Exploration of Calculation Methods for a Class of Sparse Determinants

Dandan Xia* , Yulong Yan, Jing Zhou

*School of Mathematics and Computer Science, Chongqing College of International Business and Economics, Hechuan, Chongqing, China *Corresponding Author*

Abstract: Claw-shaped determinants, as a type of sparse determinant, have extensive applications in various fields such as matrix theory, numerical computation, physics, engineering, economics, and computer science. To efficiently compute the values of claw-shaped determinants, this paper first categorizes them into four types. Next, using the properties of **determinants, the** $j = 2, 3, \dots, n$. Determinants of order n: **calculation formulas for these four types of claw-shaped determinants are discussed. Finally, numerical examples demonstrate the rationality of these formulas.**

Keywords: Determinant; Claw-Shaped; Sparsity; Laplace's Theorem

1. Introduction

In many practical applications, such as image processing, signal processing, scientific computing, and social networks, the data being processed often takes the form of sparse matrices (matrices where the number of nonzero elements is much smaller than the total number of elements), this has made the theoretical study of sparse matrices one of the research hotspots [1-5].

The problem of calculating the determinant of sparse matrices is significant for improving the theoretical foundation of sparse matrices. For example, the computation of tridiagonal determinants plays an important role in the discretization of differential equations, linear systems of equations, and physical problems. Claw-shaped determinants are another type of determinant with a sparse structure. This sparsity not only significantly reduces computational effort when calculating their values but also minimizes storage costs. Previous researchers have studied the computation of claw-shaped determinants [6-10], but no systematic exploration of their calculation methods has been conducted.

Therefore, this paper will comprehensively discuss the computation formulas for different types of claw-shaped determinants.

To facilitate the discussion, we first define four types of claw-shaped determinants as follows.

Definition 1.1 Let a_i , b_j , c_j be numbers not ce Education (ISSN: 3005-5792) Vol. 1 No. 5, 2024
 hods for a Class of Sparse
 ants

van, Jing Zhou

gaing College of International Business and
 Author

Therefore, this paper will comprehensively

discuss the compu all equal to zero, where $i = 1, 2, \dots, n$; **j** Education (ISSN: 3005-5792) Vol. 1 No. 5, 2024
 nods for a Class of Sparse
 ints
 an, Jing Zhou
 and Space of International Business and
 Author
 Cherefore, this paper will comprehensively
 *Space of claw*re, this paper will comprehensively
the computation formulas for different
claw-shaped determinants.
litate the discussion, we first define
pes of claw-shaped determinants as
on 1.1 Let a_i , b_j , c_j be numbers not
al re, this paper will comprehensively
the computation formulas for different
claw-shaped determinants.
litate the discussion, we first define
pes of claw-shaped determinants as
on 1.1 Let a_i , b_j , c_j be numbers not
al **Class of Sparse**
 Class of Sparse
 Class of Sparse
 Depited Alternational Business and
 paper will comprehensively
 utation formulas for different
 educes of different
 class of different
 class of differe Il comprehensively
rmulas for different
ninants.
on, we first define
ed determinants as
 e^{c_j} be numbers not
re $i = 1, 2, \dots, n$;
ts of order n:
 a_n
0 0 0
0 0
0 0
: **a for a Class of Sparse**
 for a Class of Sparse
 ng Zhou
 ng Zhou
 ng, China
 ng
 ng
 ng
 ng
 ng
 ng
 ng
 $\begin{vmatrix} a_1 & a_2 & a_3 & \cdots & a_{n-1} & a_n \end{vmatrix}$ \cdots 0 0

1 3 3 1 1 0 0 0 0 0 0 0 0 0 *n n n c b c b D c b c b* , ¹ 3 2 1 2 2 2 3 3 1 1 0 0 0 0 0 0 ⁰ 0 0 0 0 0 *n n n n n ⁿ ⁿ a a a a a b c b c D b c b c* , 1 1 3 3 3 2 2 1 2 3 1 0 0 0 0 0 0 0 0 0 0 0 0 *n n n n n n n c b c b D c b c b a a a a a* , 1 1 4 3 3 2 2 ¹ 3 2 1 0 0 0 ⁰ 0 0 0 0 0 0 0 0 *n n n n n n n ^b ^c b c D b c b c a a a a a* .

http://www.stemmpress.com Copyright @ STEMM Institute Press

These are referred to as the first, second, third, the k $(k = 1, 2, 3, \dots, n-1)$ column of D_n^2 to and fourth types of claw-shaped determinants, respectively.

For the first type of claw-shaped determinants, extensive research results already exist. Below, we list some of the known conclusions.

