(t)$,
\n(5)
\nwhere $U = [u_{ij}]^{n,n}$

where
$$
k_{ij} = 0
$$
 if $i < 3$ for ≤ 6 of $k_{ij} = 2\left(\frac{2}{L}k_{i-1,j-1} - k_{i-1,j}\right) - k_{i-2,j}$ else.

\n3.2 Function Approximation

\nThe truncated sequence of two-dimensional continuous function $\omega(x, t)$ can be expressed:

\n
$$
\omega(x, t) \approx \sum_{i=0}^{n} \sum_{j=0}^{n} u_{ij} D_i(x) D_j(t) = \Phi_n^T(x) U \Phi_n(t)
$$
\n(5)

\nwhere $U = \left[u_{ij}\right]_{i,j=0}^{n,n}$, $+\frac{\alpha_T}{T}$

\n
$$
u_{ij} = \frac{1}{k_i k_j} \int_0^L \int_0^T \omega(x, t) D_i(x) D_j(t) \omega_L(x) \omega_T(t) \, dt \, dx
$$
\nSimilarly,

\n
$$
T(x, t) \approx \sum_{i=0}^{n} \sum_{j=0}^{n} w_{ij} D_i(x) D_j(t) = \Phi_n^T(x) W \Phi_n(t)
$$
\n3.3 Differential Operator Matrices of Shifted Chebyshev Polynomials

\nDefinition 1 The first order differential

\n1, 1

$$
T(x,t) \approx \sum_{i=0}^{n} \sum_{j=0}^{n} w_{ij} D_i(x) D_j(t) = \Phi_n^T(x) W \Phi_n(t) \cdot
$$

Shifted Chebyshev Polynomials

Definition 1 The first order differential operator matrix H^1 of the shifted Chebyshev

polynomials $\Phi_{n}(x)$ is defined as follows:

Similarly,
\n
$$
T(x,t) \approx \sum_{i=0}^{n} \sum_{j=0}^{n} w_{ij}D_i(x)D_j(t) = \Phi_n^T(x)W\Phi_n(t)
$$
.\n\n**According to the variabola** Accordin-
\n**Shifted Chebyshev Polynomials**
\n**Definition 1 The first order differential**
\n $Q_n(x)$ is defined as follows:
\n $\Phi_n(x) = (KG_x(x))' = K(G_x(x))' =$
\n $K(K_x^{-1}\Phi_n(x))' = KPK^{-1}\Phi_n(x) = H_x^1\Phi_n(x)$, (6)
\n $\Phi_n(y) = 0$.\n\nwhere $P = \begin{bmatrix} p_{ij} \end{bmatrix}_{i,j=0}^{n}$, where $p_{ij} = i$ if $i = j+1$.\n\n $P_{ij} = 0$ else.
\nThe integer differential operators matrix of the shifted Chebyshev polynomials is defined
\n $\Phi_n(y) = 0$ is the sum of the
\n*suber* of the
\n*sub*

The integer differential operators matrix of the shifted Chebyshev polynomials is defined by: $\Phi_n^{(m)}(x) = (KPK^{-1})^m \Phi_n(x) = H_{x}^m \Phi_n(x)$. the microbeam

(Journal of Industry and Engineering Management (ISSN: 2959-0612) Vol. 2 No. 3, 2024

2000 by down density.

3. **Solution Process**

3. **Solution Process**

3. **Solution Process**

3. **Solution Process**

3. **Colution Process al** of Industry and Engineering Management (ISSN: 2959-0612) Vol. 2 No. 3, 2024
 D eff antition **Process**
 D the variable fractional order
 differential operator's matrix $H_i^{\alpha}(t)$ **of the

hift Chebyshev Polynomia** of Industry and Engineering Management (ISSN: 2959-0612) Vol. 2 No. 3, 2024

density.
 Definition 2 The variable fractional

differential operator's matrix $H_i^{\alpha}(t)$ o

shifted Chebyshev polynomials

defined as follows mal of Industry and Engineering Management (ISSN: 2959-0612) Vol. 2 No. 3, 2024

