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Abstract: This paper constructs a fault
analysis and identification model by
employing the dual-tree complex wavelet
packet transform (DTCWPT) together with
the deep belief network (DBN), aiming to
achieve precise fault diagnosis of rolling
bearings. The DTCWPT decomposition of
the vibration signals was first performed,
and an initial feature set of the fault pattern
was developed by extracting the features of
initial vibration signals under different
frequency bands. Subsequently, the
Laplacian Score (LS) approach was utilized
to detect the fault-sensitive characteristics
within the original high-dimensional feature
collection. Furthermore, leveraging depth
learning techniques which are proficient in
high-dimensional data manipulation and
nonlinear data analysis, an adaptive
exploration of fault characteristics and an
intelligent discrimination of faults were
carried out with the Dunn Validity Index
and standard deviation ratio in the context
of DBN. Four tests for different cases were
performed using the previously reported
bearing data. The experimental outcomes
manifested that the LS approach is
efficacious in extracting fault-sensitive
features, and the DBN model is capable of
enhancing the precision of fault recognition.

Keywords: Dual-Tree Complex Wavelet
Packet; Deep Belief Network; Feature
Extraction; Rolling Bearings; Fault
Diagnosis

1. Introduction
Since rolling bearings operate under high
variable load conditions over a prolonged
period and are affected by external loads or
unstable factors, they are prone to fault states
[1], which can result in unexpected equipment
damage and financial losses. Consequently, the
fault diagnosis of rolling bearings is of
significance. Researches on the vibration

mechanisms of rolling bearings have indicated
that the vibration signals generated during the
operation of bearings encompass abundant
state information, and the analysis of vibration
signals represents an efficient approach for
conducting fault diagnosis of rolling bearings.
In recent times, owing to the progressions in
signal processing, data mining, and artificial
intelligence technologies, data-propelled
intelligent fault diagnosis techniques have been
extensively utilized in the fault diagnosis of
bearings [2]. The main steps involved in
bearing fault diagnosis include signal
processing, feature extraction, feature selection,
and identification of fault models [3, 4].
Essentially, the process of diagnosing faults in
rolling bearings is tantamount to the process of
recognizing fault state models [4]. Hence, the
first three steps are the foundation for the
fourth step.
One of the essential difficulties in extracting
features of rolling bearing faults is to
disassemble the fundamental characteristics
that reflect fault types from the nonlinear and
non-stationary vibration signals emerging
during fault conditions [5]. The wavelet
transform allows a refined multi-resolution
analysis of vibration signals through several
operations, such as scaling transform and
translation [6-8]. Nevertheless, it encounters
the trade-off predicament between time
resolution and frequency resolution as a result
of their mutual interaction and dependence.
The transform coefficient and scale coefficient
of DTCWPT possess translation invariance,
resistance to frequency aliasing, limited
redundancy, and no phase distortion, rendering
it a preferable approach for extracting fault
signal characteristics of rolling bearings. Qu [8]
used DTCWPT for the feature extraction of
vibration signals and combined multiple
classifiers for fault diagnosis. Wu et al. [9]
extracted singular spectrum features of diesel
engines under different working conditions
using DTCWPT.
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The statistical features and equipment fault
modes obtained by feature extraction have
complex mapping relationships, and different
statistical features exhibit varying sensitivities
to faults. Without prior knowledge, manually
selecting statistical features based on personal
experience for fault diagnosis yields
unsatisfactory results [9]. To address this issue,
this study uses the Laplacian Score (LS) [10]
feature selection method in order to evaluate
the statistical features, quantitatively analyze
their fault sensitivity, and select highly
correlated and sensitive statistical features for
the construction of the training set.
Regarding the model recognition issue of
rolling bearing fault states, shallow models like
the BP neural network and Support Vector
Machine (SVM) are unable to effectively
depict the intricate mapping relationship
between the high-dimensional feature space of
measured signals and rolling bearing faults,
and they are liable to the problem of
dimensionality. Deep learning, which is an
emerging machine learning method, can
automatically extract the necessary features
from large datasets, which makes it suitable for
the diagnostic analysis of diverse, nonlinear,
and high-dimensional data in big data. The
deep belief network (DBN), a representative
deep learning algorithm, has been successfully
utilized in information retrieval, feature
dimensionality reduction as well as fault
classification. Wang et al. [11] used DBN for
intrusion detection, which selected features
layer by layer to perform feature
dimensionality reduction. Shi et al. employed
DBN for transformer fault classification, and
compared it with traditional classification
methods in terms of feature extraction and
fault tolerance. Shao et al. [1] utilized DBN for
the fault diagnosis of rolling bearings with the
aim of enhancing the accuracy of fault
recognition. In this study, wavelet packet
decomposition was first performed on
collected vibration signals to extract their
initial feature set. The LS method was then
used to select fault-sensitive features that were
used as the input space for the DBN training.
Ultimately, the trained DBN was adopted for
fault diagnosis. The experimental results
showed that the proposed model boasts a high
performance in recognizing rolling bearing
faults.