Lemma 1.1 Let D_n^1 be a determinant of $D_n^2 =$ order n of the first type of claw-shaped determinant. Then:

e are referred to as the first, second, third,
fourth types of claw-shaped determinants,
activity. the first type of claw-shaped determinants,
isive research results already exist. Below,
st some of the known conclusions.
ma 1.1 Let
$$
D_n^1
$$
 be a determinant of
in an **1.1** Let D_n^1 be a determinant of
minant. Then:
(i) When $\prod_{j=2}^n b_j \neq 0$,
 $D_n^1 = \left(a_1 - \sum_{j=2}^n \frac{a_j c_j}{b_j}\right) \prod_{j=2}^n b_j$.
(ii) When there is exactly one zero
ing b_2 , b_3 , \cdots , b_n , without loss of
relity, let $b_i = 0$ ($i \in \{2, 3, \cdots, n\}$), then:
 $D_n^1 = -a_i c_i \prod_{j=1, j=2}^n b_j$.
(iii) When at least two elements among
 b_3 , \cdots , b_n are zero,

among b_2 , b_3 , \cdots , b_n , without loss of without *j i j*

$$
D_n^1 = -a_i c_i \prod_{j \neq i, j=2}^n b_j.
$$

(iii) When at least two elements among b_2, b_3, \dots, b_n are zero,

$$
D_n^1=0
$$

Expanding the formula for case (i) in Lemma 1.1 reveals that the result also satisfies the conclusions in (ii) and (iii). Thus, the computation formula for the first type of claw-shaped determinant can be unified as follows: at least two elements among
 $\begin{vmatrix}\n\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2}\n\end{vmatrix}$ at least two elements among
 $\begin{vmatrix}\nP_n^1 = 0 & \frac{1}{2} & -(-1)^{i+n}c_i \\
0 & \frac{1}{2} & \frac{1}{2} & -(-1)^{i+n}c_i \\
0 & \frac{1}{2$ *D_n* = -*a_ic_i* **j** $\sum_{j\neq i,j=2}^{n}$

i) When at least two elements among
 \cdots , b_n are zero,
 $D_n^1 = 0$.
 $D_n^2 = (-1)^{i+n}$

ding the formula for case (i) in Lemma

reals that the result also satisfies the

sions *j* $\neq i, j=2$

an at least two elements among

are zero,
 $D_n^1 = 0$.
 $D_n^2 = (-1)^{i+n} c_i$
 \vdots

at the result also satisfies the

in (ii) and (iii). Thus, the

formula for the first type of

determinant can be unified as
 When $\prod_{j=2}^{n} b_j \neq 0$,
 $D_n^1 = \left(a_1 - \sum_{j=2}^{n} \frac{a_j c_j}{b_j}\right) \prod_{j=2}^{n} b_j$.
 $D_n^1 = \left(a_1 - \sum_{j=2}^{n} \frac{a_j c_j}{b_j}\right) \prod_{j=2}^{n} b_j$.

When there is exactly one zero

When the signal one sero
 $D_n^1 = -a_i c_i \prod_{j \neq i, j=2}^{n} b_j$.

W

$$
D_n^1 = a_1 \prod_{j=2}^n b_j - \sum_{j=2}^n \left(a_j c_j \prod_{k \neq j, k=2}^n b_k \right).
$$

Given the above conclusions for the first type of claw-shaped determinant, do similar conclusions exist for the other three types of claw-shaped determinants? The following sections will continue to explore these and provide computation formulas for other types of claw-shaped determinants. above conclusions for the first type

shaped determinant, do similar

sexist for the other three types of

dd determinants? The following

ill continue to explore these and

mputation formulas for other types

aped determ claw-shaped determinant, do similar $D_n^2 = (-1)^{i+n} c_i (-1)^{i+n}$
nelusions exist for the other three types of
aw-shaped determinants? The following
tions will continue to explore these and
ovide computation formulas for other $D_n^1 = 0$.

anding the formula for case (i) in Lemma

reveals that the result talso satisfies the

lutsions in (ii) and (iii). Thus, the

putation formula for the first type of
 $D_n^1 = a_1 \prod_{j=2}^n b_j - \sum_{j=2}^n \left(a_j c_j \prod_{k=j,k$

2. Main Conclusions

 D_n^2 is a second-type claw determinant, then where $i \in \{2, \ldots, n\}$

$$
D_n^2 = (-1)^{\frac{n(n-1)}{2}} \left[a_1 \prod_{j=2}^n b_j - \sum_{j=2}^n \left(a_j c_j \prod_{k \neq j, k=2}^n b_k \right) \right].
$$
all their
\n**Proof** When $\prod_{j=2}^n b_j \neq 0$, adding $-\frac{c_{n+1-k}}{b_{n+1-k}}$ times
\nNow we
\n $b_i (i = 2,$

to the last column yields:

Journal of Natural Science Education (ISSN: 3005-5792) Vol. 1 No. 5, 2024
\nThese are referred to as the first, second, third,
\nand fourth types of claw-shaped determinants,
\nthe next column yields:
\nthe last column yields:
\nthe first type of claw-shaped determinants,
\nwe list some of the known conclusions.
\norder n of the first type of claw-shaped
\ndeterminant. Then:
\n(i) When
$$
\prod_{j=2}^{n} b_j \neq 0
$$
,
\n
$$
D_s^1 = \begin{pmatrix} a_i - \sum_{j=2}^{n} \frac{a_j c_j}{b_j} \end{pmatrix} \begin{pmatrix} a_i \\ \frac{a_i}{c_i} \end{pmatrix} \begin{pmatrix} a_i \\ \frac{a
$$

When one element in b_2, b_3, \dots, b_n is zero, loss of generality, suppose $b_i = 0 (i \in \{2, 3, \dots, n\}),$. Expanding D_n^2 along the i-th row gives:

≠ ¹ 0 *Dⁿ* . *D a b a c b* 1 1 2 2 2 1 0 0 0 0 *i n n i i i n b b b* 1 0 0 0

then expanding the determinant in the formula along the column containing a_i :

$$
D_n = \begin{pmatrix} 1 & -2 & a_1 - 2 & a_2 - 2 \\ a_1 - \frac{1}{f-2} & b_1 \end{pmatrix} \int_{y=1}^{2} b_j
$$
\n(ii) When there is exactly one zero
\n(ii) When there is exactly one zero
\n $b_1, b_2, b_3, \cdots, b_n$, without loss of
\n $b_1 = 0 \text{ (} i \in \{2, 3, \cdots, n\})$, then:
\n
$$
D_n = -a_i c_j \int_{p=1}^{a} b_j
$$
\n(iii) When at least two elements among
\n
$$
D_n^1 = -a_i c_j \int_{p=1, b}^{a} b_j
$$
\n
$$
= a_i c_j \int_{p=1, b}^{a} b_j
$$
\n
$$
= a_i c_j \int_{p=1, b}^{a} b_j
$$
\n
$$
= a_i c_j \int_{p=1, b}^{a} b_j
$$
\n
$$
= a_i c_j \int_{p=1, b}^{a} b_j
$$
\n
$$
= a_i c_j \int_{p=1, b}^{a} b_j
$$
\n
$$
= a_i c_j \int_{p=1, b}^{a} b_j
$$
\n
$$
= a_i c_j \int_{p=1, b}^{a} b_j
$$
\n
$$
= a_i c_j \int_{p=1, b}^{a} b_j
$$
\n
$$
= a_i c_j \int_{p=1, b}^{a} b_j
$$
\n
$$
= a_i c_j \int_{p=1, b}^{a} b_j
$$
\n
$$
= a_i c_j \int_{p=1, b}^{a} b_j
$$
\n
$$
= a_i c_j \int_{p=1, b}^{a} b_j
$$
\n
$$
= a_i c_j \int_{p=1, b}^{a} b_j
$$
\n
$$
= a_i c_j \int_{p=1, b}^{a} b_j
$$
\n
$$
= a_j c_j \int_{p=1, b}^{a} b_j
$$
\n
$$
= a_j c_j \int_{p=1, b}^{a} b_j
$$
\n
$$
= a_j c_j \int_{p=1, b}^{a} b_j
$$
\n
$$
= a_j c_j \int_{p=1, b}^{a} b_j
$$
\n $$

2. Main Conclusions
 Theorem 2.1 If the n-order determinant
 b_2, b_3, \cdots, b_n are zero, suppose $b_i = b_j = 0$,

where $i \in \{2, 3, \cdots, n\};$ $j \in \{2, 3, \cdots, n\}$: ² ² , 2 determinant, do similar $b_n - (1)^{n-1}$

or the other three types of

minants? The following

inue to explore these and

on formulas for other types

erminants.
 j b_1 , b_2 , b_3 , \cdots , b_n are zet

the n-order det . all their second-order minors equal zero. By $\prod_{j=2}^{n} b_j \neq 0$, adding $-\frac{c_{n+1-k}}{b_{n+1-k}}$ times Now we prove that regardless of the values of b_{n+1-k} $h_i (i = 2, 3, \cdots, n),$ following
these and
ther types
 $= (-1)^{\frac{(n-2)(n-2)}{2}}$
When at least
 b_2, b_3, \dots, b_n are zerc
eterminant
mant, then
 $i \neq j$. selecting the
 $\prod_{j=1}^{n} b_k$
 $\begin{bmatrix} \vdots \\ k \end{bmatrix}$. selecting the
all their second-order
Laplace's th these and

other types
 $= (-1)^{\frac{(n-2)(n-2)}{2}}$

When at least

eterminant

mant, then $i \neq j$. selecting the
 $\prod_{\neq j,k=2}^{n} b_k$
 $\prod_{n+1-k}^{n} b_k$
 $\text{all their second-order Laplace's theorem, it follows we prove that reg}$
 $b_i (i = 2, 3, \dots, n)$,

hthere is the second of the seco e types of

following

these and

ther types
 $= (-$

When at
 b_2, b_3, \dots, b

terminant

nant, then
 $i \neq j$. sele
 $\left[\prod_{j,k=2}^n b_k\right]$.

all their seconds if $i \neq j$.

Laplace's the

Now we prov
 $b_i (i = 2, 3, \dots)$ the following

or other types
 $= (-1)^{\frac{(n-2)(n-3)}{2}}$

When at least t
 b_2, b_3, \dots, b_n are zero,

when $i \in \{2, 3, \dots, n\}$;

when $i \in \{2, 3, \dots, n$ When at least two elements in Laplace's theorem, it follows that $D_n^2 = 0$.

