
Task Migration Strategy in Vehicular Networks Based on
Reinforcement Learning

Zou Jing, Gong Qishuai, Wang Zhe
Guangxi Minzu University School of Artificial Intelligence, Nanning, China

Abstract: With the research and application
of edge computing in vehicular networks,
computing tasks can be offloaded from
vehicles to roadside edge servers to reduce
system service latency. However, as vehicles
move, the computing tasks need to be
migrated from one edge server to another.
Predicting the vehicles movement trajectory
and formulating a reasonable task migration
plan for this is a key challenge that needs to
be addressed. Traditional computing
offloading methods cannot be directly
applied in vehicular networks. Therefore,
this paper constructs a vehicular task
offloading system based on a multi-layered
computing network, introduces a Markov
mobility model to describe the vehicle
movement trajectory, and solves the optimal
migration path problem. Since this problem
is NP-hard, a solution method based on a
constrained Markov model is proposed,
along with an Actor-Network Primal-Dual
Deep Deterministic Policy Gradient
(ANPD-DDPG) algorithm based on
reinforcement learning to achieve the
optimal solution. Finally, in simulation
experiments, the proposed method is
compared with existing research, showing
about a 33% reduction in system delay and
migration cost. The characteristics of the
ANPD-DDPG algorithm in terms of
convergence speed and system delay are also
analyze

Keywords: Internet of Vehicles; Edge
Computing; Task Offloading; Task
Migration

1. Introduction
In recent years, with the progress of on-board
computing power and high-speed
communication technology, the intelligent
degree of vehicles has been rapidly improved,
accelerating the construction and development
of the Internet of Vehicles (Internet of V ehicle,

IoV)[1]. Compared to the local vehicle
computing, IoV needs to deal with a large
number of computing-intensive and
delay-sensitive tasks[2], This forces traditional
central cloud computing to move mobile edge
computing (Mobile Edge Computing, MEC),
providing vehicles with more resources than
local services in edge devices closer to the
road[3-4]。Thus, the service quality of the IoV
(Quality of Service, QoS)[5] As the core
element of vehicle driving decision, we need to
consider the vehicle task unloading and task
migration with vehicle movement.
In terms of task unloading, literature [6] for
mobile computing unloading review, analyzes
the traditional heuristic calculation unloading
strategy and online learning calculation
unloading strategy their advantages and
applicable scenarios, and points out that due to
the uncertainty of the vehicle moving position
and speed may lead to traditional unloading
strategy failure, need to consider the dynamic
change of the vehicle and environment. Based
on this, literature [7] simulates the mobile task
unloading as a Markov decision (Markov
Decision Process, MDP) process, designed the
task unloading strategy according to the edge
server state, vehicle movement trajectory and
task buffer queue, and minimized the system
delay under the bandwidth constraint, and uses
the one-dimensional search algorithm to solve
the optimal unloading decision. Similarly,
literature [8] in the energy collection MEC
system research unloading problem, the system
delay time and task failure cost as the
optimization target, proposed a dynamic online
unloading algorithm based on Lyapunov
optimization, the algorithm is low load and in
the unloading of CPU weight, vehicle position
and energy loss during transmission, need not
consider the task type, wireless channel status
and energy collection process information,
improve the online performance and robustness
of the algorithm. Literature [9] considers the
MEC system unloading problem from the

Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 2 No. 4, 2024 113

Copyright @ STEMM Institute Press http://www.stemmpress.com

perspective of resource allocation to minimize
the system delay constraintEnergy consumption
is the goal, by proving that there are threshold
characteristics for the optimal solution, the
unloading priority of the vehicle, the task whose
priority is above the threshold is fully unloaded,
and the task below the threshold is partially
unloaded. Also with energy consumption as the
optimization goal, literature [10] jointly
consider the comprehensive energy
consumption of vehicle and edge server, the
server selection, bandwidth resource allocation,
vehicle trajectory prediction and computational
resource allocation joint optimization, put
forward the specific application constraints of
mixed nonlinear planning problem (Mixed
Integer Nonlinear Program, MINLP) and design
the greedy heuristic algorithm solution. Based
on the mobility and heterogeneity of vehicles,
literature [11] proposed the calculation and
unloading scheme of MEC system under the
Internet of Vehicles, designed the self-sufficient
management framework of deep reinforcement
learning, and solved it by establishing MDP
model and deep reinforcement learning
algorithm. It should be pointed out that the
environmental data involved in the above
studies are instantaneous, and continuous
environmental changes may lead to the increase
of the error in the strategy, and then lead to the
failure of the strategy or the increase of
algorithm complexity, affecting the QoS
requirements of the Internet of Vehicles
On the other hand, high-speed moving vehicles
make the unloading task need to migrate
between different servers, and the ideal
migration target should be dynamically adjusted
with the driving trajectory of the vehicle. Based
on vehicle trajectory history data, literature [12]
proposes a deep reinforcement network
algorithm to achieve the best task migration
strategy, and also illustrates that the data-driven
and machine learning methods are more suitable
for the design of dynamic task transfer strategy.
Accordingly, literature [13] considers the
offline scenario, proposes a server coordination
algorithm based on dynamic planning to realize
the joint optimization of delay and migration
cost in MEC system, models the prediction
process of vehicle trajectories as MDP by
proving the optimality of the solution, and
designs the reinforcement learning algorithm to
realize the optimal transfer strategy. Different
from the above studies, literature [14] considers

