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Abstract: In the current highly competitive
business landscape, enterprises face a series
of complex decision-making challenges
during the efficient production process of
popular electronic products. Taking this as
the entry point, this paper deeply analyzes
these problems, aiming to build a scientific
theoretical foundation for enterprise
decision-making, optimize the production
process, reduce costs, and enhance economic
benefits. This paper first uses statistical
hypothesis testing to design a sampling
scheme to evaluate the defective rate of
parts. Then, the dynamic programming
algorithm is employed, and a defective rate
optimization model based on Bayesian
update is incorporated to comprehensively
optimize the detection and disposal
decisions of parts, finished products, and
defective products in the enterprise
production process. The research results
show that the optimization model can
effectively deal with the risk of defective
rate fluctuations and ensure the consistency
and reliability of decision-making results.
Through case analysis, it can be seen that
this model can customize accurate
decision-making schemes for enterprises in
various scenarios and significantly improve
economic benefits. In summary, this study
provides crucial theoretical support and
practical guidance for the improvement of
enterprise management level and industrial
upgrading, demonstrating significant value
in practical applications.
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1. Introduction

1.1 Research Background
Suppose a company produces an electronic
product that is very popular in the market, and
the manufacturing process of this product
involves two key components: component 1
and component 2. These two components need
to be assembled together to form the final
electronic product. In the production process,
there are strict requirements for the quality of
spare parts and finished products. Specifically,
if any part used in the assembly fails, the final
product will also be judged to be unqualified.
Even if both parts are qualified, the finished
product may not be qualified due to possible
assembly errors or technical defects.
In the face of unqualified finished products,
enterprises have two ways to deal with them:
one is to scrap the unqualified finished
products directly, which means the waste of
raw materials and potential economic losses;
the other is to disassemble the unqualified
finished products and take out the spare parts
for reuse. The disassembly process is designed
to be safe enough to ensure that no damage is
caused to the parts, so that the disassembled
parts can be used again in the production line.
However, the dismantling operation is not free,
and enterprises need to bear a certain cost of
dismantling.
Under this production mode, enterprises are
faced with such problems as how to efficiently
manage spare parts procurement, quality
control, finished product inspection and
disposal of unqualified products. The solutions
to these problems will directly affect the
economic benefits and market competitiveness
of enterprises [1].

1.2 Literature Review
In the field of enterprise decision optimization,
the existing research provides scientific
decision support for the production process
through mathematical models and algorithms.
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Peng deeply discussed the decision-making
problems in the production process of
electronic components, and optimized the key
links such as spare parts procurement, quality
control, finished product inspection and
unqualified product disposal by establishing
mathematical models. In terms of defective
rate detection of spare parts, this paper designs
a sampling detection scheme based on
statistical hypothesis testing, which echoes the
relationship between binomial distribution,
Poisson distribution and normal distribution
discussed in Yu research, and provides a
theoretical basis for sampling detection. By
accurately calculating the minimum sample
size, the defective rate of spare parts can be
accurately evaluated with the least number of
tests, and the cost of testing can be effectively
reduced. The application of dynamic
programming algorithm ensures that the
decision-making of each stage is based on
global optimization, effectively balances the
detection cost and potential loss, and achieves
the goal of minimizing the cost and
maximizing the profit. He et al. research on
dynamic programming algorithm for optimal
solution provides a reference for algorithm
selection and optimization. In addition, Li et al.
although the distribution network real-time
coordinated voltage regulation strategy based
on approximate dynamic programming is
applied in different fields, its methodology is
enlightening for the construction of dynamic
programming model in this study.
The introduction of the Bayesian updating
model considers the uncertainty of the
estimation of the defective rate, and improves
the robustness of the decision-making scheme
by combining the prior information with the
new sample data. The method of Wang in the
research and application of weighted Bayesian
network classification algorithm provides
technical support for the Bayesian updating
model of this study. Wang et al. Research on
landing distance of civil aircraft based on
Bayesian network, although the field is
different, the application of Bayesian network
in dealing with uncertainty problems provides
valuable experience for this study. Although
the existing research has achieved remarkable
results in decision optimization, there is still
room for improvement. Future research can
further relax the assumptions of the model and
introduce more factors affecting

decision-making, such as equipment
depreciation, labor costs, and changes in
market demand, so as to improve the
universality and dynamic adaptability of the
model. In addition, it is also an important
direction for future research to verify and
optimize the model through experiments or
simulations to ensure the effectiveness and
robustness of the model in different scenarios.

