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Abstract: In the era of Industry 4.0, the
level of intelligence and automation of
production lines is crucial for improving
production efficiency. This study addresses
the issue of fault prediction in industrial
production lines by constructing an
automatic alarm model using XGBoost and
neural network technology to enhance the
intelligence of production lines and optimize
scheduling. By analyzing the characteristics
of fault data and using correlation matrices
and time series differencing methods to
build feature engineering, the model
achieves a precision rate of up to 97.99%,
effectively predicting fault trends.
Furthermore, the model is applied to actual
data to automatically alarm faults and
statistically analyze fault frequency and
duration. At the same time, by using
correlation analysis and multiple linear
regression models, the study calculates
production and qualification rates,
revealing their relationships with
production lines and operators, and
presents them in graphical form. The
models and methods in this study have
practical application value for improving
industrial production efficiency.
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1. Introduction

1.1 Research Background
With the rapid development of information
technology, industrial production lines are
gradually transitioning towards intelligence
and automation. The application of intelligent
control technology enables automated
production lines to automatically complete
processes such as item conveyance, material
filling, product packaging, and quality

inspection, greatly improving production
efficiency and product quality while reducing
production costs. However, as the scale and
complexity of industrial production continue to
expand, the challenges faced by automated
production lines are becoming increasingly
prominent. Traditional automated systems
often lack sufficient intelligence and flexibility
to effectively deal with changes and exceptions
in the production process. Moreover, there is a
lack of effective interconnection between the
equipment and systems on the production line,
leading to inefficient information transfer and
collaboration, which affects overall production
efficiency and quality management. Therefore,
how to further enhance the intelligence level of
automated production lines and optimize the
coordination and flexibility of the production
process has become a key issue that needs to
be addressed in the current industrial field [1].

1.2 Literature Review
The integration of machine learning (ML)
techniques with industrial processes,
particularly in the context of fault prediction
and maintenance, has seen significant
advancements in recent years. This section
provides a comprehensive review of the
literature pertaining to the application of ML in
production lines and pipeline safety assessment,
highlighting the key findings and
methodologies employed.
The proliferation of Industry 4.0 has
necessitated the adoption of ML for enhancing
the efficiency and reliability of production
lines. Kang et al. [2] conducted a systematic
literature review, identifying the application of
ML in various industrial domains, with a focus
on quality control and fault diagnosis. Their
study underscored the dominance of
supervised learning and the frequent use of
artificial neural networks (ANN) in addressing
production line problems.
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The importance of data analytics in production
lines has been emphasized by several
researchers. For instance, Crespino et al. [3]
highlighted the challenges in handling the
increasing data volumes in aerospace
manufacturing, where real-time predictive
analysis can improve output quality by
identifying anomalies. Nakazawa and Kulkarni
[4] utilized deep convolutional encoder-
decoder neural networks for detecting wafer
map defect anomalies in semiconductor
manufacturing, demonstrating the potential of
deep learning in defect detection.
Predictive maintenance (PdM) has emerged as
a critical area in industrial asset management.
Paolanti et al. [5] proposed a machine learning
approach for predictive maintenance in
industry 4.0, emphasizing the need for
condition monitoring and remaining useful life
prediction. Yu et al. [6] presented a global
manufacturing big data ecosystem for fault
detection in predictive maintenance,
showcasing the synergy between big data and
ML in enhancing maintenance strategies.
The application of ML in predictive
maintenance has been further explored by
Aydemir and Paynabar [7], who focused on
image-based prognostics using deep learning
approaches. Similarly, Weber and Reimann [8]
introduced a platform to manage machine
learning models in Industry 4.0 environments,
highlighting the practical implementation of
ML in industrial settings.
Pipeline safety, a critical aspect of the oil and
gas industry, has also seen the application of
ML techniques. Elshaboury et al. [9] developed
data-driven models for forecasting failure
modes in oil and gas pipelines, using
multilayer perceptron (MLP) neural networks,
radial basis function (RBF) neural networks,
and multinomial logistic (MNL) regression.
Their models achieved high accuracy rates,
demonstrating the effectiveness of ML in
predicting pipeline failures.
Liu et al. [10] proposed an XGBoost algorithm-
based model for the safety assessment of
pipelines, achieving an accuracy of 98.5% and
highlighting the potential of XGBoost in
pipeline risk assessment. This study, along
with others, suggests that ML can significantly
reduce the costs associated with non-
destructive examinations (NDE) and
engineering assessments (EA) in the pipeline
industry.