Ver density.
 Definition 2 The variable fractional order

differential operator's matrix $H_i^s(f)$ of the

shifted Chebyshev polynomials

s *ⁿ ⁿ ⁿ t t D t ^D D t K t ^G* , where ² () [1, , , ,] *n T G t t t t ⁿ* , , 0 *Khanagement (ISSN: 2959-0612)* Vol. 2 No. 3, 2024
 IPhritical Operator's matrix $H_i^{\alpha}(t)$ **of the differential operator's matrix** $H_i^{\alpha}(t)$ **of the shifted Chebyshev polynomials** $\Phi_{\alpha}(x)$ **is defined as follows:
 D_i^{\ Definition 2 The** variable fractional order 59-0612) Vol. 2 No. 3, 2024 19
 Definition 2 The variable fractional order

differential operator's matrix $H_t^{\alpha}(t)$ of the

shifted Chebyshev polynomials $\Phi_n(x)$ is

defined as follows:
 $D_t^{\alpha}\Phi_n(t) = KD_t^{\alpha}(G_t(t)) = KP^{\alpha}G_t$ differential operator's matrix $H_t^{\alpha}(t)$ of the 59-0612) Vol. 2 No. 3, 2024 19
 Definition 2 The variable fractional order

differential operator's matrix $H_i^{\alpha}(t)$ of the

shifted Chebyshev polynomials $\Phi_n(x)$ is

defined as follows:
 $D_i^{\alpha}\Phi_n(t) = KD_i^{\alpha}(G_i(t)) = KP^{\alpha}G_i$ $\Phi_n(x)$ is defined as follows: 1. 2 No. 3, 2024 19

2 The variable fractional order

operator's matrix $H_t^{\alpha}(t)$ of the

debyshev polynomials $\Phi_n(x)$ is

follows:
 $D_t^{\alpha}\Phi_n(t) = KD_t^{\alpha}(G_t(t)) = KP^{\alpha}G_t(t) =$
 $\Phi_n(t) = H_t^{\alpha}\Phi_n(t)$, (7)
 $p^{\alpha} = \left[p_{ij}^{\alpha}\right]_{i,j=0}^{$ 19

ble fractional order

atrix $H_t^{\alpha}(t)$ of the

nomials $\Phi_n(x)$ is
 $(G_t(t)) = KP^{\alpha}G_t(t) =$
 t), (7)
 $\int_{i,j=0}^{n}$, where
 $= j = 0$; where 19

al order

of the
 (x) is
 ${}^{\alpha}G_t(t) =$
 (7)

where

where *Vol.* 2 No. 3, 2024 19
 nn 2 The variable fractional order

al operator's matrix $H_i^{\alpha}(t)$ of the

Chebyshev polynomials $\Phi_n(x)$ is

s follows:
 $D_i^{\alpha}\Phi_n(t) = KD_i^{\alpha}(G_t(t)) = KP^{\alpha}G_t(t) =$
 $-1\Phi_n(t) = H_i^{\alpha}\Phi_n(t),$ (7)
 $p^{\alpha} = \left$ 19

le fractional order

rix $H_t^{\alpha}(t)$ of the

omials $\Phi_n(x)$ is
 $G_t(t) = KP^{\alpha}G_t(t) =$

,, (7)

,,

,j=0 ; where
 $j = 0$; where *i*₀. 3, 2024 19
 The variable fractional order

rator's matrix $H_i^{\alpha}(t)$ of the

shev polynomials $\Phi_n(x)$ is

ws:

ws:
 $n(t) = KD_i^{\alpha}(G_t(t)) = KP^{\alpha}G_t(t) =$
 $\hat{H}_i^{\alpha} \Phi_n(t)$, (7)
 $p^{\alpha} = \left[p_{ij}^{\alpha}\right]_{i,j=0}^{n}$, where
 $i \ne$. 3, 2024 19

he variable fractional order

ator's matrix $H_t^{\alpha}(t)$ of the

ev polynomials $\Phi_n(x)$ is

s:
 $(t) = KD_t^{\alpha}(G_t(t)) = KP^{\alpha}G_t(t) =$
 $= H_t^{\alpha}\Phi_n(t)$, (7)
 $\alpha = \left[p_{ij}^{\alpha} \right]_{i,j=0}^{n}$, where
 $\neq j$ or $i = j = 0$; where 3, 2024 19