2. Research and Analysis

2.1 Specific Issues
2.1.1 Question 1
Design a sampling inspection plan to evaluate
whether the defective rate of parts supplied by
suppliers exceeds the nominal value (the
nominal value assumed in this paper is 10%).
According to the test results, we will decide
whether to accept this batch of spare parts.
Reject when the defective rate exceeds the
nominal value at 95% confidence level, and
accept when the defective rate does not exceed
the nominal value at 90% confidence level [2].
2.1.2 Question 2
In view of the specific situations listed in
Table 1, this paper needs to determine whether
to test or not according to the unqualified rate
of spare parts and finished products. O as to
ensure the quality of market products. Whether
the unqualified finished products are
disassembled, and the spare parts are tested
and utilized. Unqualified products are
exchanged unconditionally by users, and
returned products are disassembled and reused.
Decision logic and indicator results: Optimize
the inspection and reuse process based on
cost-benefit analysis. Improve the qualified
rate of finished products and reduce consumer
complaints. Through the reuse of spare parts,
the production cost is reduced. Exchange
policy to maintain customer satisfaction and
protect corporate reputation. Finally, according
to the six situations, the decision schemes of
minimizing the cost and maximizing the profit
are put forward respectively.
2.1.3 Question 3
For the manufacturing process involving m
processing steps and n parts, it is assumed that
the defective rate of each part, semi-finished
product to the final product, the purchase unit
price, the cost of inspection and assembly, and
the cost of disassembly have been given. Now,
referring to the problem 2 discussed before, the
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decision-making strategy of production
activities is designed in this case. This paper
assumes a production scenario with 2
processing stages and 8 spare parts, and the
specific data are detailed in Table 2. Finally, it
is still a scheme that can minimize the cost and
maximize the benefit.
2.1.4 Question 4
Recalculate the defective rate of parts,
semi-finished products, and finished products
in questions 2 and 3 based on the sample
inspection results in question 1. The sampling
inspection method in Problem 1 can be applied
to the evaluation of the defective rate at each
stage, and the inspection and production
decisions at each stage can be readjusted.

2.2 Concrete Analysis
2.2.1 Analysis of question 1
It is assumed that the supplier guarantees that
the failure rate of the part (which may be part 1
or part 2) will not be higher than a specified
value. In order to decide whether to accept the
goods, it is planned to adopt a sampling
inspection strategy, and the inspection cost will
be borne by the enterprise. Parts will be
rejected when a 95% confidence level
determines that the part's failure rate is greater
than specified 10%. Parts will be accepted with
a 90% confidence level that the failure rate is
not greater than specified 10%.
In this paper, the method of statistical
hypothesis testing is used, as follows:
Determine the sample size: Use an accurate
statistical formula, such as the binomial
distribution or normal approximation, to
calculate the minimum sample size that will
detect a significant difference from the
nominal value at a given level of reliability. A
certain number of samples shall be taken at
random from the lot of parts. These samples
are tested and the number of nonconforming
products is recorded.
It is assumed that the failure rate of parts is
equal to or lower than 10% (null hypothesis).
Binomial test and Z-test were used to test the
null hypothesis according to the test results.
If the test statistic falls in the rejection region,
i.e., the failure rate is significantly higher than
10%, the lot is rejected at 95% confidence
(Scenario 1). If the test statistic does not fall
within the rejection region, i.e., there is
insufficient evidence that the failure rate is
higher than 10%, the lot is accepted at 90%

confidence (Scenario 2). Specific to the value,
it needs to be calculated according to the
sampling theory to ensure that the required
level of reliability is achieved.
2.2.2 Analysis of problem 2
For the six specific cases listed in Table 1, it is
necessary to discuss and analyze them in
stages:
(1) Whether the spare parts 1 and 2 are tested;
(2) Whether the finished product is tested;
(3) Whether the returned unqualified finished
products are disassembled and reused;
(4) Whether the returned unqualified finished
products are exchanged or discarded.
The dynamic programming algorithm can be
used to solve the problem, and the decision
logic and index results can be calculated to
optimize the detection and reuse process
according to the cost-benefit analysis. Through
the various stages to make decisions, the final
six cases were given to minimize the cost,
profit maximization program.
2.2.3 Analysis of problem 3
The third problem is based on a variant of
problem 2, which reduces the number of basic
parts from six to one, but the number of basic
parts increases to eight, and an additional
semi-finished stage is added, but the essence is
not much different from problem 2, and it can
still be solved by dynamic programming
algorithm to find out whether each stage needs
to be tested and the minimum number of times
of testing. And then combining the optimal
solution of each stage to obtain the optimal
decision scheme. The assembly process is
shown in Figure 1.