Pang [11] presents a deep learning-based
approach for adaptive fault prediction and
maintenance in production lines, addressing
limitations in traditional methods. The study
introduces a model that incorporates wide
convolutional feature extraction, customized
gating, and multi-layered progressive
extraction modules. It utilizes Wasserstein
distance for fault stage division and employs
L2 regularization and neuron dropout for
optimization, enhancing prediction accuracy
and maintenance efficiency. This research
contributes to the field by offering a more
precise and adaptable strategy for fault
prediction, which is crucial for improving
production line performance and reducing
operational costs.

1.3 Problem Formulation
The research questions in this paper mainly
focus on how to enhance the intelligence level
of automated production lines and optimize the
coordination and flexibility of the production
process. Key issues include:
1)How to build an effective fault alarm model
to achieve automatic and immediate fault
alarms, reducing production interruptions and
economic losses.
2)How to optimize personnel allocation
through data analysis and model construction
to reduce resource waste and improve
production efficiency.
3)How to address the lack of effective
interconnection between equipment and
systems on the production line to improve
information transfer and collaboration
efficiency.
This paper will explore an automatic alarm
model based on XGBoost and neural networks,
and how to improve the intelligence level of
production lines and optimize the production
process through data mining and machine
learning technology. The ultimate goal of the
research is to provide a feasible method and
technical route for the automatic recognition of
production line faults and personnel allocation,
in order to improve production efficiency and
product quality, and reduce production costs.

2. Materials and Methods

2.1 Dataset
The dataset used in this study covers 37 fields,
including date, time, production line number,
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material push number, material waiting to be
grasped number, qualification certificate,
unqualified number, fault code, etc. The
training set used is the operating data of 10
production lines for one year, approximately
75,000,000 rows, and the test set is the
operating data of another 2 production lines for
one year (excluding fault information fields),
approximately 15,000,000 rows. The dataset is
diverse and includes text and missing values.
After preprocessing, including text conversion,
missing value filling, and feature construction,
these data provide a basis for training the
XGBoost model to predict fault alarms,
analyze equipment fault frequency, and
duration.

2.2 XGBoost
XGBoost (Extreme Gradient Boosting) is an
ensemble learning algorithm, an optimized
version of the Gradient Boosting Machine
(GBM). It has shown excellent performance
and accuracy in handling large-scale datasets,
especially in regression and classification
problems [12]. The XGBoost model builds a
powerful prediction model by integrating
multiple weak learners (usually decision trees).
The core idea is to sum the prediction results
of multiple weak learners with weights to
improve the overall model's predictive ability.
[13]
2.2.1 Gradient Boosting Framework
The gradient boosting framework of XGBoost
can be represented as:

��� = �−1
� ��(��(��; ��)� (1)

Where iŷ is the fault prediction result of the

model for the i sample, K is the number of

weak learners (decision trees); kf is the

prediction function of the k weak learner, k
is the weight of the k weak learner, and k is
the parameter of the k weak learner.
2.2.2 Objective Function and Regularization
The objective function of XGBoost not only
includes prediction error but also adds
regularization terms to prevent overfitting,
which is particularly important for the
generalization ability of fault prediction
models:
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� �(��)� (2)
where l is the loss function, and  is the

regularization term, usually containing 1L and

2L regularization:
�(�) = �� + 1

2
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where  is the 1L regularization coefficient, λ
is the 2L regularization coefficient, T is the

number of leaves in the tree, and jw is the
score (i.e., prediction value) of the j leaf node.
2.2.3 Feature Importance Evaluation
In fault prediction, identifying which features
have a significant impact on fault occurrence is
very valuable. XGBoost provides an intuitive
method for feature importance evaluation,
identifying important features by analyzing the
contribution of features in the model's split
points:

����������������� = ����

��� �������� �����
(4)

where Gain is the sum of gains when the
feature splits in all trees.
Applying XGBoost to the problem studied in
this paper, the model construction can be
divided into the following steps. First,
construct extreme gradient boosting trees,
where XGBoost selects features and split
points that maximize gains at each split. Gain
can be represented as:

���� = 1
2

( �∈����
−��∈�����

��+��
)2 (5)

where LI and RI are the sample sets of the
left and right child nodes after splitting,
respectively, ig is the gradient of the i
sample, and LH is the second derivative of
the RH sample.