2 variable fractional order

br's matrix $H_t^{\alpha}(t)$ of the

7 polynomials $\Phi_n(x)$ is
 $= KD_t^{\alpha}(G_t(t)) = KP^{\alpha}G_t(t) =$
 $H_t^{\alpha}\Phi_n(t)$, (7)
 $= \left[P_{ij}^{\alpha}\right]_{i,j=0}^{n}$, where
 j or $i = j = 0$; where

else. 0612) Vol. 2 No. 3, 2024
 if inition 2 The variable fractional order

fferential operator's matrix $H_i^{\alpha}(t)$ of the

fferential operator's matrix $H_i^{\alpha}(t)$ of the

fifted Chebyshev polynomials $\Phi_n(x)$ is

fined as fol bl. 2 No. 3, 2024 19

1 2 The variable fractional order

1 operator's matrix $H_i^a(t)$ of the

hebyshev polynomials $\Phi_n(x)$ is

follows:
 $D_i^{\alpha} \Phi_n(t) = K D_i^{\alpha}(G_t(t)) = K P^{\alpha} G_t(t) =$
 $1 \Phi_n(t) = H_i^{\alpha} \Phi_n(t)$, (7)
 $p^{\alpha} = \left[p_{ij}^{\alpha}$ (0612) Vol. 2 No. 3, 2024
 efinition 2 The variable fractional order

fferential operator's matrix $H_i^{\alpha}(t)$ of the

difted Chebyshev polynomials $\Phi_n(x)$ is

fined as follows:
 $D_i^{\alpha}\Phi_n(t) = K D_i^{\alpha}(G_i(t)) = K P^{\alpha}G_i(t) =$
 $K P$ 2) Vol. 2 No. 3, 2024

19
 tion 2 The variable fractional order

mtial operator's matrix $H_i^a(t)$ of the

L Chebyshev polynomials $\Phi_n(x)$ is

d as follows:
 $D_i^a \Phi_n(t) = K D_i^a(G_t(t)) = K P^a G_t(t) =$
 ${}^a K^{-1} \Phi_n(t) = H_i^a \Phi_n(t)$, (7)

$$
D_t^{\alpha} \Phi_n(t) = K D_t^{\alpha} (G_t(t)) = K P^{\alpha} G_t(t) = K P^{\alpha} K^{-1} \Phi_n(t) = H_t^{\alpha} \Phi_n(t), \tag{7}
$$

where $p^{\alpha} = \left[p_{ii}^{\alpha}\right]_{\alpha}^{n}$, where

 $p_{ij}^{\alpha} = 0$ if $i \neq j$ or $i = j = 0$; where $p_{ii}^{\alpha} = \frac{\Gamma(i+1)}{\Gamma(i+1)}$ else. $=\frac{\Gamma(i+1)}{\Gamma(i+1)}$ else.

$$
p_{ij}^{\alpha} = \frac{1 + (i + 1)}{\Gamma(i + 1 - \alpha)}
$$
 else.

where

n **3.4 Equation Discretisation**

shifted Chebyshev polyno

defined as follows:

derived
 *I*_c^{*i*} *i*_{*i*} *I*^c
 *I*_c^{*i*} *i* *I*^c
 *i*_{*i*} *i i i i p*^α = *I*_c^{*i*} *i*_{*i*}

byshev
 $p_{ij}^{\alpha} = 0$ if $i \neq j$ or $i =$

given
 p_{ij} Based on the above differential operator matrixs, the microbeam control equations (2) and (3) can be transformed into the following operator matrix forms:

Journal of Industry and Engineering Management (ISSN: 2959-0612) Vol. 2 No. 3, 2024
\npower density.
\n3. Solution Process
\n3. Solution Chebyshev Polynomials
\n3.1 Shift Chebyshev Polynomials
\nThis child Chebyshev polynomials
\nFhe shifted Chebyshev polynomials
\nFhe estimated Chebyshev polynomials
\n
$$
D_{n,1}(t) = \int_{t}^{2} (2t-1) D_{n}(t) = D_{n,1}(t)
$$
\n
$$
D_{n,2}(t) = \int_{t}^{2} (2t-1) D_{n,1}(t) = N_{n,2}(t)
$$
\n
$$
D_{n,3}(t) = \int_{t}^{2} (2t-1) D_{n,3}(t) = N_{n,3}(t)
$$
\nwhere $U_{n,1} = \int_{t}^{2} (2t-1) D_{n,3}(t) = N_{n,3}(t)$
\nwhere $U_{n,1} = \int_{t}^{2} (2t-1) D_{n,1}(t) = N_{n,1}(t)$
\n
$$
D_{n,2}(t) = \left[\frac{2t-1}{t} \right] D_{n,1}(t) = D_{n,2}(t)
$$
\nwhere $P_{n} = 0$ if $i \neq j$ or $i = j = 0$;
\nwhere $V_{n} = 0$ if $i = j = 0$
\n
$$
D_{n} = 0
$$
 if $i \neq j$ and i (3) can be transformed into the following
\nwhere $k_{n} = 0$ if $i < j \neq j$.
\n
$$
k_{n} = 0
$$
 if $i < j \neq j$ else.
\n
$$
k_{n} = 0
$$
 if $i < j \neq j$ else.
\n
$$
k_{n} = 0
$$
 if $i < j \neq j$ else.
\n
$$
k_{n} = 0
$$
 if $i < j \neq j$ else.
\n
$$
k_{n} = 0
$$
 if $i < j \neq j$ else.
\n
$$
k_{n} = 0
$$
 if $i < j \neq j$ else.
\n
$$
k_{n} = 0
$$