the data fault tolerance, simulates the task
migration process as a partially observable
MDP, takes the vehicle as the decision center to
realize the online migration strategy design
through trajectory prediction, and proposes an
offline strategy actor-critic algorithm,
Off-Policy Actor Critic (OPAC), to achieve
better QoS performance than the above studies.
On the other hand, literature [16] addresses the
uncertainty of trajectory prediction, using
Lyapunov method to convert vehicle movement
into real-time control problem, proposed edge
service performance optimization under the
constraint of long-term migration cost budget,
and designedMarkov Approximation (Markov
Approximation, MA) algorithm for real-time
decision making. Thus, data-driven machine
learning method can make up for the
shortcomings of instantaneous information and
can improve system strategy real-time, but the
vehicle and service data interaction during the
mobile network pressure should not be ignored,
such as the literature [12] strategy while
real-time prediction, but failed to consider the
car network bandwidth and delay pressure,
literature [13]-[16] research is ignoring the edge
of the server and system computing resources
limited, unable to cope with the car networking
multi-task dynamic migration.
In view of the above deficiencies, this paper
proposes the task unloading and migration
strategy based on reinforcement learning,
jointly considers the task unloading ratio and
edge resource constraint to realize adaptive
unloading, and establishes a Markov mobile
model to predict the vehicle trajectory to realize
task migration.first, Build a multi-layer
computing framework with vehicles, roadside
edge servers and central cloud servers as
systems, Establish the Internet of Vehicles
system model; then, Under the joint constraints
of the system computing resources and the time
delay, Raise the time delay and cost
minimization problem of the system task
unloading and migration process, Through the
constrained Markov decision process
(Constrained Markov Decision Process, CMDP)
solves the optimal path; Then, the original-dual
depth deterministic strategy gradient of the
actor network based on reinforcement learning
was designed (Actor-Network Primal-Dual
Deep Deterministic Policy Gradient,
ANPD-DDPG) algorithm to realize the system
strategy; last, The advantages of the proposed

114 Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 2 No. 4, 2024

http://www.stemmpress.com Copyright @ STEMM Institute Press

method and the designed algorithm in reducing
the system cost and improving the performance
gain are verified.
System model and problem description
system model
The multi-layer computing framework with
vehicle, roadside edge server (Roadside Edge
Server, RES) and central cloud server as the
system is shown in Figure 1. Suppose that the
number of edge servers in the system is in
s, {1,2, , }s S  and the number of vehicles is in u.

{1,2, , }u U  The vehicle can select the local
calculation or unload the task to the RES based
on its own task situation, and assumes that the
system is running in a fixed cycle and the RES
does not switch between different tasks in the
time step of a certain cycle. Represents the
movement in the city of the vehicle at different
times, while ensuring that the server can
migrate the next task only after the current task
migration is completed. As set in reference [17],
all vehicles entered the system at time t=1 and
exit at time t= T.
To describe the movement characteristics of the
vehicle, a Markov mobility model is
introduced[18], Whether the vehicle u is

t
u,si

located in the server s at time t is represented as

a binary indicator variable.
t t
u,s u,si = p i   If the

vehicle mobility is not fully determined in the
predicted time step, take the variable in order to
indicate the probability that the vehicle u is at

the server s at time t;
t
u,sp i   therefore, the value

is a continuous variable in [0,1].
Task Uninstall: Use to indicate the vehicle u
unload task by the server. S is calculation,
because the task may need to be migrated, all
the servers unloaded by the task under
calculation are not necessarily the servers where
the vehicle u is located. Also ensure that the
vehicle u will always maintain communication
for the server s that it serves. The position of the
vehicle u is represented by the

t
u,sq variables and

is
t
u,si given by the

t
u,sp i   predictions.

Figure 1. Multi-Level Calculation and

Unloading System Network
Fig.1 Multi-level Computational offloading
network
Task Migration Process: Figure 2 shows the
flow chart of the system task migration. The
process begins with the vehicle unloading a task
at the selected RES. Coordinate multiple RESs
in cloud services. By communicating with RES,
cloud services collect the servers current
available resources and mobile patterns of the
vehicle through resource tracker and mobile
data collector. The movement predictor uses the
movement data of the vehicle to predict the
movement trajectory of the vehicle. This data is
then sent to the Migration Plan generator to
generate the migration plan. The Task
Migration Plan Generator subsequently
broadcasts the generated migration plan to all
the RESs.
Migration Plan generation: Figure 3 shows the
migration process of an unloading task. It
contains a start and end node that sets the server
index of both the start and end nodes to s= 0.
Define other nodes in the migration graph as
server-time pairs, representing where tasks may
migrate in cycle T. At the vertex (s1,t1) and
(s2,t2) between the edges, where, represents the
slave server s 1 2s s 1 to the servers sThe ation of
2, which begins at time t1, and ends at time t2.
During the migration, the task remains on the
source server while building a copy of the task
on the target server. If, the edge represents
simply stays on the server s 1 2s s 1. Associate
each edge with a weight that represents the
migration cost of adopting that path on the
migration graph, as shown in the solid line in
Figure 3. Figure 3 depicts a migration graph that
underwent three time steps in two server
systems. For the task of vehicle u, any feasible
migration path from the start node to the end
node in Fig. And tasks can only be migrated to
one server within any time step t. So, define an

indicator indicating if from server s
1 2

1 2

u,t ,t
s ,sh 1 To

sThe path of 2 and that taken from time t1 To

tThe path of 2 is included in th
1 2

1 2

u,t ,t
s ,sh e migration

plan, then the indicator =1, for example, the
dashed migration plan in Figure 3, and =0 if not

included in the migration
1 2

1 2

u,t ,t
s ,sh plan. The

indicator is used to ensure that the selected
migration path of the migration plan is present

in the
1 2

1 2

u,t ,t
s ,sh migration map to ensure that (i) a

Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 2 No. 4, 2024 115

Copyright @ STEMM Institute Press http://www.stemmpress.com

node on the migration map, and  1t T t  (ii)
the start of one migration plan, just at the end of
another migration occurs. Where represents the
set of all time steps less {1,2, , }T than t, for a

similar definition. In addition,  2 +1t T t 

representing all collectio {0, }s S ns of servers, to
ensure that all migration schedules {1,2, , }S

start at time t=1 and end at time t=T, is defined
as follows:

1 2 1 2

1 2
1 2 2

, , , ,
, ,

() {0, } 2 (1) {0, }

u t t u t t
s s s s

t T t s S t T t s S
h h

      
   