�(� = � �) = ��(�)�

�−1
� ��(�)��

(6)

where jxf )( represents the model's predicted

score for class j , and K is the total number of
fault types.
Overall, the XGBoost algorithm holds a
significant position in the field of production
line fault prediction due to its excellent
performance and generalization capabilities.
By adjusting model parameters, such as the
maximum depth of decision trees and the
learning rate, the performance of the XGBoost
model can be further optimized to suit specific
production line environments and fault
prediction requirements.
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3. Analysis and Results

3.1 Data Processing
Before constructing a production line fault
prediction model, it is essential to conduct an
in-depth analysis of the production line data to
identify and extract key data features. This
process involves not only feature engineering
for fault data but also plays a crucial role in the
accuracy and generalization capability of
subsequent models.
Firstly, data preprocessing is carried out: (1)
Data cleaning: Remove invalid or incomplete
records to ensure the consistency and
reliability of the dataset. (2) Format
standardization: Convert all data into a unified
format for ease of subsequent processing and
analysis. (3) Missing value treatment:
Interpolate or delete missing data to prevent
information loss from biasing the model. (4)
Outlier detection: Identify and handle outliers
to reduce their adverse effects on model
training.
Next, feature engineering is conducted to
extract useful information from the data: (1)
Feature selection: Identify features most

relevant to fault prediction, reducing model
complexity and improving predictive
efficiency. (2) Feature transformation:
Standardize or normalize features to the same
scale, enhancing the model's convergence
speed and accuracy. (3) Feature construction:
Create new features based on existing data to
reveal hidden patterns and relationships.
Finally, statistical analysis methods are used to
explore the correlations between various faults
and other data features.
From the correlation matrix heatmap shown in
Figure 1, it is evident that there is a significant
correlation between most data features and
fault data. This indicates that faults are often
directly caused by the operational status of
earlier processes, such as the number of times
the capping device presses down on bottle caps
onto product bottles and the number of times
the screwing device screws on the product
bottle caps, which have a direct impact on the
occurrence of subsequent faults. Through this
intuitive visualization method, we can identify
key process data that are closely related to the
occurrence of faults, providing important input
features for subsequent fault prediction models.

Figure 1. Correlation Matrix Heatmap

3.2 Model Development
This study employs the XGBoost algorithm to
construct a fault prediction model for
production lines. Initially, the dataset is

preprocessed using the pandas library in
Python. The specific steps include: handling
missing values in the fault data by iterating
through the data to mark the start time of faults
and calculating the duration of faults, filling all
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missing values with 0. Additionally, to address
the issue of data imbalance, this study employs
oversampling methods to balance the class
distribution. During the feature extraction
phase, the processed dataset is divided into a
feature set and a label set, which are then
converted into tensor format under the
PyTorch framework for subsequent model
training.
from imblearn.over_sampling import SMOTE
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.model_selection import train_test
_split
from torch.utils.data import DataLoader, Tenso
rDataset
from imblearn.over_sampling import SMOTE
import xgboost as xgb
from sklearn.metrics import accuracy_score
from sklearn.utils import resample
from tqdm import tqdm
import os

def incremental_xgboost_training (file_path, e
xisting_model, new_model_name, params=No
ne, num_rounds=100):
# Load data
df = pd.read_csv(file_path)

# Data preprocessing
df.iloc[:, 2] = df.iloc[:, 2].str.extract('(\d+)').

astype(int)
df.iloc[:, -9:] = df.iloc[:, -9:].applymap(lamb

da x: 1 if x != 0 else 0)
df = df.astype(int)

error_df = pd.DataFrame()
fault_columns = [col for col in df.columns if

'fault ' in col]