2. DTCWPT and DBN

2.1 DTCWPT
DTCWPT is an enhanced wavelet transform
that uses two parallel real wavelet transform
trees with distinct high-pass and low-pass filter
banks referred to as the real tree and the
imaginary tree, respectively.
DTCWT independently decomposes and
reconstructs the input signals using two
discrete wavelet-based functions to obtain the
real and imaginary parts of the complex
wavelet. The complex wavelet is expressed as:

( ) ( ) ( )h gt t j t    (1)
where φh(t) and φg(t) are respectively the real
and imaginary parts of the complex wavelet
that are both real functions.
DTCWT can be considered as the operation of
two parallel real wavelets. In the process of the
signal decomposition and reconstruction
process, The sample points of the imaginary
tree always remain positioned in the middle of
the real tree. This can ensure the effective
utilization of wavelet decomposition
coefficients from the two trees, helps achieve
information complementarity and approximate
translational invariance of the real and
imaginary trees, and reduces the useful
information loss to a certain extent. Moreover,
DTCWT uses wavelet coefficient dichotomy in
each decomposition layer, which cuts down the
computational redundancy and boosts the
computational efficiency.
Since the discrete wavelet transform cannot
perform fine-grained decomposition of high-
frequency parts, the wavelet packet transform
is introduced. Similarly, the DTCWPT, which
retains the advantages of DTCWT and can
achieve effective decomposition of high-
frequency signal parts, is proposed.

2.2 Printing Area
Hinton et al. [11] put forward DBN possessing
multiple hidden layers, which are formed by
stacking multiple Restricted Boltzmann
Machines (RBMs) and whose neural network
weights are trained through a layer-wise
greedy learning algorithm. The raw data are
input into the bottom layer of DBN, and data
features are successively extracted through
each layer. This process gradually abstracts
information from lower layers to higher layers,
which results in the formation of features with
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increasingly enhanced representational
capacities. The hierarchical structure and
learning process of DBN is shown in Figure 1.

Figure 1. DBN Structure Model and
Learning Process

The learning paradigm of the Deep Belief
Network (DBN) can be bifurcated into two
sequential phases: the unsupervised pre-
training phase, which aims to initialize the
network parameters in an unsupervised
manner to capture the underlying data
distribution, and the subsequent supervised
error fine-tuning training phase, wherein the
network is refined using labeled data to
minimize the prediction errors and enhance
its discriminative capabilities. After
parameter initialization, DBN uses a greedy
algorithm to perform unsupervised training
of RBMs layer by layer in order to
determine the initial parameters. In this
procedure, the output generated by the
lower layer functions as the input for the
upper layer. After pretraining, DBN
employs the BP algorithm for supervised
fine-tuning, where the errors are propagated
to each layer of RBM from top to bottom in
order to perform parameter fine-tuning.
The training of RBMs is the core of the
DBN learning process. Each RBM consists
of visible and hidden layers, and represents
a specific type of Markov random field. The
visible layer receives data and transforms
them into the hidden layer to complete the
learning process. RBM is an energy-based
model. The joint energy of visible variable
V = (v1, v2, …, vn)T and hidden variable H =
(h1, h2, …, hm)T is given by:

( , ; ) ij i j i i j j
ij i j

E v h W v h b v a h       (2)

where θ represents the parameter of RBM,
ai and bj are respectively the biases of the
hidden and visible units, and W is the
weight connecting the two units.
the joint probability of V and H is denoted
based on this energy function as:

1( , ; ) exp( ( , ; ))
( )

P v h E v h
Z  


  (3)

where Z(θ) is the normalization factor
which is also referred to as the partition
function.
Hence, the conditional probabilities of the
visible and hidden units are given by:
There are no connections within an RBM
layer. That is, given V, the hidden units are
independent from each other; given H, the
visible units are also independent from each
other. Thus, the conditional probability
distributions can be computed as:

1( 1 | ) ( )
1 exp( )i i ij j

j i ij j
j

P v h sigm a w h
a w h

   
    (4)

1( 1 | ) ( )
1 exp( )j j i ij

i j i ij
j

P h v sigm b v w
b v w

   
    (5)

The training procedure of RBMs is
concisely presented as follows:(1) The
visible unit is set as the training sample data
and the hidden unit is updated using Eq. (7);
(2) v′I is reconstructed based on the state of
the hidden unit and Eq. (6), and h′j is
determined using Eq. (7). This process is
repeated to update the weight wij, which can
be calculated as:

w ( )ij i j i jv h v h         (6)
where η∈(0, 1) represents the learning rate
and < · > represents the average of the
training data.

