42 Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 2 No. 4, 2024

Compare Machine Learning Algorithms With Astronomical
Dataset

Puiwan Wang
Fettes College, Edinburgh EH4 10X, UK

Abstract: Stellar classification is the most
important task in astronomy, with the goal of
classifying all celestial objects based on their
spectral properties to infer their physical
characteristics. This paper aims to classify
stars, galaxies, and quasars using some of the
most popular machine learning algorithms,
namely Logistic Regression, SVM, Random
Forest, and Naive Bayes, on the Sloan Digital
Sky Survey Data Release 17 dataset. This
followed a strict methodology that included
various preprocessing steps: cleaning,
normalization, handling outliers, and feature
engineering to improve model performance.
Each of the algorithms, during training,
optimized its internal parameters to minimize
any prediction errors and maximize reliability.
Data were split into a training-test set;
feature normalization was used for model
stability. The metrics used for training
algorithms included precision, recall, F1-
score, and confusion matrices that provided a
specific comparison of strengths and
weaknesses for the algorithms. Random
Forest emerged as the most effective classifier,
achieving 98% accuracy due to its ability to
handle complex patterns, while Logistic
Regression and SVM delivered moderate
performance with accuracies of 84% and
85%, respectively. Naive Bayes, though
computationally efficient, struggled with the
dataset's complexity, achieving only 67%
accuracy.

This state-of-the-art research emphasizes how
important the selection of algorithms is, given
dataset characteristics, and classification
objectives. This study also points to feature
engineering and comprehensive evaluation
for enhancing predictive reliability. By
showcasing an efficient usage of machine
learning for stellar classification, this work
contributes to the development of automated
analysis in astronomy and opens perspectives
toward further improvements by enhanced
feature selection, ensemble techniques, and
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larger datasets.
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1 Introduction

1.1 Context

In astronomy, stellar classification[1] plays a
vital role in deciphering the nature of celestial
objects by categorizing them based on spectral
characteristics, such as light absorption and
emission patterns. This classification spans stars,
galaxies, and quasars, with distinctions grounded
in their spectral signatures, which reveal
underlying physical properties like temperature,
chemical composition, and density. Historically,
the early cataloguing of stars[2] within our
galaxy fostered a deeper understanding of our
place in the cosmos. Pioneering discoveries—
such as the realization that the Andromeda
Galaxy lay beyond the Milky Way—have
expanded the boundaries of classification. With
advancements in telescopes|[3], astronomers now
classify not only nearby stars but also a vast
array of galaxies and quasars, enabling broader
insights into the structural and evolutionary
dynamics of the universe.

1.2 Scope of Research

For this study, I’ve chosen to implement a
comparative analysis of four machine learning
algorithms:

Logistic Regression models the probability that
an object belongs to a particular class by fitting a
logistic function to the data, making it suitable
for binary or multiclass classification. Its
straightforward approach makes it
computationally efficient, although it assumes a
linear decision boundary, which may limit its
performance on non-linear data.

Support Vector Machine (SVM) seeks an
optimal hyperplane to separate classes in a high-
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dimensional space, leveraging the kernel trick
for complex boundaries. This method is
especially useful for cases where distinct class
boundaries exist but is computationally intensive
when applied to large datasets, which will be an
important factor to evaluate in this study.
Random Forest builds an ensemble of decision
trees, using a voting mechanism to aggregate
their predictions. By randomly selecting features
at each split, it reduces overfitting, capturing
complex, non-linear patterns within the data.
However, it may be less interpretable than other
models, which can pose a challenge in
understanding specific decision criteria.

Naive Bayes is a probabilistic classifier based on
Bayes’ theorem, assuming independence
between features. While this assumption rarely
holds true in complex datasets, Naive Bayes can
still perform surprisingly well, especially in
cases with distinct class distributions. Its
simplicity also makes it computationally
efficient, providing a useful benchmark against
more complex algorithms.

1.3 Methodology

1.3.1 Programming Language

Python is the leading choice in data science and
machine learning because it has extensive, free
libraries such as scikit-learn, Pandas, and
NumPy, which ease many data processing and
algorithm implementation tasks.

1.3.2 Dataset

The dataset I've selected, Stellar Classification
Dataset — SDSS17, is sourced from Kaggle and
originates from the Sloan Digital Sky Survey
Data Release 17 (DR17)[4]. With a usability
rating of 10/10, this dataset is ideal for
comparative analysis, providing well-organized
and accessible data that facilitates a range of
classification tasks. The SDSS data is released
under the public domain.