2 2

,0,1 , , 1
0, 0, 1u u T T
s s

s S s S
h h 

 
  

(1)

To define. By ensuring that if vehicle u the task

is going from server s
1 2

1 2

u,t ,t
s ,sh

,
t
u sq ,

t
u sq 1 Migrated to

the servers s2, then it will be given by the s1
provides services until the migration is
complete, as ,

t
u sq defined below

1 2 1 2

1 2
1 1 2 2 3 4

, , , ,
, , ,

() { } () () { } ()
= u t t u t tt

u s s s s s
S S t T t T t S S t T t T t

q h h
       

     
(2)

Definition, indicating that the task of vehicle u
at time t is migrated to server s. It is ,

t
u sg defined

as follows
1 2

1
1 1 2

, ,
, ,

() { } ()
= u t tt

u s s s
s S t T t T t

g h
   
  

(3)

Figure 2. System Model

Figure 3. Task Migration Communication Model
The entire communication cycle T is divided
into t time steps, and the vehicle moves at a
certain speed. Some of these tasks are unloaded
to the RES. Considering the actual situation, the
limitation of computing power makes the
vehicle unable to fully undertake the local task
calculation, so the vehicle must unload part of
the task to the RES. Within each time step t, the
vehicle u selects to communicate with the server
s. Suppose that the transmission rate of the
network can meet the task unloading
requirements. Therefore, the transmission rate
from the vehicle u to s is as follows:

2 ,log (1)s,u s uR C r  (4)

Where C represents the communication
bandwidth of the system and the signal to-noise
ratio from u to s, and its formula can be
expressed as: s,ur

,
2

,

()
()+ ()

u s u
s,u

u s n u NLOS s
n u

p g t
r

p g t b t P 





(5)
It represents the additive Gaussian white noise
(Additive White Gaussian Noise, AWGN)
received by s, whose distribution is, and Pu is
the transmission power of u, indicating the
presence of obstacles from u to
s

2
s  20, s ()={0,1}ub t [19], the non-horizon

116 Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 2 No. 4, 2024

http://www.stemmpress.com Copyright @ STEMM Institute Press

transmission loss between u and s
(Non-Line-of-Sight Transmission Loss,
NLOSTL). It represents the c g ()s,u t hannel gain
from u to s at the time step t, e NLOSP xpressed as
follows:

2
, 0g () ()s u ut d t  (6)

Where is 0 the signal gain at unit distance,
2 ()ud t

is the Euclidean distance from u to s at the
time step t.
computational model
In the system model, the delay of the system
includes both the transmission delay and the
computational delay. The reason for the
calculation delay is that the task is completed by
different levels under the multi-level
computational model. Contains this formation,
the RES layer.
1. Local calculation mode: In the system model,
the vehicle unloads some tasks to the RES in
each time step.  s,u t It represents the unloading
ratio of the unloading task to the RES and
represents the proportion of ()u t the task
performed locally in the vehi    =1s,u ut t  cle,
where. Therefore, the local calculation delay of
the vehicle u in the time step is as follows: t

local, () () ()u u u uD t t M t lf (7)
Where is ()uM t the data uf quantity size of the u
task, l represents the number of cycles required
to process the CPU per unit byte, and represents
the computing power of the vehicle u.
2. RES layer calculation mode: Due to the
limited calculation resources of vehicle u, when
the task is unloaded to the RES layer, the delay
includes transmission delay and calculation
delay. The transmission delay of the RES layer
consists of two parts, one part is that the vehicle
u uploads the calculation task to the server s can
be expressed as

,transform
,

,

() ()
()= s u u

s u
s u

t M t
D t

R


(8)
Where is the task amount accepted by s, and the
other part is the delay of the server to transfer
the results to the vehicle, which can ()sM t be
expressed as

download
,

,

()
()=

processed
u

s u
s u

M t
D t

R (9)
Where represents ()processed

uM t the amount of data
of the server s responding to the vehicle u. The

calculation delay of the RES layer can be
expressed as

,caculate
,

() ()
()= s u s

s u
s

t M t s
D t

f


(10)
Where is the computatio sf nal power of the
server, s. Thus define the server s where the
vehicle u unloaded the task and the task delay
time that receives the final result can be
expressed as.

transform download caculate
s, ()= () () ()u s.u s.u s.uD t D t D t D t  (11)

Cost model
Consider two types of costs in the system: the
operation cost includes two parts, respectively,
the migration required bandwidth cost and the
server-vehicle communication bandwidth cost;
the task migration delay cost, that is, the
unloading task from the server s1 Migrated to
the servers sThe migration latency of the 2s
time. To simplify the problem, it is assumed
that the start and end times of all tasks are
known.
running cost
Operating costs mB

C include migration
bandwidth sB

C costs and mB
C communication

bandwidth costs. Where the amount of
bandwidth is defined as,

,u t
mt T u U B   where:

1 2
1 2 1

,,
m ,

u tu t
s su

S U S S S
jB 

  
  

（ ） (12)
That is, migration size multiplied by server s u 1

and the server, sThe p 1 2

,
,

u t
s sj roportion of

migration of 2,
The migration scale represents the time step t
task from server s1 Migrated to the servers sThe
proportion of the content of the current task, as
defined below

1 2

1

1 2
1 2

, ,
,,

,
{ t} () 2 1

=
u t t
s su t

s s
t T t T t

h
j

t t   
 

 (13)
Similarly, the amount of bandwidth used for the

service sB
C is defined as

,
s
u t

t T B ,
where:Migration delay costs

u,
,

u ()
= () ()t

s s u u
U s S

B t M t
 
 

(14)
Take the time experienced when the task start
migration starts and the task migration
completes as the migration delay. Assuming
that each migration task has its maximum delay
threshold

u
xY , and that when the migration cost

of the task increases,
u

xY this part of the

Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 2 No. 4, 2024 117

Copyright @ STEMM Institute Press http://www.stemmpress.com

increased cost as the delay violation cost. For
example, when the delay exceeds its set
threshold. The delay violation cost is,

u,t

YC
u,t

Y Yt T u U
=C C   defined as follows:

, ,
x=max(0,)u t u x u u

r YYC Y Y D (15)
,u x
rY Is the actual delay experienced by the

vehicle u at the time step t, which is defined as
follows:

1 2
1 2 2

,
1 2 ,

()
= (,) t tu x

r u,s u s
S S S S S

L S S i qY
  
 

(16)
L (S1 , S2) of server s1 And sThe delay caused
by the communication between the 2. Constant
represents the penalty coefficient for migration
latency above the threshold.

u
YD

Total cost of the system
Based on the appeal formula, the total cost
formula for the system can be obtained:

mt sotal YB BC CC C   (17)
Based on the above model, the optimization
problems are summarized as follows in the
multi-level computational network system
scenario. Under constraints, in order to
minimize task latency, we jointly optimize
problems such as vehicle movement trajectory
prediction, task unloading ratio, and task
migration. Reduce latency for all tasks within
time T. The final question can be expressed as
follows:

,
local, s,

{ () ()} 1
{ (), ()}

s u u

T U S

u u
t t t u s

= D t D tmin
  


， (18)

,s. . 1 : [0,1], , ,t
u st C i u s t 

1 1 1 1
2 : () ()+ () ()

T T T T

s us,u u
t t t t

C t t t t MM M 
   

  

3: {0,1() }, ,uC tb t u 

, , ,4 : ()+ () 1, (), () [0,1]s u u s u s uC t t t t    

t5 : .otalC CC 
The constraint C1 indicates that each vehicle
can select only select one RES for task
calculation and unloading. Constrained C2
ensures that all task calculations are completed
over the entire communication period. The
constraint C3 represents the congestion of the
radio channel between the vehicle u and the
server s during a time period. The constraint C4
represents the proportional boundary
constrained for task unloading. Constrained
condition C5 ensures that the cost of the entire
system does not exceed the maximum cost.

2. Solving for the Optimal Path Problem

In this section, the problem (18) is addressed.
Show that the problem is NP difficult, modeling
this problem as an MDP model,

2.1 Complexity Analysis
First, determine the complexity of the
generative migration task in Figure 3.
2.1.1 The number of migration paths
The number of migration paths for a task grows
at a rate. ()TO S
Certificate: For each time step t, the vehicle can
offload the task to any server. The task must
find a task machine to migrate within a certain
time step, so the migration path growth rate of
the calculation task is. ()TO S
2.1.2 Problem (18) is the NP difficulty
Evidence: because the problem (18) is a broad
distribution problem[20] A special case, then it
is a NP difficult problem.
Because the migration map grows exponentially
for time steps, and the problem (18) is a
difficult NP problem. The main difficulty in
solving this problem is to generate migration
plans for multiple vehicles at the same time.

2.2 MDP Model
To solve the problem (18), the migration plan
generation is modeled as an MDP model, and
the proposed ANPD-DDPG is used to find a
solution.
2.2.1 state space
In the described scenario, RES can be used to
obtain real-time information about the
environment through smart sensors. At each
time step, the system state consists of vehicle
location information, obstacle information, task
information, task migration information, and
migration cost information. The system state of
this time period can be expressed as:

1 2

1 2, t, o() (. { , () , , })t
u,t ,tt

u s uu s u ts s al,i t t hMtS CMb ， ，

(19)
Which represents the position of the vehicle u at
the time step time t. Table the congestion
condition between the vehicle u and the server s.
The presented time step t time u locally
calculates the size of the task. This represents
the task size of unloading to server s at time
step t u. Represents the task server s at the time
step time t ,

t
u si ()u tb ()u tM , ()s u tM 1 2

1 2

u,t ,t
s ,sh 1 To sThe

migration path of totalC 2. It represents the cost
that the system has generated. t
2.2.2 action space
When the system performs a lot of operations,

118 Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 2 No. 4, 2024

http://www.stemmpress.com Copyright @ STEMM Institute Press

there is a lot of computation, which can lead to
significant delays and significant costs.
Therefore, to reduce computational complexity,
only one server communicates with only one
vehicle per decision. The action set in the time
step t can be represented as At。It contains the
task migration procedure, the server s1 and the
server, sThe proportion of task migration
completion in 2 and the proportion of vehicle
unloading task to RES. Actions in each action
space are described as:

1 2

,
, , ,{ , , ()}t u t

t u s s s s ug j tA  (20)
,
t
u sg The task migration process at the current

moment, indicating the completion of the
migration task at the current moment, 1 2

,
,
u t
s sj and

indicating the task unloading ratio at the ()s ,u t

current moment.
2.2.3 reward function

An accurate reward function can be used to
aid in the formulation of unloading strategies,
while the objective function is usually used as a
reward function during machine learning. The
objective function is defined in formula (18), so
the reward function is set to:

system()t tt= R(,)= - tSR A D
(21)

Where is the total system delay system()tD of
the time step time t, described as follows:

system
local, s,

1
() max{ (), ()}

K

u u
k

t D t D tD


 

(22)

3. ANPD-DDPG Algorithm
In some practical scenarios, you need to ensure
the security of the system. Unlike the standard
MDP based DDPG algorithm, the MDP based
DDPG algorithm only needs to maximize the
reward function, thus the system requires
dangerous situations in different states when
running. To this end, considering the long-term
discounted reward (long-term discounted
reward) to balance the maximum reward and
reduce the cost of risk, the ANPD-DDPG
algorithm is designed based on reinforcement
learning.

