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Abstract: The acoustic signals generated by
electrical insulation defects and mechanical
failures during the operation of dry reactor
contain a large amount of equipment state
information, which can be used as an
important feature parameter for the
diagnosis of defects and failures. In view of
the insufficiency of a single neural network
to extract the temporal sequence features,
this paper proposes a reactor fault diagnosis
algorithm based on CNN-LSTM network,
using CNN to mine the local spatial feature
information of the spectrogram, and LSTM
to mine the temporal sequence information
of the spectrogram. Physical experimental
platforms for electrical insulation defects
and mechanical faults in reactors were
established. Three fault samples were
created for each fault type, and acoustic
wave data and acoustic signals were
collected during the evolution of insulation
defects and mechanical faults in dry-type
reactors. Experiments show that the method
in this paper significantly improves the
feature mining ability of the spectrogram,
and effectively improves the fault diagnosis
accuracy.
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1. Introduction
Dry-type reactors are indispensable
components of modern power systems,
providing essential functionalities such as
voltage stabilization, power factor correction,
and harmonic filtering. Unlike oil-immersed
reactors, dry-type reactors are favored for their
safety, environmental friendliness, and low
maintenance requirements. However, due to
the harsh operating environments—
characterized by long-term vibration, high
temperatures, and electrical stress—dry-type

reactors are prone to developing faults such as
insulation defects and mechanical failures.
These faults can lead to unplanned shutdowns,
reduced operational efficiency, and significant
economic losses[1,2]. Ensuring the reliability
of these reactors is, therefore, of paramount
importance for maintaining the safety and
stability of power grids.
The ability to quickly and accurately identify
the type and severity of faults in dry-type
reactors is critical for minimizing downtime
and avoiding costly repairs. Current fault
diagnosis methods have achieved notable
success in identifying mechanical issues such
as core deformation and loose bolts. However,
challenges remain in diagnosing electrical
faults, such as insulation degradation and
partial discharges, which play a major role in
the long-term reliability of reactors[3].
Addressing these challenges requires
innovative approaches that can simultaneously
handle mechanical and electrical faults in real-
time.
Fault diagnosis methods based on vibration
signal analysis are among the most widely
used approaches for reactor and transformer
monitoring. Vibration signals are highly
sensitive to mechanical changes, making them
effective for detecting structural issues such as
mechanical loosening and deformation[4,6].
However, these methods often fail to capture
electrical fault characteristics, such as those
arising from insulation defects. This gap in
diagnostic capability highlights the need for
more comprehensive monitoring approaches
that can address both mechanical and electrical
fault types. Additionally, existing vibration-
based research primarily focuses on assessing
the severity of mechanical loosening, offering
limited insight into fault evolution or the
interactions between multiple fault types.
To overcome these limitations, acoustic signal-
based fault diagnosis has emerged as a
promising alternative. Acoustic signals,
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generated by both mechanical and electrical
faults, provide a rich source of information
about the internal condition of the reactor.
Insulation defects, for example, often produce
partial discharge sounds, while mechanical
faults generate vibrations that propagate as
acoustic waves. Acoustic signal analysis offers
several advantages, including non-invasiveness,
high sensitivity, and the ability to capture both
mechanical and electrical fault information in
real-time. These advantages make acoustic-
based diagnosis particularly well-suited for the
demands of modern power systems.
The growing adoption of AI techniques in fault
diagnosis has further expanded the potential of
acoustic signal analysis. Deep learning, in
particular, has revolutionized various fields,
including computer vision, speech recognition,
and fault detection. By leveraging powerful
neural network architectures, researchers can
analyze complex patterns in high-dimensional
data, making deep learning an ideal choice for
diagnosing faults in reactors[7,8]. One of the
most promising approaches in this area
involves transforming one-dimensional time-
series signals, such as acoustic or vibration
signals, into two-dimensional image
representations. This transformation enables
the application of Convolutional Neural
Networks (CNNs), which excel at extracting
spatial features from image data.
Several studies have demonstrated the
effectiveness of CNNs in fault diagnosis. For
instance, literature Gu et al,. used grey-scale
spectrograms of time-frequency domain data
as input for the LeNet network to identify
faults. Similarly [9], Gao Shuguo et al
employed data augmentation techniques to
enhance grey-scale images[10], improving the
robustness of CNN-based diagnostic models.
While these methods achieved encouraging
results, they also introduced challenges. The
conversion of time-frequency data into grey-
scale images often results in the loss of critical
fault-related information, reducing diagnostic
accuracy in complex fault scenarios. To
address this issue, advanced techniques such as
Recurrence Plot (RP) encoding have been
proposed, enabling more detailed
representations of fault signals for CNN-based
analysis[11]. Additionally, Cui Guiyan et al
used Gram angle fields and AlexNet to
diagnose transformer winding loosening[12],
demonstrating the potential of alternative