1.3.3 Data Processing

The methodology that was used throughout this
study involved several key steps in data
preparation, processing, and feature engineering
that can effectively increase the quality of the
dataset and, therefore, the model's predictive
capability.

At the data preprocessing stage, the dataset was
duly explored to comprehend its structure,
character, and any potential aberrations that
could distort results. Care was taken with the
missing values; most large datasets usually have
some, so that they do not introduce bias. Instead
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of an imputation strategy that drops the missing
entries, filling gaps with the most representative
values, such as the mean or median in a manner
that maintains coherence, the data set was
treated. Duplicate entries were removed to make
each record unique, an important issue when
each object in the dataset needed to be identified
uniquely. This process also included preliminary
feature range checks to ensure that data points
fell within known physical limits-a very
important basis for ensuring the integrity of the
data in astronomy.

After cleaning, attention turned to the
preprocessing tasks that would align and get the
dataset ready for modelling. Normalization of
the numeric features was performed using Min-
Max Scaling. It let the model compare features
on the same scale, thus not biasing it toward
those features that had larger ranges. Another
important step involved in the pipeline of
processing was outlier handling, in which
extreme values, by capping and interpolation,
diminished their strong influence while
maintaining the underlying trend of the data.
Checks on the correlation of the data informed
the preparation by indicating features that would
provide strong predictive signals without
redundant overlaps.

Feature engineering followed next as a means to
enrich and define the dataset in great detail,
allowing the model to capture the important
patterns more substantively. It ranged from the
creation of new features, including color indices
such as u-g, g-r that further elaborate on the
properties of each object, to spatial clustering,
representative of the distribution and relational
structure of the objects in the sky.

The positional attributes are binned, like the
celestial coordinates, in cluster analyses. As an
example, alpha and delta in this dataset are in
sections representative of the arc of the sky, so
the model can find spatial groupings and trends
more effectively. Eventually, the dataset was
divided into training, verification, and testing,
such that there is no mutual dependence of
subsets and enough size to properly allow their
evaluation. This could be something like 80-10-
10 or 70-15-15 divisions, such that it generalizes
well but is not overfitted. At any rate, these latter
steps rehashed the raw dataset into an extremely
refined and structured format ready for machine
learning. Thus, this prepared the model for the
acquisition of meaningful insights into the
phenomena of the heavens. Each stage in this
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methodology has thus contributed to the
preparedness of this dataset, in tune with an
iterative systematics, to come up with quality
data and hence accuracy and reliability in view
of model and study goals.

1.4 Research Aim

Through this comparison, I aim to assess each
algorithm’s suitability for stellar classification
based on spectral characteristics, specifically
examining their accuracy, computational
efficiency, and ability to capture nuanced
patterns within the data. By analysing these
models, I hope to gain insights into the
predictive power of different algorithmic
approaches for astronomical classification,

ultimately contributing to the broader field of
automated astrophysical analysis.

2. Feature and Dataset

2.1 Dataset Feature Introduction

The dataset consists of 100,000 observations of
space taken by the SDSS (Sloan Digital Sky
Survey). Every observation is described by 17
feature columns and 1 class column which
identifies it to be either a star, galaxy or quasar.
100,000 pieces of data is considered a large
dataset, which prevents random error during
training, thus reduce error of the model.

2.2 dataset Features

Table 1. List of Dataset Features, Including All Columns of Variables in Dataset

obj ID  |Object Identifier, the unique value that identifies the object in the image catalog used by the
CAS

alpha Right Ascension angle (at J2000 epoch)

delta Declination angle (at J2000 epoch)

u [Ultraviolet filter in the photometric system

g Green filter in the photometric system

r Red filter in the photometric system

i INear Infrared filter in the photometric system

z Infrared filter in the photometric system

run ID  |[Run Number used to identify the specific scan

rereun ID [Rerun Number to specify how the image was processed

cam col

Camera column to identify the scanline within the run

field ID |Field number to identify each field

spec_obj [Unique ID used for optical spectroscopic objects (this means that 2 different observations
1D with the same spec_obj ID must share the output class)

class object class (galaxy, star or quasar object)
redshift [redshift value based on the increase in wavelength
late late ID, identifies each plate in SDSS
MJID Modified Julian Date, used to indicate when a given piece of SDSS data was taken
fiber ID [fiber ID that identifies the fiber that pointed the light at the focal plane in each observation