48 Journal of Natural Science Education (ISSN: 3005-5792) Vol. 1 No. 5, 2024
\n
$$
D_n^2 = (-1)^{\frac{n(n-1)}{2}} \left[a_1 \prod_{j=2}^n b_j - \sum_{j=2}^n \left(a_j c_j \prod_{k \neq j, k=2}^n b_k \right) \right].
$$
\nThe computation formulas provided in this paper can then be used to calculate their values.
\nBelow are specific examples.
\nWhen $\prod_{j=2}^n b_j \neq 0$ and at least two
\nof b_2 , b_3 , \cdots , b_n are zero, expand each
\nformula to prove it. When b_2 , b_3 , \cdots , b_n has
\n
$$
b_n
$$
 has

 $j \sim 0$ and

2 *j* of b_2 , b_3 , \cdots , b_n are zero, expand each formula to prove it. When b_2 , b_3 , \cdots , b_n has only one zero, without loss of generality, let 48 Journal of Natural Science Education (ISSN: 3005-5792) Vol. 1 No. 5, 2024
 $D_s^2 = (-1)^{\frac{n(s-1)}{2}} \left[a, \prod_{j=1}^n b_j - \sum_{j=2}^n \left(a_j c_j \prod_{j=1}^n b_k\right)\right]$. The computation formulas provided in this

paper can then the used to calc formulas and comparing the results, it can be observed that the two formulas differ by at most a sign. Thus, it suffices to prove that $(n-2)(n-3)$ *n*_n = $(-1)^{-2}$ $\begin{bmatrix} a_1 \end{bmatrix} \begin{bmatrix} b_j - \sum_{j=2} \end{bmatrix} \begin{bmatrix} a_j c_j \end{bmatrix} \begin{bmatrix} b_k \end{bmatrix}$. paper

When $\prod_{j=2}^{n} b_j \neq 0$ and at least two Exam

f b_2 , b_3 , \cdots , b_n are zero, expand each

ormula to prove it. When $\begin{aligned}\n\mathcal{D}_j &= \sum_{j=2} \left[a_j c_j \prod_{k \neq j, k=2} b_k \right] \cdot \text{ paper can then} \\
\text{Below are speed} & \text{Example 1 3.} \\
\text{and at least two} & \text{R} \text{ component} \text{ element} \\
\text{are zero, expand each} & n\text{-order determinant} \\
\text{Then } b_2, b_3, \dots, b_n \text{ has } \\ \text{at loss of generality, let} & b_2 \text{ is } \\ 1 \text{ is } \text{by } b_1 \text{ is } \\ \text{by the results, it can be performed by the result, it can be performed by the result,$ $\left[\sum_{j=2}^{n} \left(a_j c_j \prod_{k \neq j, k=2}^{n} b_k \right) \right]$. The comput
paper can the paper can the Below are sp
and at least two **Example1**:

n b_2 , b_3 , \cdots , b_n has
oss of generality, let $D_n = \begin{vmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n - 1 \\ b$ Journal of Natural Science Education (ISSN: 3005-5792) Vol. 1 No. 5,
 $\int_{r=2}^{n(x+1)} \left[a_1 \prod_{j=2}^{n} b_j - \sum_{j=2}^{n} \left(a_j c_j \prod_{k=j,k=2}^{n} b_k\right)\right]$. The computation formulas provided in

paper can then be used to calculate their v 48
 $D_s^2 = (-1)^{\frac{n(s-1)}{2}} \left[a_1 \prod_{j=2}^n b_j - \sum_{j=2}^n \left(a_j c_j \prod_{k=j,k=2}^n b_k \right) \right]$. The computation (ISS

Delow are specified than the number of the set of the Journal of Natural Science Education (ISSN: 3005-5792
 -1)^{$\frac{n(n-1)}{2}$} $\left[a, \prod_{j=2}^{n} b_j - \sum_{j=2}^{n} \left(a_j c_j \prod_{k \neq j, k-2}^{n} b_k\right)\right]$. The computation formulas

paper can then be used to cal

EXample1 3.1 Compute the sump 48
 $D_n^2 = (-1)^{\frac{n(n-1)}{2}} \bigg[a_1 \prod_{j=1}^n b_j - \sum_{j=1}^n \bigg(a_j c_j \prod_{k=1}^n b_k \bigg) \bigg]$.

The computation formulas provided in this

paper can then be used to calculate their values.

When $\prod_{j=2}^n b_j \neq 0$ and at least two
 \int 48 Journal of Natural Science Education (ISS
 $D_x^2 = (-1)^{\frac{n(n-1)}{2}} \left[a_1 \prod_{j=2}^n b_j - \sum_{j=2}^n \left(a_j c_j \prod_{k=1, k=2}^n b_k \right) \right]$. The computation

when $\prod_{j=2}^n b_j \neq 0$ and at least two **Example1 3.1**

When $\prod_{j=2}^n b_j \neq 0$ $\begin{array}{ll} \displaystyle \int_{2}^{\frac{a(x+1)}{2}} \left[a_1 \prod_{j=1}^s b_j - \sum_{j=1}^s \left(a_j c_j \prod_{k=1}^s b_k\right)\right] \cdot \qquad & \text{The computation formulas provided in this paper can then be used to calculate their values.} \\ \displaystyle \prod_{j=2}^n b_j \neq 0 \qquad \text{and at least two.} \\ \displaystyle \int_{3}^{\infty} b_j \neq 0 \qquad \text{and at least two.} \\ \displaystyle \int_{3}^{\infty} b_j \neq 0 \qquad \text{and at least two.} \\ \displaystyle \int_{3}^{\infty} b_j \neq 0$ $D_v^2 = (-1)^{\frac{n(n-1)}{2}} \bigg[a_j \frac{1}{r_j} b_j - \sum_{r=2}^{\infty} \bigg[a_r c_j \frac{1}{r_j} b_r \bigg]$. The computation formulas provided in this spectra then be used to calculate their values.