image-based representations. However, many
of these studies lack comparative evaluations
of different methods and architectures, limiting
their applicability to diverse operational
conditions.
Acoustic signals often possess time-varying
characteristics, such as changes in amplitude,
frequency, and phase over time. These
temporal variations are key to understanding
fault progression and distinguishing between
different types of faults. While CNNs are
proficient at extracting spatial features from
data, they struggle to capture sequential or
temporal relationships. In contrast, Long
Short-Term Memory (LSTM) networks are
highly effective for handling sequential data,
as they can model both short-term and long-
term dependencies in time-series information.
By integrating CNNs for spatial feature
extraction and LSTMs for capturing temporal
dynamics, a hybrid model can be created to
effectively address the shortcomings of each
individual method and provide a more
comprehensive solution for fault diagnosis in
time-series data.
In this study, we propose a novel fault
diagnosis algorithm based on a CNN-LSTM
hybrid network. This approach integrates the
strengths of CNNs and LSTMs to provide a
comprehensive solution for diagnosing faults
in dry-type reactors. Specifically, the CNN
component is used to extract local spatial
features from acoustic signal spectra, while the
LSTM component captures temporal sequence
information. By fusing spatial and temporal
features, the proposed model aims to enhance
diagnostic accuracy and efficiency. The
proposed algorithm is evaluated using a
combination of experimental and simulated
data to ensure its robustness and applicability.
The study also includes a comparative analysis
of different diagnostic methods and network
architectures to validate the effectiveness of
the CNN-LSTM hybrid approach.

2. Methods

2.1 CNN and LSTM
CNN which is shown in Figure 1 can obtain
multiple feature parameters for diagnosis,
which helps to improve the diagnosis accuracy.
CNNs are highly effective in processing and
classifying input data. However, they are
limited to analyzing individual inputs
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independently and lack the ability to capture
temporal dependencies across inputs. For
instance, when failure feature maps from a
developmental process are used as input,
CNNs cannot effectively extract the temporal
characteristics between different maps. LSTM
networks, by contrast, are a type of RNN
enhanced with gating mechanisms. These gates
include the forget gate, input gate, and output
gate. The unfolded structure of an LSTM is
illustrated in Figure 2.

Figure 1. Typical Convolutional Neural
Network

Figure 2. The Unfolding Structure of LSTM

2.2 CNN-LSTM Hybrid Networks
CNN-LSTM is a combination of CNN and
LSTM, which integrates the advantages of the
two. The spatial features of the spectrogram of
the collected data (pulsed currents and acoustic
signals) of the dry reactor are extracted by
using the advantages of CNN that is good at
extracting local features of the network inputs,
and the temporal features on the spectrogram
at different moments are extracted by using the
advantages of LSTM that is good at extracting
temporal features between different moments
of inputs, and finally the pattern recognition
diagnosis is carried out by a Softmax Finally, a
Softmax classifier is used to diagnose the
pattern recognition. Figure 3 shows the
architecture of the hybrid CNN-LSTM
network for pattern recognition.