Figure 1. Assembly Flow Chart
2.2.4 Analysis of question 4
This question is a summary of the first three
questions. It is assumed that in questions 2 and
3, the defective rate of spare parts,
semi-finished products and finished products is
derived from sampling inspection. This
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method is consistent with that used in question
1 of this paper. Based on this premise,
questions 2 and 3 need to be revisited and
answered to ensure that the inherent
uncertainty of sample testing and its impact on
the estimate of the defective rate are taken into
account. This means that this paper should not
only make decisions based on the defective
rate obtained by sampling, but also take into
account the factors such as sampling error,
confidence level and sample size to evaluate

the robustness and reliability of decisions.

3. Model Establishment

3.1 Symbol Explanation
See Table 1 above, clearly define the meanings
of each symbol, such as the minimum number
of samples, error rate, market price, inspection
cost and disassembly cost of parts or finished
products, etc. to provide clear variable
definitions for subsequent model construction.

Table 1. Symbol Explanation
Symbol Symbol Description

n Minimum Sample Size
� Standard Normal Distribution Critical Value Corresponding to Confidence Level
� Error Rate

�0 Nominal Value (assumed to be 10% in this paper)
��[�] Cost of Component i
���[�] Inspection Cost of Component i
�1_� Inspection Decision for Component i (0 or 1)

���[�] Updated Defective Rate of Semi-finished Product j
��[�] Initial Defective Rate of Semi-finished Product j
��[�] Defective Rate of Component i

s1[i] Inspection Decision for Component i (0 or 1) (Note: This is the same as s1_i, ensure
consistency in notation)

ics[j] Inspection Cost of Semi-finished Product j
dcs[j] Disassembly Cost of Semi-finished Product j
R_p[j] Potential Revenue from Disassembling Semi-finished Product into Components
s2_j Inspection Decision for Semi-finished Product j (0 or 1)
d2_j Disassembly Decision for Semi-finished Product j (0 or 1)
p_f’ Revised Defective Rate of Finished Product
rl Replacement Loss

mp Market Price
acp Assembly Cost of Finished Product

icp Inspection Cost of Finished Product (Note: This is the same as icp[i] in the context of
components, ensure context clarity)

dcp Disassembly Cost of Finished Product
R_h Potential Revenue from Disassembling Semi-finished Product into Components
 Gamma Function

3.2 Model Assumptions
(1) Sample representativeness assumption: It is
assumed that the sample of spare parts taken
from the supplier can represent the quality
level of the whole batch of spare parts, that is,
the defective rate of the sample can accurately
reflect the defective rate of the whole batch of
spare parts.
(2) Large sample hypothesis: It is assumed that
the number of each batch of spare parts is large
enough to meet the conditions of the central
limit theorem, so that the distribution of the

defective rate can be approximated as a normal
distribution, which is convenient for statistical
inference.
(3) Defective rate independence assumption: It
is assumed that the defective rate of spare parts
is independent among batches and spare parts,
that is, the defective rate of one spare part will
not be affected by the defective rate of other
spare parts.
(4) Cost fixity assumption: It is assumed that
costs such as purchase unit price, testing cost,
assembly cost, market selling price, exchange
loss and disassembly cost remain unchanged
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during the decision-making period, without
considering price fluctuation and cost change
factors.
(5) Dynamic programming optimality
assumption: It is assumed that the solution
obtained by the dynamic programming
algorithm is the global optimal solution, that is,
there is no other better decision sequence that
can produce higher total revenue or lower total
cost.

4. Establishment and Solution of the Model

4.1 Question 1
4.1.1 Question 1: model establishment idea
For each batch of spare parts, this paper
assumes that the defective rate is p. The
supplier claims that the defective rate will not
exceed a certain nominal value P0 (e.g. 10%
given in the title). Therefore, the task of this
paper is to find the minimum sample size
under the constraints of case 1 and case 2 in
the actual case where P0 has been given
through sampling inspection.
4.1.2 Establishment of model
In this paper, we need to carry out one-tailed
test for the two cases in the title:
For the case (1), under the 95% reliability, it is
determined that the defective rate of spare
parts exceeds the nominal value P0, and the
hypothesis is established in this paper:
The original hypothesis H0: p ≤ P0 and the
alternative hypothesis H1: p > P0. Therefore,
this paper needs to test whether the original
hypothesis H0 can be rejected by sampling.