When $\int_{r=0}^{\infty} b_j b_j$, ..., b_v are zero, expand each Journal of Natural Science Education (ISSN: 3005-5792) Vol. 1 No. 5, 2024
 $(-1)^{\frac{n(n-1)}{2}}\left[a_1\prod_{j=2}^{n}b_j\neq 0\right]$ The computation formulas provided in this

paper can then be used to calculate their values
 $\prod_{j=2}^{n}b$ When $\prod_{j=2}^{1/2}$, $\neq 0$ and at least two *a* and π or π b π , π , L f^{-2} h^{-1} Below are specific exampled 1.1 Complete.

L f^{-2} h^{-1} and at least two **Exampled 1.1**
 h_2 , h_3 , \cdots , h_n are zero, expand each

nula to prove it. When b_2 , b_3 , \cdots , b_n has
 \cdots one

$$
(-1)^{\frac{n(n-1)}{2}} = (-1)^{\frac{(n-2)(n-3)}{2}+1} \qquad \text{Let} \qquad \qquad 0
$$

Observe that

\n
$$
(-1)^{\frac{n(n-1)}{2}} = (-1)^{\frac{(n-2)(n-3)}{2}+1} \cdot \text{ Let}
$$
\n
$$
F(n) = \frac{n(n-1)}{2} - \left[\frac{(n-2)(n+3)}{2} + 1\right], \text{ it}
$$
\nmust be proven that for any

\n
$$
F(n) = \frac{n(n-1)}{2} - \left[\frac{(n-2)(n+3)}{2} + 1\right], \text{ it}
$$
\n
$$
D_n = (-1)^{n+2} \begin{cases} \frac{1}{2} & \text{if } n \neq 2^+ \\ \frac{1}{2} & \text{if } n = 2^+ \\ \frac{1}{2} & \text{if } n = 2^+ \end{cases}
$$
\nThus, the proof is complete.

\nThus, the proof is complete.

\n
$$
D_n^2 = (-1)^{\frac{n(n-1)}{2}} \left[a_1 \prod_{j=2}^n b_j - \sum_{j=2}^n \left(a_j c_j \prod_{k \neq j, k=2}^n b_k\right)\right].
$$
\nSimilarly, the calculation formulas for third-type and fourth-type claw determinants

\n
$$
D_n = (-1)^{-(n-2)} \begin{pmatrix} 0 & 0 \\
$$

$$
F(n)
$$
 is always an even number. Because

$$
F(n) = \frac{n(n-1)}{2} - \left[\frac{(n-2)(n-3)}{2} + 1 \right] = 2n - 2 \in 2Z.
$$

Thus, the proof is complete.

$$
D_n^2 = (-1)^{\frac{n(n-1)}{2}} \left[a_1 \prod_{j=2}^n b_j - \sum_{j=2}^n \left(a_j c_j \prod_{k \neq j, k=2}^n b_k \right) \right].
$$

Similarly, the calculation formulas for third-type and fourth-type claw determinants can be derived, and their proofs are similar to the proof of Theorem 2.1, so they are omitted. **Theorem 2.2** If the n-order determinant $\left[\frac{(n-1)}{2} - \left[\frac{(n-2)(n-3)}{2} + 1\right] = 2n - 2 \in 2Z.$ Multiply the

e proof is complete. -1 and add i
 $1\right)^{\frac{n(n-1)}{2}}\left[a_1 \prod_{j=2}^n b_j - \sum_{j=2}^n \left(a_j c_j \prod_{k=j,k=2}^n b_k\right)\right].$
 $\left[\begin{array}{c} \text{where } a_1 \neq b_1, b_2 \neq b_2 \neq b_k \end{array}\right]$.
 \left $f(n) = \frac{1}{2}$ $\left[\frac{n(n-1)}{2} + 1\right] = 2n - 2 \in 2Z$.
 nus, the proof is complete.
 $\left[\begin{array}{c} \frac{n(n-1)}{2} \\ \frac{n(n-1)}{2} \end{array}\right]$ $\left[\begin{array}{c} a_1 \\ a_2 \end{array}\right]$ $\left[\begin{array}{c} a_2 \\ a_3 \end{array}\right]$ $\left[\begin{array}{c} a_3 \\ a_4 \end{array}\right]$ $\left[\begin{array}{c} a_1 \\ a_2 \end{array}\right$ busts and comparing the results, it can be

a sign. Thus, it suffices to prove that
 $n = \frac{n(n-1)}{2} = \left[\frac{(n-2)(n+3)}{2} + 1\right]$, it
 $n = \frac{n(n-1)}{2} - \left[\frac{(n-2)(n+3)}{2} + 1\right]$, it

the proven that for any $n \in \mathbb{Z}^*$,
 n) is al fourth-type claw determinants

and their proofs are similar to

sorem 2.1, so they are omitted.

If the n-order determinant
 $\begin{bmatrix}\na_1 \bigr|_{j=2}^n b_j - \sum_{j=2}^n \left(a_j c_j \prod_{k=j,k=2}^n b_k \right)\n\end{bmatrix}$.
 $\begin{bmatrix}\na_1 \bigr|_{j=2}^n b_j - \sum_{j=$ *n* p_s in exactuation formulas for

pe and fourth-type claw determinants

derived, and their proofs are smillar to

of of Theorem 2.1, so they are omitted.
 m 2.2 If the n-order determinant

s a third-type claw determ *z* **j** *k* is the set of the set $\frac{n(n-1)}{2} - \left[\frac{(n-2)(n+3)}{2} + 1 \right]$, it

proven that for any $n \in \mathbb{Z}^*$,

always an even number. Because
 $\frac{(n-1)}{2} - \left[\frac{(n-2)(n-3)}{2} + 1 \right] = 2n - 2 \in 2\mathbb{Z}$.