3. LS-based Feature Selection Method
The LS is a feature selection method. Based on
the Laplacian Eigenmap (LE) and Local
Preserving Projection (LPP), this method
assesses features by gauging their capacity to
maintain the local geometric structure of
data.It calculates the LS of the feature set with
the aim of extracting the inherent information
structure and transforms the intricate high-
dimensional feature space into a comparatively
uncomplicated low-dimensional space [9]., and
thus reduces the feature space redundancy. It
selects the features having smaller LS values in
the feature space, which allows to retain most
of the intrinsic geometric structure information
in the fault signal feature set, improving the
discriminative performance of the reduced
low-dimensional feature set.
Let Lr the LS of the rth feature and fri the rth

feature of the ith sample, where i = 1, 2, …, m,
The LS algorithm can be broken down into the
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following steps:
The nearest neighbor graph G with m nodes is
constructed, where xi and xj correspond to the
ith and jth nodes, respectively. If xi and xj are
neighbors, they are connected by an edge, that
is, xi is the k-nearest neighbor of xj or xj is the
k-nearest neighbor of xi.In the presence of
label information, an edge is also established
between two nodes that possess the same label.
If nodes i and j are connected, then:

)/||||exp( 2 txxS jiij  (7)
where t is an appropriate constant and || · || is
the Euclidean distance between two nodes.
Otherwise, Sij is set to 0. The weighted matrix
S represents a similarity matrix corresponding
to the nearest neighbor graph G. It serves the
purpose of emulating the inherent local
geometric configuration within the data space
and gauging the similarity among neighboring
sample points. A greater value of of Sij

indicates a stronger similarity between the two
samples and a higher likelihood that the two
samples belong to the same class. The
following is defined for the rth feature:

T
1 2

T

( , , , )
diag( )

(1,1, ,1)

r r r rmf f f f
D SI

I
L D S

 



 


 




(8)

Matrix L is often referred to as the Laplace
operator. In order to avoid generating a non-
zero constant vector fr due to the excessive
data variance in some dimensions, which leads
to the generation of a meaningless value of Lr

in the next step, mean centering is performed
for each feature as:

T

Tr r
f DIf f I
I DI

 


(9)

The LS of the th feature is calculated as:
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fDf
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 (10)

where Var(fr) is the estimation variance of the
rth feature.
According to the above steps, for a specific
feature, when the value of Sij increases, the
value of (fri - frj)2 decreases. That is, the
smaller the numerator, the higher the similarity
among the samples in this feature, and the
larger the value of Var(fr), the higher the
degree of distinction among the samples.
Therefore, the LS and feature sensitivity are

inversely proportional. In other terms, a
smaller LS value implies a greater sensitivity
of the feature to bearing faults. Via
computation, features are ordered based on the
LS value in an ascending manner, and several
top-ranked features are chosen to form a set of
sensitive features.

4. Process of Fault Diagnosis

4.1 Feature Extraction
The dmey wavelet was employed to conduct a
four-layer Discrete Ternary Complex Wavelet
Packet Transform (DTCWPT) decomposition
on the vibration signal samples. Subsequently,
16 terminal nodes as well as the corresponding
wavelet packet coefficients were obtained. The
Hilbert Envelope Spectrum (HES) was
calculated by using the 16 reconstructed
signals obtained through performing single-
branch wavelet packet reconstruction on each
node coefficient in the fourth layer of the
wavelet packet tree. Furthermore, by utilizing
the 16 single-branch reconstructed signals and
their Hilbert Envelope Spectrum (with a total
of 32 sequences),11 statistical features were
calculated. Upon the construction of the initial
feature set, each fault signal sample was
associated with 352 statistical features. Table 1
presents the 11 statistical features along with
their calculation equations.