3.1 The constrained Markov Decision Process
Long-term discount (discounted reward) to meet
policy π[21] Reward, proposed a CMDP. In the
CMDP, …,n 2 n, ,x x x the constraints on the
long-term discounted costs are added to the
MDP, where the cost function is added to the

co nx nventional MDP. Each is a mapping from
the metastatic tuple to the cost. n nx u （ ） The
goal of CMDP is to select the strategy π to
maximize the long-term reward of equation (23)
while satisfying the constraints, nu which is the
corresponding limitation. {1, 2, , }n N  Policies
can be given by:

*=argmax ()iR 
s. .t n [1,2,3, ,].un n Nx     （ ） ，

(23)

3.2 ANPD-DDPG Algorithm
In contrast to DQN, the DDPG algorithm
mainly solves the prediction problem of
continuous action space. The difference in the
implementation mainly lies in the choice of the
final activation function[22], () [0,K]k t  Whether
the action space is continuous or discrete. The
actor (actor) network in the DDPG algorithm
outputs continuous action, so some action
variables need to be processed. While the agent
() 0k t = selects the action variables, a dispersion
is required. If, then; if, where indicates the up
operation. The task unloa *=1k ding scale and
speed of the RES are continuous action
variables. Is optimized by using all of the above
action v () 0k t  ariables together to minimize the
system delay. For this purpose, an
ANPD-DDPG algorithm was designed to solve
the CMDP based on the literature [23]. Unlike
DDPG, ANPD-DDPG uses the offline policy
data to update the original strategy and the dual
variables. *= ()k k i   The flow of the
ANPD-DDPG algorithm is shown in Algorithm
1.
The whole training process of ANPD-DDPG, is
summarized as shown in Figure 4. In contrast to
the network structure of the DDPG algorithm,
ANPD-DDPG adds a neural network to
represent the long-term discount cost. The
functional localization neural network of
ANPD-DDPG is as follows:

1) Q Online network: according to the
current status SSelect t for the current action AT.
interacts with the environment to generate the
St+1 And, RAnd t and iteratively update the
policy network parameter θ.

2) Q Target network: *  the next state
A sampled from the experience pool
(Experience P ool, EP)t+ 1, *

1 1  and, select
the next action St+1。

3) Return r the critic online c network:

Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 2 No. 4, 2024 119

Copyright @ STEMM Institute Press http://www.stemmpress.com

iteratively update the main
t+1 rt (,)t t+1ty Q SR A    network parameters and the

target network parameters. And calculate the Q
network target value.

4) Target network: *
r r  update

and *
1t+1+1(, ,)Q t rt S A  calculate.

5) Cost critic online network: iteratively
update Q target network parameters and
calculate the value of Q target
network. c t(, ,)Q t ct S A  11(,)t t t+t ccQ Sz R A   

6) Cost critic online network: and
calculate. *

c c  *
1t+1+1(, ,)Q t+ ct S A 

ANPD-DDPG replication from the online
network to the target network is different from
the DQN, which directly copies the parameters
of the Q online network to the Q target network.
ANPD-DDPG selects soft updates, which
means that only a fraction of the parameters are
updated at a time. Can be expressed as:

*
c (1)      (24)

* (1)r r r      (25)
* (1)c c c      (26)

Where, is the update coefficient usually
expressed as small values. At the same time, if
the randomness is added in the learning process
to increase the coverage of the learning, the
final action expression of the interaction with
the environment is:

()t tSA  (27)
To minimize the loss function, the

optimizer in the critic network. Similar to DQN,
the loss function of the reward critic network
can be expressed in the form of mean square
error:

21() (((), ,))
m t t t rr r

m
J y S AQ

t
    (28)

Similar cost-critic network loss function:
21() (((), ,))

m t t t cc r

m
J y S AQ

t
    (29)

The ANPD-DDPG performs a
deterministic strategy, so that the loss function
of the actor network can be expressed as:

  , (), ()

=
1 (, ,) (, ,)
m t tt t

m

r t t r c t t c s s A ss s A st
Q S A Q S A



 

 

     



 

（ ， ）

(30)
If two different actions A are output for the
same state1 And A2, then the two feedback Q
values from the critics online network are
respectively Q1 And Q2 。 Q1> Q2 means
taking the action A1 can be obtained more than

in A2 More rewards. Based on the strategy
gradient, an A should be addedThe probability
of 1 and reduces AThe probability of 2, which
means that the network of actors wants to get as
much Q as possible. Therefore, the smaller the
feedback Q value obtained by the agent, the
greater the loss. Therefore, the loss function is
calculated as follows:

1() - ((, ,)- (, ,)
m r t t r c t t c

m
J Q S A Q S A

t
     (31)

Algorithm 1 ANPD-DDPG algorithm
A) Input: discount factor; learning rate; soft
update factor; training period T 1 2 

B) Initialization: initial target and maximum
energy consumption 0R pC

Cc) generate the initial task stream; uM

D) Preprocessing, and obtain the processed
task flow; uM *

uM

E) initializing an experience pool D of
capacity M;
F) Initialize the main network critic
parameters and the network parameters of the
actors r
G) Initialize the critic parameters and the
actor home network parameters of the target
network 1 c
H) Initialize the communication link
i)for do 1,2,3 ,t T 

j) reset and takes the initial state from the
CECN function, and 0S 0A 0R

k) for do 1,2,3 ,h H 

L) State Normalization: *
t tS S

M) Obtain the action set; *(|)tt u SA 

N) execute the action set and obtain the
reward function and the next state tA tR 1tS 

O) if current experience pool D capacity is
less than M saves snapshots of current,,, into
the experience pool tS tA tR 1tS 

p)else
And q) will,,, propose previously existing
snapshots in the empirical pool D tS tA tR 1tS 

R) Set the target
value; *

t+1t (,)y t t+1 rtQ SR A    *
i+1(,)t t i+1 ccQ Sz R A   

S) Update the parameter sum of the minimum
loss function according to formula (25) and
(26) r c
T) is updated by formula (24);
U) Update the actor family strategy based on
formula (27);
And v) update the dual variable of the dual
gradient

120 Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 2 No. 4, 2024

http://www.stemmpress.com Copyright @ STEMM Institute Press

 1= (, ,)
m t

m

tt rr s st
uQ S A    

 （ ， ）

W) Soft update:,,, *
r

*
c * *

1

X)end if
Y)end for
Z) Output: Get the actor home network based
on formula (31).