Figure 3. CNN-LSTM Hybrid Network
Architecture for Spectrum Recognition

At the CNN processing layer, what needs to be
extracted is the spatial information of the input
atlas and the corresponding feature vectors are
generated. Let N be the number of input
acoustic atlases, for an input single atlas,
assume that the pixel matrix of the atlas
is m n , the size of the convolution kernel
is k k , the periphery of the input image is
filled with zero elements. Let ijv is the
expanded input image pixel values at ( , )i j ,
then the elements of the window for the
convolution kernel field taking ijv as the top
corner are
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After completing the convolution operation on
the input spectrogram, the output of the
convolutional layer ijY is performed pooling
using the maximum pooling method to obtain
the largest eigenvalue within the pooling
window, achieve the secondary optimisation of
the feature set. nR indicates the thn  feature
spectrogram after convolution and pooling of
the input spectrogram, hen there exists,

max( )n ijV Y (2)

When the feature extraction of all input
spectrogram is completed, the feature matrix
extracted by the convolutional neural network
layer processing is,

 1 2, , NV V V V , (3)

Since the input set of spectrogram is a set of
spectrogram that fluctuate to some extent over
time, assuming that the thn spectrogram
corresponding the time t , then it is possible to
take nV as the inputs of LSTM network at t ,
using tV to indicate that nV ,then the unit update
process of the corresponding LSTM network is
as follows.

( [ ] )t f t t ff W V x s    (4)

( [ ] )t i t t ii W V x s    (5)

0( [ ] )t o t to W V x s    (6)

tanh( [ , ] )t c t t cC W V x s   (7)

1t t t t tc f c i C    (8)

tanh( )t t th o c  (9)

where. fW , iW , oW respond the weight
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matrices of the forgetting, input and output
gate, respectively. fs , is and 0s respond the

bias terms of the respective gates. tC is the
state of the input unit, cW , cs are the weight
matrix and the bias term of the input cell state.

3. Experiments and Analysis of Results

3.1 Testbed Construction and Fault Setting
The main equipment used in this experiment
are: dry-type air-core reactors with a rated
voltage of 10kV;power-frequency transformers
with a capacity of 50 kVA, a primary voltage
of 0.4 kV, and a secondary voltage of 100 kV;
capacitive voltage dividers with a rated voltage

of 100 kV, a voltage division ratio of 1000:1,
and a capacitance value of 415.1 pF; current -
limiting resistors with a resistance value of 4
kΩ; high-current generators with an input
voltage of 380 V, an output of 63.5 V, an input
current of 44 A, and an output rated current of
262.4 A. The filter used in the experiment is a
low - pass filter. Its operating frequency is 0-
20 kHz. High-frequency noise above 20 kHz
will be suppressed, and environmental noise
below 100 Hz will be directly filtered out by
the program during data processing. The
maximum rated current of the circuit - breaker
in the laboratory is 100 A, which meets the
requirements of the laboratory. The
experimental principle and platform
construction are shown in Figure 4.

Figure 4. Experimental Principle and Platform Construction
Metal foreign matter and insulation pollution
defects were set on the 10kV dry reactor, as
shown in Fig. 5(a) and Fig. 5(b), respectively.
Metallic foreign matter is simulated by
adsorbing multiple copper wires of different
lengths on the dry reactor package, and dirt is
coated by 36.4 mg of diatomaceous earth
mixed with 5.2 mg of NaCl in unit cm 2 in a
7:1 ratio.
The dry reactor is affected by electromagnetic
force during operation, which leads to the
loosening of bolts. The test simulates the bolt
loosening fault by adjusting the preload of
bolts, as shown in Fig. 5(c). According to the
mechanical structure of the dry reactor, the test
simulates the support insulator loosening faults
by simultaneously loosening the fixing bolts of
several support insulators on the lower star
frame, as shown in Fig. 5(d).