For case (2), under 90% reliability, it is
determined that the defective rate of spare
parts exceeds the nominal value P0, and two
assumptions are established in this paper:
The original hypothesis H0: p ≥ P0 and the
alternative hypothesis H1: p < P0. Therefore,
this paper needs to test whether the original
hypothesis H0 can be rejected by sampling.
Since the defective rate is a probability event,
the binomial distribution is used for simulation.
Suppose the sample size is n, which is subject
to the binomial distribution. However,
considering the actual situation of the subject
[3], the sample size is relatively large.[4]
According to the famous De Moivre-Laplace
central limit theorem in probability theory, the
theorem shows that when n is sufficiently large,
the binomial distribution can be approximated
by the normal distribution, that is, the normal
approximation of the binomial distribution. So
as to establish a decision-making model:
As shown in formula (1), let random variables,
then for any X we have:

��～� �, � 0＜�＜1, � = 1,2, . . .

lim
n→∞

Xn−np
np 1−p

≤ x = −∞
x 1

2π
� e−t2

2 dt = Φ x (1)
Because this paper uses a continuous
distribution to approximate the discrete
distribution, in practical applications, in order
to reduce the approximation error, we often
use:

� � ≤ �� ≤ � ≈ � �+0.5−��
�� 1−�

− � �−0.5−��
�� 1−�

(2)
Instead of Formula (2) [1].
The process of normal approximation to the
binomial distribution is shown in Figure 2.

Figure2. Schematic Diagram of Normal Approximation of Binomial Distribution
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However, in the verification of binomial
distribution, there are two kinds of errors:
The first type of error: the actual defective rate
is 10% (that is, the original hypothesis H0 is
true), but the test result mistakenly believes
that the defective rate exceeds 10% and rejects
the original hypothesis. The first type of error
was made at this time.
The second type of error: the actual defective
rate exceeds 10% (that is, the alternative
hypothesis H1 is true), but the test result
mistakenly believes that the defective rate is
equal to or less than 10%, failing to reject the
original hypothesis. The second type of error
was made at this time.
In the case of H0, assuming the defective rate
is P0, this paper wants to reject H0 at the
significance level α; in the case of H1,
assuming the actual defective rate is P1, this
paper wants to reject H0 correctly with the
power 1-β. The actual defective rate �� is
obtained by sampling, and the test statistic is
calculated based on it. For the large sample
size assumed in the hypothesis, the test statistic
is usually the standardized Z value as shown in
formula (3) and (4), which is used to control
the two types of errors mentioned above:

� = ��−�0

�0 1−�0
�

(3)

And
� = �1−�0

�1 1−�1
�

(4)

In order to ensure the accuracy of detection
and limit the error, this paper needs to
determine the required sample size according
to the confidence level and the adjusted error
rate.
The error rate is assumed to be 0.05, and the
sample size can be calculated according to the
standard sample size formula (5):

� = �2⋅�0⋅ 1−�0
�2 (5)

Set the error rate interval at (0.04 ≤ � ≤ 0.06),
and the quantity of parts to be sampled and
tested in the two cases can be determined by
calculation, as shown in the Table 2:
Table 2. Required Sample Size for Different

Error Rates
Error
Rate
(E)

Minimum Sample
Size (n) at 95%
Confidence Level

Minimum Sample
Size (n) at 90%
Confidence Level

0.04 153 93
0.042 139 84

0.044 126 77
0.046 116 70
0.048 106 65
0.05 98 60
0.052 91 55
0.054 84 51
0.056 78 48
0.058 73 44
0.06 68 42

The minimum number of samples of the two
kinds of reliability within the specified error
interval is obtained by calculation. When the
error rate is 0.05, it is relatively gentle and
moderate. Therefore, the error rate of the
hypothesis E = 0.05 is determined.
4.1.3 Solution of the model
For case (1), if the Z value exceeds the
corresponding critical value, the null
hypothesis is rejected and the defective rate is
considered to exceed the nominal value, while
for case (2), if the Z value is less than
corresponding critical value, the null
hypothesis is rejected and the defective rate is
considered not to exceed the nominal value.
And the sample results are analyzed to make
an acceptance or rejection decision. The
sample size calculation of the confidence Z
values in the two cases is as follows:
The rest of the parameters are set by consulting
and assuming the Table 3:

Table 3. Parameters for Sample Size
Calculation

Symbol Set Value
E 0.05

�95 1.96
�90 1.64

Substitute Z95, Z90 and E into the formula (6)
and (7) to calculate:
The sample size at 95% confidence is:

�95 = 1.96 2⋅0.1⋅ 1−0.1
0.052 ≈ 98 (6)

The sample size at 90% confidence is:
�90 = 1.64 2⋅0.1⋅ 1−0.1

0.052 ≈ 60 (7)
4.1.4 Conclusion:
According to the calculation results, it can be
concluded that under the 95% confidence level,
98 parts can meet the requirements of rejecting
this batch of parts, while under the 90%
confidence level, 60 parts can meet the
requirements of receiving this batch of parts.