3. Training Model and Result Analysis

3.1 Training Process

It is a major step in machine learning where the
model learns the pattern®! within the dataset for
the right prediction on unseen data. During this
stage, pre-processed and cleaned datasets will be
fed as input for several algorithms, each with a
diverse approach toward classification. Each of
the various algorithms will iteratively optimize
its internal parametersl®’ with the data to
minimize the error and turn out to be a better
predictor.  Logistic regression gives the
probability of each class, while SVM gives the
best hyperplane to separate each different class.
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Random Forest is an ensemble technique which
forms a great number of decision trees. Naive
Bayes is a probabilistic approach using
conditional probabilities. This will mean that the
step will benchmark the performance of each
algorithm on training data and then cross-check
for accuracy against another varied validation
set so that we can compare the effectiveness of
the models for choosing the best model that suits
our classification problem. With this approach, I
should obtain a generalized model with real data
and minimal errors to support maximum
predictive reliability[7].

3.2 Process of Training
The numpy, pandas, and skylearn libraries play a
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crucial role during the training process. Much of
the training is carried out through importing a
major part of the libraries coming from skylearn.
The following script prepares and trains four
machine learning classifiers: Random Forest,
Logistic Regression, Support Vector Machine-
SVM, and Naive Bayes to classify the stellar
objects within the dataset. It follows the import
of the major libraries: numpy for numerical
operations, pandas for the manipulation of data,
including modules from sklearn as it would ease
the workflow of machine learning. It then
follows the loading of a dataset from a CSV file
into a DataFrame called stellar. It contains
several features explaining the stellar objects

and a target column labeled as 'class',
representing the classification labels.
The feature set X will be formed in the

preparation of data, sans the target column, with
a target variable y comprised of only values of
the 'class' column. The data is split into its
respective training and test sets using the
train_test_split, where 80% is for training and
the remaining 20% for testing, represented as
X train and y train and X test and y_test,
respectively!®l. A random seed (random_state=42)
is set to ensure the split remains consistent
across different runs, enhancing reproducibility
in model evaluation.

The next step will be feature normalization.
Normalization is one of the most critical
preprocessing steps to which many algorithms,
including Logistic Regression and SVM, are
sensitive. This function normalizes the data by
scaling it so that each feature has an average of 0
and a standard deviation of 1. This may
contribute to the models' stability and/or
performance. It fits the scaler on the training
data in this section, then commits the same
transformation to the test set.

Due to their diversified approaches, a dictionary
named classifiers is created that contains a list of
four classification algorithms: Random Forest is
an ensemble-based method that builds lots of
decision trees and then combines the output by
taking a vote on each; n_estimators=100 is the
optimum number of trees which balances model
performance and computational power. Logistic
Regression is representative of the linear model,
which calculates the probabilities of each class;
hence, it is useful in binary and multi-class
classification. The SVM algorithm tries to find
such an optimum hyperplane that maximizes the
margin between classes. In this implementation
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of the SVM, a linear kernel is specified. Lastly,
Gaussian Naive Bayes is a Naive Bayes
classifier that assumes independence in features
using Bayes' theorem and is computationally so
fast on large datasets.

The subsequent steps will fit the method to the
training data and predict on the test set using the
predict method. To evaluate the performance of
each model, the functions to be used are
classification report and confusion matrix. A
classification report encompasses a
comprehensive metric including precision, recall,
F1-score, and support of each class in the data
while giving an insight into the strengths and
weaknesses of each model. The confusion
matrix explains the count for true positives, true
negatives, false positives, and false negatives.
Aggregated together, these results will give a
very good estimate of the generalization ability
of each model to whatever other unseen data
there is and hence the best choice of model on
which classification can be performed with most
confidence. This provides a structured manner in
which the performances can be compared and
thus offers an informed choice during
classification.

3.3 analysis of Result

Precision, recall, F1-score, and confusion matrix
are some key parameters that define the
performance of machine learning algorithms in
classification. Precision is the accuracy of the
positive predictions, which quantifies the
number of correctly predicted positives out of
the total positives predicted, something very
useful when the cost associated with false
positives is too high. Recall, or sensitivity, refers
to the number of actual positives the model
captures. This is highly important where a
positive case has a severe consequence when
missing. The Fl-score encompasses both
precision and recall in a single score and
represents the balance between the two best.
This is highly useful in an imbalanced dataset
since it considers both false positives and false
negatives.