Multiply the last $\left\{ a_n + b_n \right\}$

proof is complete.

 D_n^3 is a third-type claw determinant, then

$$
D_n^3 = (-1)^{\frac{n(n-1)}{2}} \left[a_1 \prod_{j=2}^n b_j - \sum_{j=2}^n \left(a_j c_j \prod_{k \neq j, k=2}^n b_k \right) \right].
$$

Theorem 2.3 If the n-order determinant D_n^4 is a fourth-type claw determinant, then

$$
D_n^4 = a_1 \prod_{j=2}^n b_j - \sum_{j=2}^n \left(a_j c_j \prod_{k \neq j, k=2}^n b_k \right).
$$

3. Numerical Examples

If an n-order determinant belongs to one of the types of claw-shaped determinants, its value can be directly obtained using the corresponding computation formula. In general, the structure of an n-order determinant may not be a claw-shaped determinants, their properties can be utilized to transform them into claw-shaped determinants. The computation formulas provided in this paper can then be used to calculate their values. Below are specific examples.

 $\prod_{j=2}^{n} b_j \neq 0$ and at least two **Example1 3.1** Compute the value of the *n*-order determinant: *n*-order determinant:

Journal of Natural Science Education (ISSN: 3005-5792) Vol. 1 No. 5, 2024
\n
$$
\left[a_1 \prod_{j=2}^{n} b_j - \sum_{j=2}^{n} \left(a_j c_j \prod_{k=j, k=2}^{n} b_k\right)\right]
$$
\nThe computation formulas provided in this paper can then be used to calculate their values.
\n $\neq 0$ and at least two
\nReic in Wannel 3.1 Compute the value of the
\n*n*-order determinant:
\n b_n are zero, expand each
\nwe it. When b_2 , b_3 , \cdots , b_n has
\nwithout loss of generality, let
\n b_1 , b_2 , b_3 , \cdots , b_n has
\nwithout loss of generality, let
\n b_{n-1} and b_1 and b_2 , b_3 , \cdots , b_n and b_n , b_n , b_n , b_n
\n b_{n-1} and $a_{n-1}+b_{n-1}$ and b_{n-1} and b_{n-1} and b_{n-1}
\n b_{n-1} and $a_{n-1}+b_{n-1}$ and b_{n-1} and b_{n-1}
\nThus, it suffices to prove that
\n
$$
\left(-1\right)^{\frac{(n-2)(n-3)}{2}+1}
$$
 Let
\n
$$
\left(-1\right)^{\frac{(n-2)(n+3)}{2}+1}
$$
 Let
\n
$$
b_n
$$
 $\left[\begin{array}{cccccc} 0 & 0 & \cdots & 0 & 0 & 0 & 1 \\ b_1 & b_1 & \cdots & b_n & b_n & b_n & b_n \\ b_n & b_n & \cdots & b_n & b_n & b_n \\ b_n & b_n & \cdots & b_n & b_n & b_n \\ b_n & b_n & \cdots & b_n & b_n & b_n \\ b_n & b_n & \cdots & b_n & b_n & b_n \\ b_n & b_n & \cdots & b_n & b_n & b_n \\ b_n & b_n & \cdots & b_n & b_n & b_n \\ b_n & b_n & \cdots & b_n & b_n & b_n \\ b$

Solution Using the edge-addition method [11], we have:

Journal of Natural Science Education (ISSN: 3005-5792) Vol. 1 No. 5, 2024
\n
$$
\vec{a} = (-1)^{\frac{n(n-1)}{2}} \begin{bmatrix} a_1 \frac{1}{1}b_2 \end{bmatrix} b_2 - \sum_{j=2}^{n} \begin{bmatrix} a_j c_j \frac{1}{1}b_{j+1} \end{bmatrix}.
$$
\n
$$
\begin{bmatrix}\n\text{The computation formulas provided in this paper can then be used to calculate their values.}\n\text{Bolow are specified example.}\n\end{bmatrix}
$$
\nthen\n
$$
\begin{bmatrix}\n\frac{1}{2}b_j \neq 0 \\
\frac{1}{2}b_j \neq 0\n\end{bmatrix} \text{ and at least two linearly independent:}\n\begin{bmatrix}\n\frac{1}{2}b_1 \end{bmatrix} b_2 + \sum_{j=1}^{n} \begin{bmatrix} a_j \frac{1}{2}b_1 \end{bmatrix}.
$$
\n
$$
\begin{bmatrix}\n\frac{1}{2}b_1 \end{bmatrix} b_2 + \sum_{j=1}^{n} \begin{bmatrix} a_j \frac{1}{2}b_1 \end{bmatrix}.
$$
\n
$$
\begin{bmatrix}\n\frac{1}{2}b_1 \end{bmatrix} b_2 + \sum_{j=1}^{n} \begin{bmatrix} a_j \end{bmatrix} b_1 \end{bmatrix}.
$$
\n
$$
\begin{bmatrix}\n\frac{1}{2}b_1 \end{bmatrix} b_2 + \sum_{j=1}^{n} \begin{bmatrix} a_j \end{bmatrix} b_1 \end{bmatrix}.
$$
\n
$$
\begin{bmatrix}\n\frac{1}{2}b_1 \end{bmatrix} b_2 + \sum_{j=1}^{n} \begin{bmatrix} a_j \end{bmatrix} b_2 \end{bmatrix}.
$$
\n
$$
\begin{bmatrix}\n\frac{1}{2}b_1 \end{bmatrix} b_2 + \sum_{j=1}^{n} \begin{bmatrix} a_j \end{bmatrix} b_1 \end{bmatrix}.
$$
\n
$$
\begin{bmatrix}\n\frac{1}{2}b_1 \end{bmatrix} b_2 + \sum_{j=1}^{n} \begin{bmatrix} a_j \end{bmatrix} b_2 \end{bmatrix}.
$$
\n
$$
\begin{bmatrix}\n\frac{1}{2}b_1 \end{bmatrix} b_2 + \sum_{
$$