4.2 Question 2
4.2.1 Question 2: model establishment
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In question 2, it is required to make multiple
decisions on the production process of the
enterprise, including whether to test spare parts,
whether to test finished products, whether to
disassemble unqualified finished products, etc.
It is necessary to establish a decision-making
model that includes costs and benefits, and the
goal is to maximize the profits of enterprises or
minimize losses. Because the six cases given
in the table are subdivided into several links,
the dynamic programming algorithm is used to
split the whole process into spare parts,
finished products, unqualified finished
products and returning and discarding
unqualified finished products to the third stage
for calculation. The specific process is shown
in the Figure 3.

Figure 3. Decision flow chart
4.2.2 Establishment of model
The problem is structured as a multi-stage
decision-making process that focuses on parts
procurement and testing, assembly and testing
of finished products, and management of
nonconforming finished products. Specifically,
it is divided into three key stages: procurement
and testing of spare parts (stage 1), assembly
and testing of finished products (stage 2), and
disassembly and replacement of unqualified
finished products (stage 3).
The state is represented in the form of a tuple,
recording each stage and the decision made
(whether to detect or not). Decision variables
cover the selection of various operations, such
as inspection or disassembly. The recursive
relationship and the state transition equation
ensure that the decision is based on the results
of the previous stages, and evaluate the
expected cost or benefit of different decisions.

For example, the detection of spare parts in
stage 1 directly affects the cost of stage 2, and
then affects the processing strategy of stage
3.The bottom-up calculation strategy is used to
evaluate the disassembly cost from stage 3 to
stage 1step by step to ensure that each decision
is based on the optimal solution of the
subsequent stages. Finally, through the
comparison of the global state, the optimal
total income and the corresponding path are
determined, and the optimal decision sequence
running through the three stages is obtained by
backtracking.
The basic idea of dynamic programming
algorithm is to divide the problem to be solved
into several interrelated sub-problems, and to
calculate the optimal value by solving the
sub-problems in a bottom-up way. The
dynamic programming algorithm reduces the
time complexity by increasing the space
complexity of the program. It can be seen that
the problem solved by dynamic programming
algorithm needs to have two properties,
namely, the optimal substructure property and
the overlapping subproblem property [5].
Figure 4 is a visualization of the principle and
process of dynamic programming.

Figure 4. Schematic Diagram of Dynamic
Programming

4.2.3 Corresponding schemes under 6
scenarios
In discussing the optimization of
decision-making in the production process of
enterprises, we adopted the dynamic
programming algorithm to address complex
multi-stage decision problems. The core idea
of the dynamic programming algorithm is to
decompose the problem into a series of
interrelated sub-problems, solving from the
last stage upward to find the global optimal
solution. This method is particularly suitable
for our case, as it allows us to formulate
optimal strategies for each stage while
considering the optimal decisions of
subsequent stages.
Assuming the finished product quantity is
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10,000, we applied the dynamic programming
algorithm to six different production scenarios
in order to determine the optimal
decision-making plans regarding component
inspection, finished product inspection, and
handling of defective finished products. These
scenarios reflect different defect rates, costs,
and revenues that may be encountered during
the production process. Through this method,

we were able to maximize the economic
benefits of the enterprise while ensuring
product quality.
The following are the optimal decision plans
and corresponding optimal total revenues
derived from the dynamic programming
algorithm for the six scenarios, summarized in
detail in Tables 4 and 5:

Table 4. Hypothetical Scenarios Encountered in the Production Process of the Enterprise
Phase

Scenario
Component

1
Component

12 Finished Product Defective FinishedProduct
Optimal Total Revenue

(Yuan)
1 Not Inspected Not Inspected Not Inspected Not Disassembled 467000
2 Not Inspected Not Inspected Not Inspected Not Disassembled 467000
3 Inspected Inspected Not Inspected Not Disassembled 443000
4 Inspected Inspected Inspected Not Disassembled 378000
5 Not Inspected Inspected Not Inspected Not Disassembled 464000
6 Not Inspected Not Inspected Not Inspected Not Disassembled 511500
Table 5. Optimal Decision-Making Schemes and Optimal Total Revenue Results for Six

Scenarios
Part1 (Component) Part2 (Component) Finished Product Defective Finished Product

Defective
Rate

Purchase
Unit
Price

Finished
Product
Inspection

Defective
Rate

Purchase
Unit
Price

Finished
Product
Inspection

Defective
Rate

Assembly
Cost

Inspection
Cost

Market
Price

Replacem
ent Loss

Disassembly
Cost

11 10% 4 2 10% 18 3 10% 6 3 56 6 5
22 20% 4 2 20% 18 3 20% 6 3 56 6 5
33 10% 4 2 10% 18 3 10% 6 3 56 30 5
44 20% 4 1 20% 18 1 20% 6 2 56 30 5
55 10% 4 8 10% 18 1 10% 6 2 56 10 5
66 5% 4 2 5% 18 3 5% 6 3 56 10 40
4.2.4 Conclusion
It can be seen from Table 5 that the optimal
total revenue is the same when the detection
decisions in cases 1 and 2 are the same;
different detection decisions corresponding to
different situations have different degrees of
impact on the total revenue, which needs to be
considered comprehensively according to the
defective rate, exchange loss and disassembly
cost of different situations.