Table 1. 11 Statistical Features of the
Signals (x Denotes a Sequence Having a

Length of n)
Feature Equation

Amplitude      1 max minT x i x i 

Mean    2 1
1 n

i
T n x i


 

Standard
deviation     2

3 11
1 ( 1) n

i
T n x i T


  

Peakness     3 3
4 1 21

( 1)n

i
T x i T n T


  

Kurtosis     3 3
5 1 21

( 1)n

i
T x i T n T


  

Energy  
2

6 1

n

i
T sp k




Energy
entropy

  2

7 1
log ,n

i i ii

x i
T P P P

Energy
  

Crest factor      2
8 1

max 1 n

i
T x i n x i


 

Impact
factor       9 1

max 1 n

i
T x i n x i


 

Shape factor        2
10 1 1

1 1n n

i i
T n x i n x i

 
  

Latitude
factor

      11 1
max 1 n

i
T x i n x i
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4.2 Feature Selection
The least squares method (LS method) was
utilized to analyze 352 features in the initial
feature set. The corresponding LS values of the
features were computed and then ranked in
descending order. Fault-sensitive features were
then selected based on the ranking result.

4.3 Model Recognition
The sensitive features selected by the LS
method were used as input vectors to train the
DBN model. Subsequently, the trained DBN
model was applied to conduct rolling bearing
fault diagnosis. Figure 2 shows the flowchart
of rolling bearing fault diagnosis based on
Dual-Tree Complex Wavelet Packet
Transform (DTCWPT) and Deep Belief
Network (DBN).

Figure 2. Flowchart of the DBN-based
Intelligent Fault Diagnosis

5. Results and Analysis
The experimental data employed in this
research were gathered from the rolling
bearing fault experiments carried out by the
Electrical Engineering Laboratory at Case
Western Reserve University [3]. The
bearing test setup is shown in Figure 3. A
three-phase motor having a power of 1491.4
W is located on the left side. A
dynamometer, which generates rated power,
is located on the right side. The defective
bearing, being a deep groove ball bearing
(with the model of SKF-6205-2RS), is
mounted at the motor drive terminal.
Acceleration sensors, for collecting bearing

vibration data, are installed above the motor
drive end and fan end. To simulate the
bearing fault conditions, single-point
defects are created on the inner race, outer
race, and roller by means of electrical
discharge machining. The sampling
frequency is configured at 12 kilohertz.
The bearing located at the drive end
exhibits three kinds of faults, namely those
in the roller, inner race, and outer race, with
the fault sizes being 0.007, 0.014, 0.021,
and 0.028 inches respectively. The motor
operates under loads ranging between 0 hp
and 3 hp. Table 2 shows 12 bearing states,
comprising one normal state, four inner race
fault states, four roller fault states, and three
outer race fault states. For each bearing
fault state, 2000 consecutive data points
were collected as one sample, which
resulted in a total of 60 vibration signal
samples. In this research, four experimental
scenarios (Case 1-4) were devised to assess
the efficacy and flexibility of the proposed
method within both constant and variable
load circumstances. Cases 1-2 are form a
group of comparative experiments,
employing the data samples corresponding
to a motor load of 2 hp as the training set
and take the data samples with loads of 2 hp
and 3 hp as the testing set. Cases 3 and 4
are also a group of comparative experiment,
which uses the data samples under a motor
load of 3 hp as the training set and those
under loads of 3 hp and 2 hp as the testing
set.

Figure 3. Setup for the CWRU Bearing
Fault Test

Maximum discrete wavelet packet analysis
was first performed for the vibration signal
samples. 352 statistical features were extracted
to form the initial feature set space. Since
different statistical features had varying
sensitivities to fault types, The Least Squares
(LS) method was applied in the feature
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selection process to measure the sensitivity of
the statistical features with respect to the fault

types.

Table 2. Experimental Data

Bearing
state

fault
size

(inch)

Case 1, Case 2 Case 3, Case 4
Typetraining set testing set Case

1
testing set Case

2 training set testing set
Case 3

testing set Case
4

2 hp 3 hp 3 hp 2 hp
Health

condition 0 20 40 40 20 40 40 1

Roller
fault

0.007 20 40 40 20 40 40 2
0.014 20 40 40 20 40 40 3
0.021 20 40 40 20 40 40 4
0.028 20 40 40 20 40 40 5

Inner race
fault

0.007 20 40 40 20 40 40 6
0.014 20 40 40 20 40 40 7
0.021 20 40 40 20 40 40 8
0.028 20 40 40 20 40 40 9