# Calculate fault duration
for col in fault_columns:
error_df[f'{col}_start'] = (df[col]! = 0) &

(df[col]. shift (1) == 0)
error_df[f'{col}_duration'] = df.groupby

((df[col] == 0).cumsum())[col].transform('coun
t') * error_df[f'{col}_start']

duration_temp = pd.Series(index=error_d
f.index, dtype='float64')

for i in error_df.index[error_df[f'{col}_sta
rt']]:

duration_temp.iloc[i:i + error_df.at[i, f'
{col}_duration']] = error_df.at[i, f'{col}_durati
on']

error_df[f'{col}_duration'] = duration_te
mp.fillna(0).astype(int)

# Add fault duration to data
for col in fault_columns:
df[f'{col}_duration'] = error_df[f'{col}_d

uration']

X = df.iloc[:, :-18].values
y = df.iloc[:, -18:-9].values

X_tensor = torch.tensor(X, dtype=torch.float
32)
y_tensor = torch.tensor(y, dtype=torch.float

32)

dtrain = xgb.DMatrix(X_tensor, label=y_ten
sor)

# If parameters are not provided, set default
parameters
if params is None:
params = {
'max_depth': 3,
'eta': 0.3,
'objective': 'binary:logistic',
'eval_metric': 'auc',
'num_feature': 28 # Set the number of f

eatures to 28
}

# Continue training the model
model = xgb.train(params, dtrain, num_roun

ds, xgb_model=existing_model)

# Rename the model
model.set_attr (name='name', value=new_m

odel_name)

return model
Subsequently, the preprocessed feature sets
and label sets are converted into the DMatrix
data structure required by the XGBoost
algorithm. Building on this, this study employs
an incremental learning strategy, combining
existing models with new data for training. In
terms of parameter settings, this study adjusts
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key parameters, including the maximum depth
of the trees and the learning rate. After making
predictions on the test set, the predicted
probability values are converted into integer
form prediction labels, and the model's
accuracy, precision, recall, and F1 score are
calculated after multiple rounds of training to
comprehensively evaluate the model's
performance. Through the aforementioned
steps, this study successfully constructed an
XGBoost fault prediction model, providing
technical support for the automatic alarming of
production line faults.

Table 1. Model Training Results
Evaluation Metrics Values

Accuracy 97.9745%
Precision 0.0545
Recall 0.16565
F1 Score 0.08204

Table 1 presents the performance evaluation
results of the model. The accuracy rate reaches
97.9745%, indicating that the model has a high
overall predictive accuracy. However, the
precision is only 0.0545, which may be
attributed to the high sensitivity of the model
leading to more false positives. The recall rate
is 0.16565, indicating that a significant number
of positive samples are not correctly identified,
suggesting a deficiency in the model's ability
to recognize positive samples. The F1 score is
0.08204, further reflecting the imbalance in
model performance. Accuracy reflects the
overall predictive accuracy of the model,
precision focuses on the accuracy of positive
predictions, recall emphasizes the ability to
identify positive samples, and the F1 score is a
comprehensive reflection of precision and
recall. By utilizing specific machine learning
libraries to evaluate model predictions, a
deeper understanding of the model's
performance can be gained, providing
important reference for subsequent model
optimization and practical application.

3.3 Prediction
To further understand and address the issues of
faults within production lines, and to enhance
production efficiency and quality, this study
initially employed the seaborn library to
generate histograms that graphically represent
the distribution of the XGBoost model's
predictive outcomes (refer to Figure 2).
Histograms serve as a pivotal analytical
instrument for assessing the precision and

robustness of predictive models, capable of
elucidating the probabilistic distributional
characteristics of the model's forecasts.