4.3 Question 3
4.3.1 Question 3: Model establishment ideas
The problem is structured as a multi-stage
decision-making process, focusing on parts
procurement and testing, assembly and testing
of semi-finished products, assembly and
testing of finished products, and management
of non-conforming finished products. On the
basis of problem 2, it is divided into four key
stages: the procurement and inspection of
spare parts (stage 1), the assembly and
inspection of semi-finished products (stage 2),
the assembly and inspection of finished

products (stage 3), and the disassembly and
exchange of unqualified finished products
(stage 4); the decision-making basis and the
corresponding indicators are the optimal total
revenue.
The model algorithm used in this problem is
the same as that used in problem 2, which can
find the optimal solution through dynamic
programming. The dynamic programming
method transforms the multi-stage
optimization problem into a series of
single-stage decision-making problems, and
then uses the transfer and constraint
relationship between the stages to solve the
single-stage optimization problem one by one,
and gives the dynamic decision according to
the real-time state of the system, so as to
simplify the complex problem. In the
application of dynamic programming theory, it
is necessary to traverse all the state space and
decision space to obtain the value function of
environment, the system in a certain state in
the current stage may transfer to infinite
different States in the next stage, resulting in
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the problem of "dimension explosion" [6],
which has been explained more concretely in
the literature [7]. Therefore, the part of model
establishment will not be elaborated as shown
in Figure 5.
4.3.2 Solution of model
When applying the dynamic programming
algorithm to solve multi-stage decision-making
problems, Table 6. provides a key dataset that
details various hypothetical situations that
enterprises may encounter in the production
process. These situations include the defect
rates of components, purchase unit prices,
inspection costs, and the related costs of
semi-finished and finished products. These
parameters are crucial for constructing the
dynamic programming model because they
directly affect the decisions at each stage and
the ultimate economic benefits. Figure 5. Scheme Flow Chart

Table 6. Hypothetical Scenarios Encountered in the Production of the Enterprise
Spare
Part(s)Defective-Rate

Purchase
Unit
Price

Inspection
Cost

Semi-finished
Product

Defective Rate
(for-Semi-finished

Product)

Assembly
Cost

Inspection
Cost

Disassembly
Cost

1 10% 2 1 1 10% 8 4 6
2 10% 8 1 2 10% 8 4 6
3 10% 12 2 3 10% 8 4 6
4 10% 2 1

5 10% 8 1 Finished
Product 10% 8 6 10

6 10% 12 2
7 10% 8 1 Market Selling Price Replacement Loss

8 10% 12 2 Finished
Product 200 40

Calculated from the data given in the table:
The first stage:
Part inspection cost as shown in formula (8):

�
8

1
]][][*_1[cp

=

+=
i

ipciicpis (8)

Part Stage Benefits as shown in formula (9):
max]8_1,...,2_1,1_1,1[dp += cpsss (9)

In the aforementioned formula, max represents
the earnings at the relevant semi-finished
stage.
The second stage as shown in formula (10-12):
Defect rate update for sub-assembly J:

�+=
etlatedPartsi∈

jsjpdjsdjsdu
Re

])[1-1(*][][][ (10)

Cost of semi-finished product inspection and
disassembly decision:

�
3

1 ])][_-][(*][
*_2][*_2[

=

+
=

j jpRjdcsjsdu
jdjicsjs

cs (11)

Semi-finished goods stage income:

�
=

+

=
3

1
max*])[-1(-

)]3_2,3_2,2_2,2_2,1_2,1_2,2[(

j
jsdcs

dsdsdsdp

(12)

The third stage as shown in formula (13-15):
Benefits of not testing the finished product and
not-disassembling=

acpmpfprlfp -*)'_-1(*_ + (13)
Benefits of testing the finished product
without-disassembly=

acpmpfpicp  *)_1( (14)
Benefits from inspection and disassembly
of-finished-products=

acpmpfpR_hdcp-icp-p_f -*)_-1()-(* + (15)
The optimal decision scheme obtained through
three stages of calculation is shown in the
Table 7.
4.3.3 Conclusion:
When enterprises exchange the unqualified
products purchased by users, the best strategy
is to test and disassemble the finished products
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after exchange, while not to test and
disassemble the semi-finished products. As a

result, no additional spare parts are created in
the process, so there is no need to test them.