Figure 4. ANPD-DDPG Algorithm Flow

4. Simulation Experiment
In this part, a series of simulation experiments
are performed to verify the algorithm
performance of the proposed ANPD-DDPG
algorithm under the proposed multi-level
network architecture.

4.1 Environment Setting
In the simulation experimental system, a
multi-level computing architecture of the square
area is set, where there is a uniform random
distribution area and a cloud server, which is
uniform and randomly distributed edge service.
All the vehicles in the experiment were only
communicating with the RES, and all the RESs
were connected to the cloud server, as shown in
Figure 1. The initial position of the vehicle was
randomly drawn from a uniform distribution.
Vehicle movement was predicted using a
Markov model. Table 1 shows the accuracy of
the Markov model used for simulation for
vehicle position prediction. As the data show,
locations with larger time steps reduced the
prediction accuracy. The more servers can
predict the vehicle location more difficult.
Table 1. Mobile Model Predicts the Average
Probability of the Server Closest to Vehicle U
time step 1 5 10 20
5 Servers 0.87 0.62 0.49 0.26
10 Servers 0.80 0.49 0.39 0.14
20 Servicers 0.71 0.40 0.25 0.13
The complexity of the migration path. As
shown in Table 2, the number of edges in the
migration graph increases geometrically with

time and servers in the migration graph.
Table 2 grows with the server and the time.
Change of the edge number of the migration
map
Table 2. With the Increase of Servers and

Time. Change in the Number of Edges in the
Migration Graph

Server number
5 10 15 20

time
step

5 172 576 1042 2438
10 538 6190 11356 20378
25 2041 9166 16736 27624

To assess the impact of resource constraints, the
simulations were validated using limited and
abundant resources. The RES resources for
many edge computing systems are limited
because edge devices often have limited
hardware (i. e., smart cameras and durable
laptops). In the finite resource setting, the
resource capacity is drawn from a uniform
distribution, based on the total number of
vehicles in the system, each link can migrate six
computational tasks within a single time step.
Resource constraints do not affect migration
decisions for abundant resources.

4.2 Assessment of the Algorithm
Convergence Properties
Figure 5 describes the convergence of the
proposed ANPD-DDPG algorithm. Figure 5
shows that the system delay starts to decline
from 0 to 200 iterations, and the convergence
stability reaches at around 200 iterations. The
initial delay fluctuation is due to the large gap
between the initial value of the Lagrange factor
and the optimal, the action selection in the
algorithm makes the delay decrease rapidly, and
with the increase of iterations, the system
gradually approaches the optimal delay
performance.

Figure 5. Algorithm Convergence

Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 2 No. 4, 2024 121

Copyright @ STEMM Institute Press http://www.stemmpress.com

4.3 Comparison of the different migration
methods
The ANPD-DDPG algorithm and the three
different migration methods were performed.
Naive method (naive)[24] Select the closest
available server without migration to minimize
the cost, which is similar to SDN / NFV
placement[25] Optimization. Shortness-view
(myopic)The [26] method migrate tasks to the
nearest feasible server at each time step, which
is similar to the reactive migration
framework[27]; Cloud method[28] Place all the
tasks that need to migrate to the cloud server,
regardless of resource constraints, similar to
central processing. The value of the vehicle
trajectory prediction was verified by this
comparison.
As shown in Figure 6, comparing the task
migration costs implemented by different
migration scenarios with limited and sufficient
resources, all plan generation methods can
reduce costs with abundant resources compared
with limited resources, as each unloading task
can achieve low-latency placement. The
ANPD-DDPG algorithm method significantly
outperforms the other three algorithms due to
the small number of task migrations. Especially
with limited resources, the ANPD-DDPG
algorithm saves 33% of the cost relative to the
naive method and 18% from the short-sighted
method. With limited resources, the
ANPD-DDPG algorithm is better than the cloud
mode, while with sufficient resources, because
the unloading task can be fully offloaded to
each RES, their performance is equivalent

Figure 6. Migration Costs Under Different
Resources

Figure 7 shows the systematic delay cost of the
ANPD-DDPG algorithm and the three
migration schemes. The ANPD-DDPG
algorithm outperforms the other three schemes

due to more frequent task offloading and lower
system latency. The naive approach does not
migrate, and task migration begins to be
affected as the vehicle moves away from its
original location. The latency costs generated by
myopic methods are higher than those generated
by ANPD-DDPG and cloud methods (48% and
39%, respectively) because of frequent
migrations and higher placement costs (18%
and 16%, respectively), and bandwidth usage
costs (approximately 380% for SG and cloud
methods). Because the ANPD-DDPG algorithm
provides better vehicle movement prediction by
updating its conditions for a Markov chain
model of vehicle movement, the ANPD-DDPG
algorithm improves performance by 10% and
15% relative to the naive and cloud methods,
respectively.
Cost System latency Deploy cost Bandwidth
Cost classification cost

Figure 7. Migration Costs of Various
Solutions

System delay: Figure 8 shows the influence of
the ANPD-DDPG algorithm and the other three
schemes on the system delay under different
vehicle densities, In Figure Figure 88, It can be
seen that when the density of the square system
vehicles increases, The system delay of the
cloud solution remains the same, While the
system delay of ANPD-DDPG algorithm, naive
and short-sighted schemes, The time delay
increases, This is due to the increased vehicle
density reducing the transmission efficiency
between the vehicle and the RES, In turn leads
to increased system delay, And when the
vehicle density reaches 0.3, Both naive and
cloud solutions have almost the same delay,
This is due to the increasing number of
unloading task migration in more naive vehicle
scenarios, Thus affecting the system time delay.
However, due to the ANPD-DDPG algorithm,
the system delay performance is obviously due

122 Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 2 No. 4, 2024

http://www.stemmpress.com Copyright @ STEMM Institute Press

to the other three schemes. In addition, the
density of vehicles has significantly more
effects on the naive and cloud methods than the
ANPD-DDPG algorithm, thus verifying the
robustness of ANPD-DDPG in the case of high
vehicle density.