(a) $L = [u_{ij}]_{i,j=0}^{n,m}$
 $V = [u_{ij}]_{i,j=0}^{n,m}$
 $+ \frac{\alpha_7 \pi^2 h T_0 E}{24K} \tau_0 (\theta_5^n)(H_5^n)UH_7^H H_7^H \theta_n(t)$
 $+ \frac{\alpha_7 \pi^2 h T_0 E}{24K} \tau_0 (\theta_5^n)(H_5^n)UH_7^H H_7^H \theta_n(t)$
 $+ \frac{\alpha_7 \pi^2 h T_0 E}{24K} \tau_0 (\theta_5^n)(H_5^n)UH_7^H H_7^H \theta_n(t)$
 $+ \frac{\alpha_$ *n* $L = \frac{1}{k} \int_0^k \int_0^{\pi/2} \omega(x) D_i(x) D_i(x) \omega_x(x) \omega_x(x) dx$
 $= \frac{1}{k} \int_0^k \int_0^k \int_0^k \omega(x, D_i(x) D_i(x)) \omega_x(x) \omega_x(x) dx$
 $= \frac{1}{k} \int_0^k \int_0^k \int_0^k \omega(x, D_i(x)) D_i(x) D_i(x) \omega_x(x) \omega_x(x) dx$
 $= \frac{1}{k} \int_0^k \int_0^k \omega(x, D_i(x)) U_i(x) D_i(x) \omega_x(x) \omega_x(x) dx$
 $= \frac$ According to the method of matching points, $\frac{2i-1}{i}$ i – 0.1.2 ... m. $2m$ and $2m$ and $2m$, = 0,1,2, ⋯, [−] 1, $t_j = \frac{2j-1}{2m}T, j = 0,1,2,\dots, m-1$. Th $2m$ \sim $2m$ $\varphi_n^1(x)(H_x^2)^t U H_t^{\alpha} H_t^{\alpha} \varphi_n(t)$
 $+ \tau_d \varphi_n^T(x) (H_x^2)^T U H_t^{\alpha} H_t^2 \varphi_n(t)$
 $\frac{\pi}{\kappa} \varphi_n^T(x) W H_t^{\alpha} H_t^1 \varphi_n(t) - \frac{\pi^2}{2\kappa h^2} (1 + \tau_q D_t^{\alpha}) \int_{-2/h}^{2/h} z F dz = 0.$ (9)

ne method of matching points,
 x, t is discretised into numerical solution of the control equations (2) and (3) is then obtained through the MATLAB programme. + $\frac{\alpha_{\tau}\pi^2 hT_0 E}{24K} + \frac{1}{4}e^2 \kappa_x (x) (n_x^2)^T U H_i^{\alpha} H_i^1 \phi_n(t)$
 $+ \frac{\alpha_{\tau}\pi^2 hT_0 E}{24K} \tau_q (\Phi_n^{\pi}(x) (H_i^2)^T U H_i^{\alpha} H_i^1 \phi_n(t) - \frac{\pi^2}{2Kh^2} (1 + \tau_q \Phi_n^{\pi}(x)) H_i^{\alpha} H_i^1 \phi_n(t) - \frac{\pi^2}{2Kh^2} (1 + \tau_q \Phi_n^{\alpha}(x)) \frac{1}{\sum_{\ell} n} z R dz = 0.$

4. Numerical Results

The Lord-Shulman fractional order thermoelastic model (abbreviated as FVLS, $\tau_a = 0$) and the fractional order thermoelastic two-phase lag model (abbreviated as FVDPL, $\tau_{\theta} > 0$) are considered [¹³] the parameters of

Copyright @ STEMM Institute Press http://www.stemmpress.com

 $\rho = 1930$ *kgm*⁻³, $\alpha = 2.59K^{-1}$, $T_0 = 293K$ [12] .