Table 7. Solution Results for Question 3
Spare
Part

Inspect or
Not

Semi-finished
Product

Inspect or
Not

Disassemble or
Not

Finished
Product Inspect or Not Disassemble

or Not

1 Not
Inspected 1 Not

Inspected
Not

Disassembled 1 Inspect Disassemble

2 Not
Inspected 2 Not

Inspected
Not

Disassembled

3 Not
Inspected 3 Not

Inspected
Not

Disassembled

4 Not
Inspected

5 Not
Inspected

6 Not
Inspected

7 Not
Inspected

8 Not
Inspected

Optimal Total
Revenue (Yuan)

183.14

4.4 Question 4
4.4.1 Question 4: Model establishment ideas
Because it is assumed that the defective rates
of spare parts, semi-finished products and
finished products are obtained by sampling
inspection, their defective rates are uncertain,
so this paper needs to recalculate an
appropriate defective rate, complete the
optimization of the model and ensure the
robustness, so that the solutions of problem 2
and problem 3 are more reasonable.
Therefore, this paper introduces the binomial
distribution-beta distribution model based on
the Bayesian update of the binomial
distribution. The model combines the prior
information with the new sample data, and
updates the defective rate through Bayesian
inference. The prior information is expressed
by beta distribution, the new sample data is
obtained by binomial distribution, and the
updated defective rate is also expressed by beta
distribution, whose parameters are determined
by the prior distribution parameters and the
sample data. The unique advantage of Bayes
theorem is that it can skillfully transform the
calculation of complex event
probability into the calculation of multiple
independent simple event probabilities. This
shift not only makes computing more efficient,
but also makes dealing with the relationship
between different events more flexible, so as to

understand and deal with the complexity of
probability analysis more comprehensively [8].
The optimization comparison results are shown
as in Figure 6.

Figure 6. Bayesian Optimization Curve
(Dotted Line)

4.4.2 Beta distribution
Beta Distribution as shown in formula (16) is a
continuous probability distribution, which is
usually used to describe random variables
taking values in the interval (0, 1). The beta
function as shown in Figure 7 is defined as [9]:

( ) ( )
( ) ( )
( )∫

1

0

11 -1,



 

+
==



dtttB (16)

Figure 7. Probability Density Plot of Beta
Function
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Bayesian parameter learning
First, Bayesian estimation is selected for
parameter learning of defective rate, and the
mathematical description of Bayesian
estimation is shown in formula (17) [10].

( )
( ) ( )

( )

( ) ( )

( ) ( ) ( )



dxf

xf
xm

xf
x == (17)

Where: π(θ) is the prior distribution of
parameter θ; π(θ) is the posterior distribution
of parameter θ.
Therefore, Bayesian estimation can be
regarded as correcting the prior distribution
according to the sample information to obtain
the posterior distribution on the premise that θ
obeys the prior distribution of π (θ).
Usually, the expectation of the posterior
distribution is taken as the estimated value of
the parameter. The expectation of the posterior
distribution is shown in formula (18):

 xEbe  ˆ (18)
4.4.3 Solution of optimization model

we have implemented a Bayesian optimization
strategy, synergistically integrated with
binomial and Beta distribution models, to
recalibrate the defect rates associated with
Component 1, Component 2, and the final
products. This recalibration is imperative for
augmenting the accuracy of the dynamic
programming model and bolstering the
robustness of the decision-making framework.
By amalgamating prior knowledge with
empirical data, we have refined the estimation
of defect rates, culminating in the formulation
of optimal decision schemes predicated upon
these refined rates. Tables 8, 9, 10, and 11
delineate the refined defect rates in
conjunction with their corresponding optimal
decision schemes and the resultant optimal
total revenues. These outcomes not only
substantiate the efficacy of our model but also
bestow upon enterprises a data-centric
decision-making apparatus, enabling the
crafting of more judicious production decisions
amidst conditions of uncertainty.

Table 8. Optimized Defective Rates (%) of Components and Finished Products for Question 2
Phase Scenario Component 1 Component 2 Finished Product

1 9.7% 5.9% 12.9%
2 6.9% 5.9% 14.4%
3 8.3% 8.8% 14.9%
4 8.3% 8.8% 14.9%
5 9.7% 10.8% 12.4%
6 9.7% 6.9% 10.9%

Note: The result of the calculation is an infinite repeating decimal, so rounding is to one decimal place
Table 9. Solution Results for Question 2 After Optimizing the Model

Phase
Scenario

Component
1

Component
2

Finished
Product Defective-Finished-ProductOptimal-Total-Revenue(Yuan)