Figure 5. Fault Setting

3.2 Training Performance
We introduced a Max-Pooling layer after the
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CNN module to reduce the dimensionality of
feature vectors, which also helps decrease the
computational load of the network. Following
the Max-Pooling layer, an LSTM module with
64 LSTM units is added, incorporating a
Dropout layer with a rate of 0.2 for
regularization to mitigate the risk of overfitting.
The training process of the CNN-LSTM hybrid
network involves both forward propagation
and backward propagation, where the gradient
descent algorithm is used during the backward
phase. The training steps are outlined as
follows:
(1) Network Initialization: This step consists of
two components. Input Standardization: For
input feature maps, the data must be
standardized into pixel matrices compatible
with the convolutional neural network.
Parameter Configuration: The structural
parameters of the network are set, including
network weights, convolution kernel size,
stride size, pooling window size, pooling
method, learning rate, and the number of
training iterations.
(2) Forward Propagation: Calculate the
network's output and determine the error
between the output and the target value.
(3) Backward Propagation: If the error exceeds
the desired threshold, gradient descent is
applied to update the network's weights. If the
error is already within the acceptable range,
there is no need for backpropagation, and the
training process concludes.
(4) Training Completion: Repeat the process
until the error between the network output and
the target value meets the expected threshold,
signaling the end of training.
In order to verify that the CNN-LSTM network
has better diagnostic performance, it is
compared and analysed with the CNN and
LSTM, and the training process is shown in

Figure 6, which reveals that our proposed
network has better diagnostic performance,
faster convergence speed and better robustness.

Figure 6. Visualisation of the Training
Process

3.3 Results of Fault Diagnosis
The diagnostic targets are three types of typical
insulation defects and three types of typical
mechanical faults in dry-type reactors: metal
protrusion defects, surface pollution defects,
metal foreign object defects, bolt loosening,
support insulator cracks, and support insulator
loosening. The input data consists of multi-
source feature spectrograms of faults, with the
ratio of 8:2 between the training set and test set.
The network consists of 5 convolutional layers,
5 pooling layers, and 1 LSTM layer, with all
other parameters set to system defaults. The
grayscale-processed acoustic spectrogram
single-channel matrix data is used as the input
for training and diagnostic recognition.
The same spectrogram data is separately input
into the CNN and LSTM. The parameter
settings for CNN and LSTM are the same as
those of the CNN-LSTM network. The
diagnostic performance of the CNN-LSTM
network, CNN network, and LSTM network
for typical insulation defects and mechanical
faults in dry-type reactors is compared. The
comparison results are shown in Table 1.

Table 1. Comparison Results of Typical Insulation Defects and Mechanical Fault of Reactors

rP
Metal foreign

objects
Surface
pollution

Metal protrusions
defects

Loose
bolts

Loose
insulators

Cracked
insulators

CNN 83% 80% 100% 94% 93% 88%
LSTM 80% 78% 98% 91% 89% 81%

CNN-LSTM 94% 90% 100% 97% 95% 94%
As shown in Table 1, for metal foreign object
defects and dirt defects, the local multi-source
spectrogram diagnosis effect of CNN-LSTM
network is better than that of CNN network
and LSTM network, but for metal protrusion
defects, the diagnosis effect of CNN-LSTM
network is the same as that of CNN and both

of them are 100%. The advantage of LSTM
network lies in the extraction of temporal
feature information, so in the diagnosis of
CNN-LSTM network on the type of metal
protrusion defects, the LSTM network does not
provide too much help, but for the metal
foreign body defects and fouling defects, these
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two types of defects of the discharge spectrum
with the increase of the pressurisation time
under the condition of constant voltage, the
fluctuation of its corresponding discharge
acoustic spectra is more obvious. The
fluctuation of the corresponding acoustic
discharge spectra is obvious, which is similar
to the time-domain characterisation of the
acoustic signal in the previous section. At this
time, the advantage of LSTM network in
extracting the temporal feature information is
reflected, which improves the diagnostic
accuracy of CNN network for these defects.
For mechanical faults, the diagnostic effect of
CNN-LSTM is better than that of LSTM and
CNN, for bolt loosening and insulator
loosening faults, CNN plays a dominant role in
the diagnosis, while for insulator cracking
defects, the recognition effect of CNN-LSTM
fusion improves significantly, and the
combination of the previous time-domain
features can be obtained.

4. Conclusion
In this paper, a reactor fault diagnosis
algorithm based on CNN-LSTM network is
proposed, which adopts CNN to mine the local
spatial feature information of the ma
spectrograms and LSTM to mine the temporal
information of the spectrograms. The
experimental results show that, using multi-
source feature spectrograms as input, it
compares the diagnostic performance of CNN-
LSTM, CNN and LSTM networks. CNN-
LSTM performs well in most cases. LSTM
helps with certain defects, and CNN is
dominant in some mechanical fault diagnoses.
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