 $\left[\begin{array}{ccc} 2 & -1 \end{array}\right]$ = $2n-2 \in 22$. Multiply the last column of the determinant by -1 and add it to each of the preceding columns:

Using the computation formula for the second type of claw-shaped determinant:

$$
\text{ determinant} \qquad D_n = (-1)^{\left(\frac{n^2-n-4}{2}\right)} \left[\prod_{j=1}^n a_j + \sum_{j=1}^n \left(b_j \prod_{k \neq j, k=1}^n a_k \right) \right].
$$
\nnant, then

Example 3.2 Compute the value of the n-order determinant:

$\mathbf{L} \mathbf{L} \mathbf{v}_k$	b	b	\cdots	b	a
g(s) to one of the laants, its value using the formula. In an n-order	$D_n = \begin{vmatrix} b & b & \cdots & b & a & b \\ b & b & \cdots & a & b & b \\ \vdots & \vdots & & \vdots & \vdots & \vdots \\ b & a & \cdots & b & b & b \\ a & b & \cdots & b & b & b \end{vmatrix}$				

determinant. However, for certain
determinants, their properties can be utilized to determinant D_n by -1 and add it to each of the **Solution** Multiply the last row of the preceding rows:

Journal of Natural Science Education (ISSN: 3005-5792) Vol. 1 No. 5, 2024
\n
$$
b-a
$$
\n
$$
b-a
$$
\n
$$
0 \cdots
$$
\n
$$
0 = a - b
$$
\n

Using the computation formula for the third type of claw-shaped determinant:

$$
D_n = (-1)^{\frac{n(n-1)}{2}} (a-b)^{n-1} [a+(n-1)b].
$$

Example 3.3 Compute the value of the n-order determinant:

$$
D_n = \begin{vmatrix} a & b & b & \cdots & b & b \\ b & a & b & \cdots & b & b \\ b & b & a & \cdots & b & b \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ b & b & b & \cdots & a & b \\ b & b & b & \cdots & b & a \end{vmatrix}.
$$

Solution Multiply the last row of the determinant D_n by -1 and add it to each of [5] Johann Walter the preceding rows:

Using the computation formula for the fourth type of claw-shaped determinant:

$$
D_n = (a-b)^{n-1} \left[a + (n-1)b \right].
$$

4. Conclusion

Claw-shaped determinants are a special type of determinant characterized by sparsity. This paper leverages their structural characteristics to not only provide a rigorous classification of different types of claw-shaped determinants but also derive computation formulas for each type. Numerical examples demonstrate that the computation formulas presented in this paper facilitate more convenient and accurate Calculation calculation of the values of various types of claw-shaped determinants.

Acknowledgments

This work was supported by the Scientific Research Project Fund of Chongqing College of International Business and Economics (Nos.

- ral Science Education (ISSN: 3005-5792) Vol. 1 No. 5, 2024

0 \cdots 0 $a-b$

0 \cdots 0 \cdots

0 \cdots 0 \cdots

0 \cdots 0 \cdots

0 ral Science Education (ISSN: 3005-5792) Vol. 1 No. 5, 2024

0 \cdots 0 $a-b$

0 \cdots 0 \cdots

0 \cdots 0 \cdots

0 \cdots 0 \cdots

0 Education (ISSN: 3005-5792) Vol. 1 No. 5, 2024

0 0 $a-b$ of International Business and Economics (Nos.
 $\begin{array}{ccc}\n 0 & a-b & 0 \\
 0 & a-b & 0 \\
 \end{array}$
 $\begin{array}{ccc}\n 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0 \\$ Applied Crystallography, 1991, 24(4): [1] Jarmila Jancarik, Sung-Hou Kim. Sparse Matrix Sampling: A Screening Method for Crystallization of Proteins. Journal of 409-411.
	- $(a-b)^{n-1}\left[a + (n-1)b\right]$. Althumetic Based on H-Matrices. Part 1.
Introduction to H-Matrices. Computing, [2] Hackbusch Wolfgang. A Sparse Matrix Arithmetic Based on H-Matrices. Part I: 1999, 62(2): 89-108.
- 1 atural Science Education (ISSN: 3005-5792) Vol. 1 No. 5, 2024 49

0 ... 0 0 $a-b$ of International Business and Economics (Nos.