4.1 Comparison of Microbeams Deflection Response Based Two Models

Figure 1 demonstrates the trends of the FVLS $\frac{2}{5}$ 5 and FVDPL models are similar, the peak value of the deflection is significantly higher in the $\frac{1}{2}$ FVDPL model $[13]$ Specifically, Figure 1(a) shows the deflection variation of the FVLS model with noise interference and no $-5\frac{1}{0}$ interference conditions, with almost the same results; Figure 1(b) further validates this conclusion and proves the stability of the 4×10^{-7}

(b) Deflection variation with FVDPL model. Figure 1. Comparison of Microbeam Deflection Under Two Models

4.2 Comparison of Microbeams Temperature Response Based Two Models Figure 2 illustrates the temperature variation trend is similar for both models, but the peak temperature value is significantly higher under the FVLS model. Figure 2(a) illustrates that the temperature variation of the FVLS model is essentially identical under both noise-disturbed and non-disturbed conditions $[14]$ $\frac{14}{14}$ This $\frac{56}{102}$

outcome serves to reinforce the veracity of the

 $t(s)$ **(b) Temperature variation with FVDPL model Figure 2. Comparison of Microbeam Temperatures Under the Two Models.**

ĵ

 0.5

5. Conclusion

 -1

 $\overline{0}$

(1) The peak of the microbeam deflection under the FVDPL model is markedly higher than that under the FVLS model, whereas the peak of the temperature under the FVLS model is significantly higher than that under the FVDPL model.

 (2) The algorithm proposed in this paper has stability and reliability that can effectively resist noise interference.

Reference

- [1] Dang R, Cui Y, Qu J, Yang A, Chen Y. Variable fractional modeling and vibration analysis of variable-thickness viscoelastic circular plate [J]. Applied Mathematical Modelling, 2022, 110:767-778.
- [2] Tang D W, Araki N. Non-fourier heat condution behavior in finite mediums under pulse surface heating [J]. Materials Science and Engineering, A, 2000, 292(2):173-178.
- [3] Ezzat M A, Othman M I, El-Karamany A M S. State space approach to twodimensional generalized thermoviscoelasticity with two relaxation times [J]. International journal of engineering science, 2002, 40(11):1251-1274.
- [4] Yang W, Chen Z. Investigation of transient thermal-mechanical behavior of a cracked viscoelastic material using time-fractional dual-phase-lag theory [J]. Theoretical and Applied Fracture Mechanics, 2020, 106:102500.
- [5] Othman M I A, Song Y. Effect of rotation on plane waves of generalized electromagneto-thermoviscoelasticity with two relaxation times [J]. Applied Mathematical Modelling, 2008, 32(5):811-825.
- [6] Betancur-Herrera D E, Muñoz-Galeano N. A numerical method for solving Caputo's and Riemann-Liouville's fractional differential equations which includes multi-order fractional derivatives and variable coefficients. Communications in Nonlinear Science and Numerical Simulation, 2020, 84:105180.
- [7] Podlubny I. Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Elsevier, 1998.
- [8] Biot M A. Theory of stress ‐ strain relations in anisotropic viscoelasticity and
relaxation phenomena Journal of applied Nonlinear relaxation phenomena. Journal of applied physics, 1954, 25(11):1385-91.
- [9] Ma J, Sun Y, Yang J. Analytical solution of dual-phase-lag heat conduction in a finite medium subjected to a moving heat source. International Journal of Thermal Sciences, 2018, 125:34-43.
- [10] Xia R, Tian X, Shen Y. Dynamic response two-dimensional generalized thermoelastic coupling problem subjected to a moving heat source. Acta Mechanica Solida Sinica, 2014, 27(3):300-5
- [11] Wang Lei, Chen Yiming, FENG Junyao. Numerical Analysis of fractional-order viscoelastic Euler-Bernoulli Beams [J]. Journal of Liaoning Technical University Science Edition), 2020, 39(05):471-476.
- [12] Alizadeh Hamidi B, Hosseini SA. An exact solution on gold microbeam with thermoelastic damping via generalized GreenNaghdi and modified couple stress theories. Journal of Thermal Stresses, 2020, 43(2):157-74.
- [13] Abouelregal AE, Alesemi M. Vibrational analysis of viscous thin beams stressed by laser mechanical load using a heat transfer model with a fractional Atangana-Baleanu operator. Case Studies in Thermal Engineering, 2022, 34:102028.
- [14] Qu J, Zhang Q, Yang A, Chen Y, Zhang Q. Variational fractional-order modeling of viscoelastic axially moving plates and vibration simulation. Communications in Science and Numerical Simulation, 2024, 130:107707.