These predictions are given by the confusion
matrix as the counts of true positives, false
positives, true negatives, and false negatives for
the different classes. This enables, further, the
finding of very specific areas where the model is
going wrong, showing where it finds it difficult
to choose between classes. Taken together, this
set of metrics overview model performance and
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enable deep comparisons of the relative
strengths and weaknesses. The following
discussion then describes how the performance
metrics will go about calculating the classifiers:
random forest, logistic regression, SVM, and
Naive Bayes to classify the stellar objects.

3.3.1 Analysis of random forest classifier
Classifier: Random Forest

precision recall fl-score support

2] .98 9.99 .98 11860

T .98 9.99 8.99 4343

2 8.97 2.93 8.95 3797

accuracy .98 20060

macro avg .98 9.97 .97 200e0

weighted avg 0.98 9.98 0.98 20000
[[11689 68 111]
[ 36 4306 1]
[ 249 18 3538]]

Figure 1. Result of Random Forest Classifier
According to Figure 1 (result of random forest
classifier), The Random Forest classifier showed
the best performance: 98% accuracy and most
generalized. For all classes, it showed very high
overall precision: 0.98 for classes 0 and 1, and
0.97 for class 2; and recalls of 0.99 for classes 0
and 1 and 0.93 for class 2. Its Fl-scores lay
between 0.95 and 0.98, showing balanced
performance. The confusion matrix presented a
few misclassifications-meaning this model was
quite robust in terms of complicated data.

3.3.2 Analysis of Logistic Regression Classifier

Classifier: Logistic Regression

precision recall fl-score support

] 9.83 e.94 0.89 11860

1 0.79 8.55 9.64 4343

2 0.91 .85 9.88 3797

accuracy 0.84 20eee

macro avg 0.84 e.78 .80 20000

weighted avg 0.84 0.84 9.83 20000
[[11206 393  261]
[ 1932 2367  44]
[ 321 248 3228]]

Figure 2. Result of Logistic Regression
Classifier

According to Figure 2 (result of logistic
regression classifier), Logistic Regression did
pretty mid-stream, with an accuracy of 84%.
Precision for classes 0, 1, and 2 was 0.83, 0.79,
and 0.91, respectively. Recall was significantly
imbalanced between the classes, whereas class 1
had the worst recall, performing at only 0.55,
class 0 had a recall of 0.94, with class 2 posting
0.85. F1 scores came in at 0.89, 0.64, and 0.88
for classes 0, 1, and 2, respectively. The
confusion matrix illustrates that the number of
false negatives is rather high in class 1,
reflecting the difficulty of distinguishing it from
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other classes.
3.3.3 Analysis of Support Vector Machine(SVM)

Classifier

Classifier: SVM
precision recall fil-score support
e 8.83 @97 ©.9e 11868
I 8.85 8.53 .66 4343
2 .95 9.85 9.90 3797
accuracy .85 2eeee
macro avg 8.88 0.79 9.32 20008
weighted avg 8.86 0.85 8.84 20008

[[11517 187 156]
[ 2012 2321 18]
[ 343 227 3227]]

Figure 3. Result of Support Vector Machine
Training Classifier

According to Figure 3 (result of SVM classifier),
Accuracy for the SVM classifier stood at 85%, a
bit better than that achieved from Logistic
Regression. Precision values are 0.83 for class 0,
0.85 for class 1, and 0.95 for class 2. For recall,
class 0 is extremely high at 0.97 while class 1 is
pretty low at 0.53, with class 2 at 0.85. The F1-
scores are 0.90, 0.66, and 0.90. Just like in
Logistic Regression, class 1 suffers from
misclassifications, which indicates some
difficulties in model training for that class.

3.3.4 Analysis of Naive Bayes Classifier

Classifier: Naive Bayes

precision recall fl-score support

2] e.85 ©.66 2.74 11860

1 .42 9.53 .47 4343

2 e.e3 .88 B.73 3797

accuracy 8.67 20068
macro avg e.63 9.69 ©.65 2000808
weighted avg 8.71 8.67 8.68 20060

[[7809 2920 1131]
[1183 2296 864]
[ 182 282 3333]]