Figure 2. Predicted Probabilities for Each
Sample

As depicted in Figure 2, the histogram
demonstrates that the predicted probabilities
are primarily distributed within the intervals of
0 - 0.2 and 0.6 - 0.8. Within the 0 - 0.2 range,
the data points are relatively concentrated,
indicating that the model predicts a higher
number of negative class samples (i.e., no fault
occurrence) with a consistent probability,
reflecting a higher certainty in the model's
predictions for this range. Conversely, the 0.6 -
0.8 range also contains a certain number of
data points, representing the model's prediction
of positive class samples (i.e., fault
occurrence), but the probability distribution is
more dispersed, suggesting a lower certainty in
the model's predictions for this segment.
Overall, the distribution of the model's
predictive outcomes exhibits a certain
skewness, which may be related to the
frequency of fault occurrences in the actual
data. By analyzing the histogram, we can gain
a visual understanding of the model's
performance tendencies across different
prediction categories, providing a basis for
subsequent model optimization. For instance,
targeting intervals with ambiguous prediction
probabilities, further adjustments to model
parameters or improvements in feature
engineering could be implemented to enhance
the model's predictive accuracy and stability.
Additionally, calculating the start and end
positions of faults, as well as their duration, is
crucial for understanding the occurrence and
progression of faults, offering important
references for fault diagnosis and repair. By
creating a DataFrame to record the start times
and durations of faults and merging it with the
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original data, we can obtain richer information
for in-depth analysis and processing.
Renaming the column headers and resetting
the index enhances the readability and
usability of the data, facilitating subsequent
data analysis and processing. Saving the
resulting DataFrame as a CSV file facilitates
integration and sharing with other tools and

systems for further analysis and processing.
Overall, the aforementioned processes and
outcomes are of significant importance for
thoroughly understanding and addressing fault
issues in production lines, and for improving
production efficiency and quality. The
prediction results are presented in Table 2.

Table 2. Model Prediction Results (Partial Data Shown)
Fault Id 1001 1002 ...
S/N dt. Start time Dur. (sec.) dt. Start time Dur. (sec.) ...
0 12 9072 6 4 8258 3 ...
1 15 5250 157 4 8435 4 ...
2 17 20882 9 4 10742 7 ...
3 17 20902 140 4 10939 7 ...
4 24 25432 9 5 10939 7 ...
... ... ... ... ... ... ... ...

4. Conclusions
This study has demonstrated that the fault
prediction model based on the XGBoost
algorithm is highly effective and practical in
real-world applications. The model's high
accuracy rate has proven its predictive
capabilities in complex industrial
environments, particularly in reducing
production interruptions and optimizing
resource allocation. Despite the challenges
faced in precision and recall rates, these
metrics also reveal areas for improvement in
the model's identification of specific fault
types. Future work will focus on enhancing
these performance indicators and extending the
model to more production line scenarios to
verify its generalization capabilities. Overall,
this study not only provides an effective tool
for fault prediction in production lines but also
offers strong technical support for the
intelligent and automated production in the
context of Industry 4.0.

4.1 Model Advantages
The XGBoost model proposed in this study has
shown significant advantages in fault
prediction for production lines, primarily
reflected in its exceptional accuracy rate of up
to 97.99%. This not only proves the model's
reliability in predicting faults in most cases but
also provides strong assurance for the stable
operation of production lines. Furthermore, the
model's automated alarm system responds
promptly to potential production issues,
reducing the need for manual intervention,

increasing response speed and efficiency, and
aiding in the reduction of resource waste and
enhancement of overall production efficiency,
thus strengthening the scientific basis for
decision-making.

4.2 Model Disadvantages
Although the model excels in accuracy, its
performance in precision and recall rates
leaves room for improvement, which may
point to issues with the model's performance
under specific conditions, especially in
identifying positive sample types. This could
be due to data imbalance or the model's
insufficient sensitivity to certain features.
Therefore, further model optimization is
needed to enhance its sensitivity and
identification capabilities for fault occurrences
while maintaining high accuracy.

4.3 Model Prospect
Looking ahead, the XGBoost model from this
study has the potential for further optimization
and expansion. By adjusting model parameters
and improving feature engineering, the model's
predictive accuracy and stability can be
enhanced. The application of model ensemble
methods, such as combining XGBoost with
neural networks, may further improve the
model's generalization and predictive
performance. Additionally, integrating the
model into real-time monitoring systems for
real-time fault prediction and alarms will
further elevate the level of intelligent
production. Ultimately, by extending the
models and methods from this study to other
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industrial sectors, there is potential to improve
the overall efficiency and quality of industrial
production.
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