Figure 8. System Latency for Different
Solutions

4.4 Efficiency of the Algorithm
Figure 9 shows the performance results between
the ANPD-DDPG algorithm and the other
baseline algorithms. The total number of
iterations is 1000, and DQN, DDPG and
ANPD-DDPG all converge when increasing the
number of iterations. The results show that the
ANPD-DDPG utility significantly outperforms
the other two algorithms, since all three
algorithms contain one policy network and one
target network. The dual network structure can
find the best action strategy by isolating the
correlations between the training data. Unlike
the DQN algorithm, the ANPD-DDPG
algorithm can output continuous actions, which
is more advantageous in choosing the action
space. The results show that the converged
results of the ANPD-DDPG algorithm are
significantly better than the delayed results of
both.
Convergence ofrewards between different
algorithms Report

Number of iterations
Figure 9. Convergence Rate for Different

Algorithms

Figure 10 shows, the average delay size of the
ANPD-DDPG algorithm, the DQN algorithm,
and the DDPG for different task sizes. In the
figure, the total latency of the ANPD-DDPG
algorithm is significantly lower than the DQN
and DDPG algorithm algorithms for the same
size task, because the non-negligible space
between the discrete action space and the
available actions needs to be explored. It is
difficult to find a better unloading strategy in
the DQN algorithm. Furthermore,
ANPD-DDPG can explore the continuous
action space to obtain suitable strategies by
taking precise actions. The ANPD-DDPG
algorithm grows much slower than the other
schemes, which further demonstrates the
advantages of the ANPD-DDPG algorithm.
Figure Figure 11 shows the total delay at
different transmission power levels.
Demonstrated, the advantages of the
ANPD-DDPG algorithm.System latency under
different task sizesSystemtotal delay

Total task
size

Figure 10. System Latency Under Different
Task Sizes

System delay at different transmission rates

Uplink transmission rate of X
Figure 11. System Delay at Different

Transmission Rates

Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 2 No. 4, 2024 123

Copyright @ STEMM Institute Press http://www.stemmpress.com

5. Conclusion
This paper proposes a multi-level computational
framework applied to task unloading and
migration, which performs vehicle trajectory
prediction through MMO model, and solves the
bandwidth and delay pressure caused by a large
amount of historical data derived from vehicles
in traditional machine learning for trajectory
prediction. The ANPD-DDPG algorithm is
proposed to develop a reasonable migration
plan. By analyzing the ANPD-DDPG algorithm,
compared with the other three migration
schemes, ANPD-DDPG has a good
performance in reducing the cost of task
migration and improving the system response
time. However, the text considers a scenario in
which a RES servers for a vehicle. In the future,
we can study how to generate migration task
plans through servers for multiple vehicles on
multiple edge nodes simultaneously.

References
[1] DAI Y, Xyu D, MAHARJAN S, et al. Joint

load balancing and offloading in vehicular
edge computing and networks[J]. IEEE
Internet of Things Journal, 2018, 6(3):
4377-4387.

[2] Tamani N, Brik B, Lagraa N, et al. On link
stability metric and fuzzy quantification
for service selection in mobile vehicular
cloud[J]. IEEE Transactions on Intelligent
Transportation Systems, 2019, 21(5):
2050-2062.

[3] Yang C, Liu Y, Chen X, et al. Efficient
mobility-aware task offloading for
vehicular edge computing networks[J].
IEEE Access, 2019, 7: 26652-26664.

[4] Sorkhoh I, Ebrahimi D, Atallah R, et al.
Workload scheduling in vehicular
networks with edge cloud capabilities[J].
IEEE Transactions on Vehicular
Technology, 2019, 68(9): 8472-8486.

[5] Wang L, Jiao L, Li J, et al. MOERA:
Mobility-agnostic online resource
allocation for edge computing[J]. IEEE
Transactions on Mobile Computing, 2018,
18(8): 1843-1856.

[6] Zhang Yilin, Liang Yuzhu, Yin Mujun, et
al. Survey on the Methods of Computation
Offloading in Mobile Edge Computing[J].
Journal of Computer Science, 2021, 44(12):
2406-2430.)

[7] Liu J, Mao Y, Zhang J, et al. Delay-optimal

computation task scheduling for
mobile-edge computing systems[C]//2016
IEEE international symposium on
information theory (ISIT). IEEE, 2016:
1451-1455.

[8] You C., Huang K. "Multiuser resource
allocation for mobile edge computation
offloading." Proceedings of the 2016 IEEE
Global Communications Conference
(GLOBECOM), Washington, USA, 2016,
pp. 1-6.

[9] Zhao P, Tian H, Qin C, et al.
Energy-saving offloading by jointly
allocating radio and computational
resources for mobile edge computing[J].
IEEE access, 2017, 5: 11255-11268.

[10] Wang S, Urgaonkar R, Zafer M, et al.
Dynamic service migration in mobile edge
computing based on Markov decision
process[J]. IEEE/ACM Transactions on
Networking, 2019, 27(3): 1272-1288.

[11] Wang J, Hu J, Min G, et al. Online service
migration in edge computing with
incomplete information: A deep recurrent
actor-critic method[J]. arXiv preprint
arXiv:2012.08679, 2020: 41.

[12] Wang S, Guo Y, Zhang N, et al.
Delay-aware microservice coordination in
mobile edge computing: A reinforcement
learning approach[J]. IEEE Transactions
on Mobile Computing, 2019, 20(3):
939-951.

[13] Labriji I, Meneghello F, Cecchinato D, et
al. Mobility aware and dynamic migration
of MEC services for the Internet of
Vehicles[J]. IEEE Transactions on
Network and Service Management, 2021,
18(1): 570-584.

[14] Ouyang T, Zhou Z, Chen X. Follow me at
the edge: Mobility-aware dynamic service
placement for mobile edge computing[J].
IEEE Journal on Selected Areas in
Communications, 2018, 36(10):
2333-2345.