1 Not
Inspected

Not
Inspected

Not
Inspected

Not
Disassembled 430833.3

2 Not
Inspected

Not
Inspected

Not
Inspected Disassembled 456666.7

3 Inspected Not
Inspected

Not
Inspected Disassembled 436666.7

4 Inspected Inspected Inspected Not Disassembled 396666.7

5 Not
Inspected Inspected Inspected Disassembled 443333.3

6 Not
Inspected Inspected Not

Inspected Not Inspected 369166.7

Table 10. Optimized Defective Rates (%) of Components, Semi-Finished Products, and Finished
Products for Question 3

Component Defective Rate Semi-finished-Product Defective Rate Finished
Product Defective Rate

1 7.8% 1 4.8% 1 13.9%
2 9.8% 2 9.6%
3 11.8% 3 11.3%
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4 8.8%
5 3.9%
6 14.7%
7 10.8%
8 7.8%

Note: The result of the calculation is an infinite repeating decimal, so rounding is to one decimal place
Table 11. Solution Results for Question 3 After Optimizing the Model

Spare
Part

Inspect or
Not

Semi-finished
Product

Inspect
or Not

Disassemble
or Not

Finished
Product

Inspect
or Not

Disassemble
or Not

1 Not Inspected 1 Not
Inspected

Not
Disassembled 1 Inspect Disassemble

2 Not Inspected 2 Not
Inspected

Not
Disassembled

3 Not Inspected 3 Not
Inspected

Not
Disassembled

4 Not Inspected
5 Not Inspected
6 Not Inspected
7 Not Inspected

8 Not Inspected Optimal Total
Revenue (Yuan) 183.14

4.4.4 Conclusion:
From the column of optimal total revenue,
compared with the optimal total revenue
obtained from the original problem 2, Table 9
is more stable as a whole, and the decision
scheme of whether to detect and dismantle at
each stage is more reasonable; compared with
the optimal total revenue obtained from the
problem 3, Table 11 increases by 125.12%,
and the optimization effect is good.

5. Model Evaluation and Promotion

5.1 Advantages of the Model
(1) High efficiency: The sampling detection
scheme designed by statistical hypothesis
testing can minimize the number of detections
and reduce the cost of detection while ensuring
the accuracy of detection.
(2) Economy: The application of dynamic
programming algorithm ensures that the
decision-making in each stage is based on
global optimization, effectively balances the
detection cost and potential loss, and achieves
the goal of cost minimization and profit
maximization.
(3) Robustness: The Bayesian updating model
considers the uncertainty of the estimation of
the defective rate, optimizes the estimation of
the defective rate by introducing the
combination of prior information and sample
data, and improves the robustness of the

decision-making scheme.
(4) Comprehensiveness: The model not only
considers the inspection decision of spare parts
and finished products, but also covers the
disassembly and reuse of unqualified finished
products, as well as the replacement of
unqualified products by users, forming a
comprehensive production process
decision-making system.

5.2 Disadvantages of the Model
(1) Strong data dependence: The accuracy of
the model is highly dependent on the defective
rate data of spare parts, semi-finished products
and finished products, and the accuracy of the
data directly affects the decision-making
effect.
(2) Long-term impact is not considered: The
model mainly focuses on the decision-making
optimization of a single production process,
and does not fully consider the impact of
equipment wear, technology upgrading and
other factors on decision-making in long-term
production.

5.3 Areas to Be Improved in the Model
Relax the assumptions: Further relax the
assumptions in the model to improve the
universality of the model in practical
applications. For example, one may consider a
sampling detection scheme for the case of a
small sample size.
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Introduce more influencing factors: introduce
more factors that affect the decision-making in
the model, such as equipment depreciation,
labor costs, changes in market demand, etc., so
that the decision-making scheme is closer to
the actual production situation.
Enhance dynamic adaptability: By integrating
the prediction model, dynamically adjust the
cost, selling price and other parameters to
improve the adaptability of the model to
market changes. At the same time, machine
learning methods can be introduced to learn
historical data and optimize decision-making
strategies.
Verification and optimization: verify and
optimize the model through experiment or
simulation to ensure the effectiveness and
robustness of the model in different situations.

5.4 Model Outlook
Cross-industry application: The model
proposed in this paper is not only applicable to
the field of electronic product production, but
also can be extended to other manufacturing
fields such as machinery manufacturing, food
processing and so on, providing production
decision support for different industries.
Supply chain collaboration: In supply chain
collaboration management, the model can be
used to evaluate the quality of spare parts of
different suppliers, optimize the allocation of
supply chain resources, and improve the
overall operational efficiency.
Policy-making reference: When formulating
relevant industrial policies, government
departments can refer to this model to
supervise and optimize the production process
of enterprises in the industry and promote the
healthy development of the industry.
Academic research expansion: The research
ideas and methods of this paper provide new
perspectives and tools for academic research in
the field of production decision-making, and
can be further expanded to more complex
production systems and decision-making
environments
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