0 ... 0 $a-b$ o

1 ... at a b 0 ... a b 0 ... a b b cystallization of Proteins. Journal of $\begin{array}{ccc} \cdots & b & b \end{array}$ Matrices and Improved Normalized Cuts. $\begin{bmatrix} b & b \\ 18(11): 3027-3040. \end{bmatrix}$ [3] Mingrui Yang, Shibing Zhou, Qian Wang, et al. Fast Multi-view Clustering of Sparse Computer Science and Exploration, 2024,
	- $\begin{bmatrix} b & a \end{bmatrix}$ Multicore Platforms. Parallel Computing, [4] Samuel Williams, Leonid Oliker, Richard Vuduc, et al. Optimization of Sparse Matrix–vector Multiplication on Emerging 2009, 35(3): 178-194.
- ... $a-b = 0$ o a Beferences
 $b \t\t\t\t\ldots a b = 0$ o a Matrix Sampling: A Screening Method for
 $b \t\t\t\t\ldots b = b$ o b b crystallization of Proteins. Journal of

ungard determinant:
 $\frac{n-1}{2}(a-b)^{n-1}[a+(n-1)b]$. Antimetic Based on H ⁰ 0 0 *n* $\begin{vmatrix} b-a & 0 & \cdots & a-b & 0 & 0 \\ b & \vdots & \vdots & \vdots & \vdots & \vdots \\ a & b & b & b & b \end{vmatrix}$ **References**
 $\begin{vmatrix} 1 & 1 \arcsin b & 1 \end{vmatrix}$ *Ammala Jancarik*, Sung-Hou Kim. Sparse
 $\begin{vmatrix} a & b & b & b \end{vmatrix}$ *b* **c** *rystalization* of Proteins. Journal of *a b b a* 0 0 0
 A b b a b Crystallization of Proteins. Journal of the b b Crystallization of Proteins. Journal of Applied Crystallography, 1991, 24(4):

ion formula for the third

determinant:
 $(a-b)^{n-1}[a+(n-1)b]$, Athentic Based **a** b the third $409-411$.

[2] Hackbusch Wolfgang. A Sparse Matrix
 \cdot \cdot $(n-1)b$]. Arithmetic Based on H-Matrices. Part I:
 \cdot Introduction to H-Matrices. Computing,
 \cdot of the n-order 1999 , 62(2): 89-108.

[3] 23) Hackbowshi Wollgaug, A Spare Matrices. Part 1:

(-1)² (*a* -*b*)² [*a* + (*n* -1)*b*].
 b 3 Conpute the value of the n-order
 b b \cdots b b a
 b \cdots b b a
 \cdots b b a
 \cdots b b a

Matrices and Exploratio $-b$ 0 \cdots 0 $b-a$ Converter. APEC. Seventeenth Annual $-b$ \cdots 0 $b-a$ Conference and Exposition, 2002, 2: b b cystalization of Proteins. Journal of the third

main:
 ${}^{4}[a+(n-1)b]$ Hotkbusch Wolfgang. A Sparse Matrix

inant:
 ${}^{4}[a+(n-1)b]$ Arithmetic Based on H-Matrices. Part I:

lindroduction to H-Matrices. Computing,

value e conputation of the computer Science and Exposition (1)-11.
 $\left(-1\right)^{\frac{d(n-1)}{2}}(a-b)^{n-1}\left[a+(n-1)b\right].$

Arithmetic Based on H-Matrices. Part 1:
 $\left(-1\right)^{\frac{d(n-1)}{2}}(a-b)^{n-1}\left[a+(n-1)b\right].$

Arithmetic Based on H-Matrices. Comp 16.33 Compute the value of the n-order

1999, $62(2): 89-108$.

16.33 Compute the value of the n-order

1999, $62(2): 89-108$.
 $\begin{array}{cccccc} a & b & \cdots & b & b \\ b & a & \cdots & b & b \\ b & a & \cdots & b & b \\ b & b & \cdots & b & b \\ b & b & \cdots & a & b \\ b & b & \cdots & a & b \\ b & b & \cdots & b & d \\ \end$ [5] Johann Walter Kolar, Martin Baumann, Frank Schafmeister, et al. Novel Three-phase AC-DC-AC Sparse Matrix IEEE Applied Power Electronics 777-791.
	- Computation Methods. [6] Ruiling Jia, Mingjuan Sun. A Brief Analysis of Determinant Types and Their Mathematics Learning and Research, 2020, (8): 16-18.
	- $(a-b)^{n-1}$ $a+(n-1)b$. Determinants and Their Generalized Computation Methods. Science Enthusiast [7] Yawen Li, Caiyun Liu. Three Special Determinants and Their Generalized (Education and Teaching), 2020, (4): 247-248.
		- [8] Lanyun Bian. A Brief Discussion on Computation Methods. Mathematics Learning and Research, 2017, $(5): 20.$
		- [9] Liqiang Chen. Completion of Solutions for Claw-shaped Determinants. China Market, 2015, (14): 199-200+206.
		- [10]Jingxiao Zhang, Dejie Jiao, Shuxia Kong. of "Claw-shaped" and "Cross-shaped" Determinants. Hebei Science Teaching Research, 2006, (4): 56-58.
		- [11]Efang Wang, Shengming Shi. Advanced Algebra. Beijing: Higher Education Press, 2019.