[15] Gebrie H, Farooq H, Imran A. What
machine learning predictor performs best
for mobility prediction in cellular
networks?[C]//2019 IEEE International
Conference on Communications
Workshops (ICC Workshops). IEEE, 2019:
1-6.

[16] Al-Shaery A M, Ahmed S G, Aljassmi H,
et al. Open Dataset for Predicting Pilgrim
Activities for Crowd Management During

124 Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 2 No. 4, 2024

http://www.stemmpress.com Copyright @ STEMM Institute Press

Hajj Using Wearable Sensors[J]. IEEE
Access, 2024.

[17] Kim T, Sathyanarayana S D, Chen S, et al.
Modems: Optimizing edge computing
migrations for user mobility[J]. IEEE
Journal on Selected Areas in
Communications, 2022, 41(3): 675-689.

[18] Kim T, Sathyanarayana S D, Chen S, et al.
Modems: Optimizing edge computing
migrations for user mobility[J]. IEEE
Journal on Selected Areas in
Communications, 2022, 41(3): 675-689.

[19] IMANE A. Mobile Edge Computing for
the Internet of Things[J]. 2019.

[20] Rejiba Z, Masip-Bruin X, Marín-Tordera E.
A survey on mobility-induced service
migration in the fog, edge, and related
computing paradigms[J]. ACM Computing
Surveys (CSUR), 2019, 52(5): 1-33.

[21] Liang Z, Liu Y, Lok T M, et al. Multi-cell
mobile edge computing: Joint service
migration and resource allocation[J]. IEEE
Transactions on Wireless Communications,
2021, 20(9): 5898-5912.

[22] Ngo M V, Luo T, Hoang H T, et al.
Coordinated container migration and base
station handover in mobile edge
computing[C]//GLOBECOM 2020-2020
IEEE Global Communications Conference.
IEEE, 2020: 1-6.

[23] Ma L, Yi S, Carter N, et al. Efficient live
migration of edge services leveraging
container layered storage[J]. IEEE
Transactions on Mobile Computing, 2018,
18(9): 2020-2033.

[24] Xu Xiaobin, Wang Qi, Fan Cunqun, et al.
An Aggregated Edge Computing Resource
Management Method
forSpace-Air-Ground Integrated
Information Networks[J]. Journal of
Computer Science, 2023, 46(04):
690-710.)

[25] Kuang Zhufang, Chen Qinglin, Li Linfeng,
et al. Multi-user Edge Computing Task
offloading Scheduling and
ResourceAllocation Based on Deep
Reinforcement Learning[J]. Journal of
Computer Science, 2022, 45(04):
812-824.)

[26] Wang S, Urgaonkar R, Zafer M, et al.
Dynamic service migration in mobile edge
computing based on Markov decision
process[J]. IEEE/ACM Transactions on
Networking, 2019, 27(3): 1272-1288.

[27] Zeng Yaoping, Jiang Weiwei, Liu
Yueqiang, et al. Dynamic Offloading
Algorithm for Tasks in Vehicle Edge
Networks [J]. Computer Engineering and
Applications, 2024, 60(14): 267-274.)

[28] Labriji I, Meneghello F, Cecchinato D, et
al. Mobility aware and dynamic migration
of MEC services for the Internet of
Vehicles[J]. IEEE Transactions on
Network and Service Management, 2021,
18(1): 570-584.

[29] Ouyang T, Zhou Z, Chen X. Follow me at
the edge: Mobility-aware dynamic service
placement for mobile edge computing[J].
IEEE Journal on Selected Areas in
Communications, 2018, 36(10):
2333-2345.

[30] Cao T, Qian Z, Wu K, et al. Service
placement and bandwidth allocation for
MEC-enabled mobile cloud
gaming[C]//2021 IEEE 22nd International
Symposium on a World of Wireless,
Mobile and Multimedia Networks
(WoWMoM). IEEE, 2021: 179-188.

[31] Yang B, Chai W K, Xu Z, et al.
Cost-efficient NFV-enabled mobile
edge-cloud for low latency mobile
applications[J]. IEEE Transactions on
Network nd Service Management, 2018,
15(1): 475-488.

[32] Fallah S N, Ganjkhani M, Shamshirband S,
et al. Computational intelligence on
short-term load forecasting: A
methodological overview[J]. Energies,
2019, 12(3): 393.

[33] Hu B, Hu W. Linkshare: Device-centric
control for concurrent and continuous
mobile-cloud interactions[C]//Proceedings
of the 4th ACM/IEEE Symposium on Edge
Computing. 2019: 15-29.

[34] Xu Xiaolong, Fang Zijie, Qi Lianyong, et
al. A Deep Reinforcement Learning-Based
Distributed Service Offloading Method for
Edge Computing Empowered Internet of
Vehicles[J]. Journal of Computer Science,
2021, 44(12): 2382-2405.)

[35] Ottenwälder B, Koldehofe B, Rothermel K,
et al. MCEP: A mobility-aware complex
event processing system[J]. ACM
Transactions on internet technology
(TOIT), 2014, 14(1): 1-24.

[36] Jia Y, Wu C, Li Z, et al. Online scaling of
NFV service chains across geo-distributed
datacenters[J]. IEEE/ACM Transactions on

Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 2 No. 4, 2024 125

Copyright @ STEMM Institute Press http://www.stemmpress.com

Networking, 2018, 26(2): 699-710.
[37] Bari F, Chowdhury S R, Ahmed R, et al.

Orchestrating virtualized network
functions[J]. IEEE Transactions on
Network and Service Management, 2016,
13(4): 725-739.

[38] Pande S K, Panda S K, Das S. Dynamic
service migration and resource
management for vehicular clouds[J].
Journal of Ambient Intelligence and
Humanized Computing, 2021, 12:
1227-1247

126 Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 2 No. 4, 2024

http://www.stemmpress.com Copyright @ STEMM Institute Press

