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Abstract: Claw-shaped determinants, as a
type of sparse determinant, have extensive
applications in various fields such as matrix
theory, numerical computation, physics,
engineering, economics, and computer
science. To efficiently compute the values of
claw-shaped determinants, this paper first
categorizes them into four types. Next, using
the properties of determinants, the
calculation formulas for these four types of
claw-shaped determinants are discussed.
Finally, numerical examples demonstrate
the rationality of these formulas.
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1. Introduction
In many practical applications, such as image
processing, signal processing, scientific
computing, and social networks, the data being
processed often takes the form of sparse
matrices (matrices where the number of
nonzero elements is much smaller than the
total number of elements), this has made the
theoretical study of sparse matrices one of the
research hotspots [1-5].
The problem of calculating the determinant of
sparse matrices is significant for improving the
theoretical foundation of sparse matrices. For
example, the computation of tridiagonal
determinants plays an important role in the
discretization of differential equations, linear
systems of equations, and physical problems.
Claw-shaped determinants are another type of
determinant with a sparse structure. This
sparsity not only significantly reduces
computational effort when calculating their
values but also minimizes storage costs.
Previous researchers have studied the
computation of claw-shaped determinants
[6-10], but no systematic exploration of their
calculation methods has been conducted.

Therefore, this paper will comprehensively
discuss the computation formulas for different
types of claw-shaped determinants.
To facilitate the discussion, we first define
four types of claw-shaped determinants as
follows.
Definition 1.1 Let ia , jb , jc be numbers not
all equal to zero, where 1, 2 , ,i n  ;

2,3, ,j n  . Determinants of order n:
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These are referred to as the first, second, third,
and fourth types of claw-shaped determinants,
respectively.
For the first type of claw-shaped determinants,
extensive research results already exist. Below,
we list some of the known conclusions.

Lemma 1.1 Let
1
nD be a determinant of

order n of the first type of claw-shaped
determinant. Then:
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(ii) When there is exactly one zero
among 2 ,b 3 ,b ,

nb , without loss of

generality, let  0 {2,3, , } ,ib i n   then:
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(iii) When at least two elements among
2 ,b 3 ,b ,

nb are zero,
1 0nD  .

Expanding the formula for case (i) in Lemma
1.1 reveals that the result also satisfies the
conclusions in (ii) and (iii). Thus, the
computation formula for the first type of
claw-shaped determinant can be unified as
follows:
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Given the above conclusions for the first type
of claw-shaped determinant, do similar
conclusions exist for the other three types of
claw-shaped determinants? The following
sections will continue to explore these and
provide computation formulas for other types
of claw-shaped determinants.

2. Main Conclusions
Theorem 2.1 If the n-order determinant

2
nD  is a second-type claw determinant, then
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When one element in 2 ,b 3 ,b , nb is zero,
without loss of generality,

suppose  0 {2,3, , } ,ib i n   .

Expanding
2
nD  along the i-th row gives:
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then expanding the determinant in the formula
along the column containing ia :
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When at least two elements in
2 ,b 3 ,b ,

nb are zero, suppose 0,i jb b 

where {2,3, , };i n  {2,3, , }j n  ;
.i j selecting the ,i j rows, we find that

all their second-order minors equal zero. By
Laplace’s theorem, it follows that 2 0.nD 
Now we prove that regardless of the values of
 2,3, ,ib i n  ,

Journal of Natural Science Education (ISSN: 3005-5792) Vol. 1 No. 5, 2024 47

Copyright @ STEMM Institute Press http://www.stemmpress.com



 
 1

2 2
1

22 , 2

1 .
n nn n n

n j j j k
jj k j k

D a b a c b


 

  
    

   
 

≠

When
2

0
n

j
j
b



 and at least two

of 2 ,b 3 ,b ,
nb are zero, expand each

formula to prove it. When 2 ,b 3 ,b ,
nb has

only one zero, without loss of generality, let
 0 {2,3, , }ib i n   . By expanding both

formulas and comparing the results, it can be
observed that the two formulas differ by at
most a sign. Thus, it suffices to prove that
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Thus, the proof is complete.
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Similarly, the calculation formulas for
third-type and fourth-type claw determinants
can be derived, and their proofs are similar to
the proof of Theorem 2.1, so they are omitted.
Theorem 2.2 If the n-order determinant

3
nD  is a third-type claw determinant, then
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Theorem 2.3 If the n-order determinant
4
nD  is a fourth-type claw determinant, then
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3. Numerical Examples
If an n-order determinant belongs to one of the
types of claw-shaped determinants, its value
can be directly obtained using the
corresponding computation formula. In
general, the structure of an n-order
determinant may not be a claw-shaped
determinant. However, for certain
determinants, their properties can be utilized to
transform them into claw-shaped determinants.

The computation formulas provided in this
paper can then be used to calculate their values.
Below are specific examples.
Example1 3.1 Compute the value of the
n-order determinant:
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Solution Using the edge-addition method [11],
we have:
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Multiply the last column of the determinant by
-1 and add it to each of the preceding columns:
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Using the computation formula for the second
type of claw-shaped determinant:
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Example 3.2 Compute the value of the n-order
determinant:
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Solution Multiply the last row of the

determinant nD by -1 and add it to each of the
preceding rows:
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Using the computation formula for the third
type of claw-shaped determinant:
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Example 3.3 Compute the value of the n-order
determinant:
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Solution Multiply the last row of the
determinant nD by -1 and add it to each of
the preceding rows:
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Using the computation formula for the fourth
type of claw-shaped determinant:

   1 1 .n
nD a b a n b     

4. Conclusion
Claw-shaped determinants are a special type of
determinant characterized by sparsity. This
paper leverages their structural characteristics
to not only provide a rigorous classification of
different types of claw-shaped determinants
but also derive computation formulas for each
type. Numerical examples demonstrate that the
computation formulas presented in this paper
facilitate more convenient and accurate
calculation of the values of various types of
claw-shaped determinants.
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