Figure 4. Result of Naive Bayes Classifier
According to Figure 4 (result of Naive Bayes
classifier), The worst performance came from
Naive Bayes, which scored an accuracy of 67%.
Precision values were quite low, with the high of
0.42 being in class 1, whereas class 0 was 0.85
and class 2 was 0.63. Recall metrics indicated an
inability to recognize TPs, especially in classes 0
and 1 at 0.66 and 0.53, correspondingly, while
class 2 had a relatively better 0.88. The F1
scores-0.74 for class 0, 0.47 for class 1, and 0.73
for class 2-painted a picture of imbalance in
performance. The confusion matrix indicated
considerable misclassifications, hence showing
Naive Bayes was struggling with the complexity
of the dataset.
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4. Evaluation

The methodology followed in this work provides
a sure-shot path toward systematically exploring
which machine learning algorithms work better
in classifying stellar objects. Strong points of the
proposed method are related to data
preprocessing, model selection, and a rigorous
evaluation framework. Cleaning, standardization,
and splitting into training and test sets are highly
important initial steps that any algorithm can
take to get off to the very best possible start with
the goal of learning from data. Among the
included algorithms were Random Forest,
Logistic Regression, SVM, and Naive Bayes-all
contending in finding a full-scale approach
toward which methods best fit the characteristics
of the dataset. Besides, metrics such as precision,
recall, F1-score, and the confusion matrix have
made it possible to compare models in detail,
thus drawing informed conclusions.

Of course, there are a few areas where this
methodology might be further improved. The
dataset was normalized, but additional feature
engineering would probably make models
perform even better. These are advanced feature
selection or dimensionality reduction techniques,

such as PCAP], which are effective in
determining whether better feature
representations may yield improved

classification tasks, especially if employing
some models that don't go so well, like Naive
Bayes.

This approach was also based on one split for
training and testing, which is very biased within
the performance evaluation. Techniques of
cross-validation, such as k-fold"'%, would make
much more strength in the test of every model
over several splits of the data. This will reduce
the probability of having erroneous results
because of a poor split in the division between
training and testing. Therefore, the findings
become more reliable.
Another possible weakness may include making
use of the same set of measures in evaluating
different models. While the precision, recall, F1-
score, and accuracy are very important features,
other algorithms such as Random Forest, which
can be optimized for better ensembles by
providing parameters like n_estimators!'l and
tree depth that could help to avoid overfitting,
were not considered. The extra steps of
optimization will fine-tune the performance of
each model and make the result more accurate.
In all, the methodology adopted in this study
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generally succeeds in yielding the results of the
stated research goals by giving good insight into
how the machine learning algorithms classify
stellar objects. However, feature engineering
would be further improved with the inclusion of
cross-validation and tuning model-specific

parameters, which Dbetter increases the
robustness and  reliability  of  future
investigations!'?!,

5. Conclusion

Stellar object classification studies performance
dependence on various machine learning
algorithms considering actual realization and
basic assumptions made. The Random Forest
classifier performed the best, with up to 98%
accuracy for unseen data, since RF generalizes
that well to unseen data. This underlines the
advantage of ensembles, whereby avoidance of
overfitting enables many trees to work together
in modelling complex relationships of data while
keeping the model predictive.

Logistic regression and the support vector
machine yielded moderated results with an
accuracy of 84% and 85%, respectively. These
models yielded suitable results on some classes
and, particularly, class 0, where they completely
failed for class 1. Such huge differences in class
performance may indicate that these models
require more feature engineering or modification
in training for capturing the fine patterns.

It is also clear that the Naive Bayes classifier

performed poorest among those, although
computationally efficient, with an overall
accuracy of 67%; its reliance on the

independence assumption was a limitation since
interdependencies within the features of the
dataset undermined its precision and recall,
especially for class 1. In fact, this underlines the
difficulty in applying simple probabilistic
models to such complex, real-world datasets and
reinforces the demand for algorithms much more
able to consider complex feature interactions.

This hence brings into focus the need to
determine  an  appropriate  classification
algorithm based on any characteristic of the
dataset and the classification objective!'3l. The
somewhat in-depth look into the metrics of
performance through precision, recall, F1-score,
and confusion matrix derived an appropriate
understanding of the effectiveness of each model
for decision-making in effective classification.
The results depict clearly that techniques of
machine learning can still be explored and

http://www.stemmpress.com



48 Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 2 No. 4, 2024

optimized in the classification of stellar objects,
as the proper prediction of the proposed classes
could really enhance astronomical research and
understanding. Future directions may be made
toward enhancement in feature selection, the
exploration of advanced ensemble techniques,
and integration of more data for better
optimization of classifier performance across all
classes!*l,
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