Outer race
fault

0.007 20 40 40 20 40 40 10
0.014 20 40 40 20 40 40 11
0.021 20 40 40 20 40 40 12

Number of
samples 240 480 480 240 480 480

5.1 LS-free Fault Sensitivity Analysis
In order to verify the effectiveness and
suitability of the proposed approach, two sets
of comparative experiments were carried out.
n the first experimental group, the Least
Squares (LS) method was not incorporated.
Instead, experimental analyses were conducted
on the OFS-SVM, OFS-PCA-SVM, and OFS-
DBN models. The Original Feature Set (OFS)
comprises 352 initial statistical features. The
OFS-SVM represents an SVM-centered fault
analysis model, wherein the OFS is directly
input into the SVM for the purposes of training
and fault recognition. Its fault recognition
accuracy is shown in Table 3. It can be
observed that Cases 1 and 3 had significantly
higher recognition accuracy compared with
Cases 2 and 4. In the OFS-PCA-SVM model,
OFS having a dimension reduced by PCA, was
used as the input of SVM. The recognition
accuracies in the four cases under varying
numbers of Principal Component Analysis
(PCA) are presented in Table 4. When the
number of PCA increases, the recognition
accuracy increases in all the cases. However,
the peak recognition accuracy of the OFS-
PCA-SVM model in Cases 2 and 4 were
77.71% and 74.38%, respectively. OFS-PCA-
SVM showed a slight improvement compared
with OFS-SVM. However, this improvement
was not significant. For the OFS-DBN model,
the quantity of input features is 352.the

numbers of output nodes at the first two layers
of RMB are respectively 100 and 50, and the
number of types at the final output layer is 12.
The fault recognition accuracies of the OFS-
DBN model are shown in Table 5. It is evident
that the recognition accuracy has been
remarkably enhanced in all cases. In addition,
the recognition accuracies in Cases 2 and 4
reached 98.33% and 98.75%, respectively. The
achieved results illustrated that DBN is
endowed with highly proficient feature
analysis and fault recognition capabilities.
Table 3. Fault Recognition Accuracy (%) Of

The OFS-SVMModel in Cases 1-4
Case 1 Case 2 Case 3 Case 4
92.92 75.83 92.08 74.38

Table 4. Fault Recognition Accuracy (%) of
the OFS-PCA-SVMModel in Cases 1-4
Number of

PCAs n Case 1 Case 2 Case 3 Case 4

5 80.83 66.46 85.42 66.46
10 85.00 68.96 87.71 69.38
15 89.17 69.17 91.67 72.50
20 93.33 74.58 93.54 73.33
25 93.96 77.71 94.17 74.38
30 91.84 73.15 93.87 72.68
35 89.38 71.59 93.15 71.73
40 88.12 68.76 91.57 69.89

Table 5. Fault Recognition Accuracy (%) of
the OFS-DBN Model in Cases 1-4

Case 1 Case 2 Case 3 Case 4
99.38 98.33 100.00 98.75

78 Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 2 No. 4, 2024

http://www.stemmpress.com Copyright @ STEMM Institute Press



5.2 LS-based Fault Sensitivity Analysis
In the second experimental group, a feature
selection approach grounded on the Least
Squares (LS) was incorporated. and
experimental investigations were conducted on
the OFS-LS-SVM, LS-PCA-SVM, and OFS-
LS-DBN models. In the OFS-LS-SVM model,
the LS method was utilized to extract fault-
sensitive features from the Original Feature Set
(OFS). The selected features were
subsequently employed to train the Support
Vector Machine (SVM), and the data from the
testing set were utilized to validate the efficacy
of the OFS-LS-SVM model. The recognition
accuracies of the OFS-LS-SVM model are
presented in Table 6, wherein "sfn" denotes the
quantity of features selected via the LS method.
Regarding the OFS-LS-SVM model, the peak
fault recognition accuracies for Cases 2 and 4
were 99.79% and 99.79% respectively. When
compared with the results shown in Table 3, it
is evident that the recognition accuracies have
been substantially enhanced. Figure 4
illustrates the variation of the recognition
accuracy of the OFS-LS-SVM in relation to
the number of features selected by the LS
method (sfn). It is observable that, when sfn is
approximately 100, the accuracies in the four
cases exhibit a significant increase. The
recognition accuracies of the LS-PCA-SVM
model are presented in Table 7. Figure 5
depicts the variation of the recognition
accuracy in relation to sfn. It can be noted that,
as the number of Principal Component
Analysis (PCA) components increases, the
recognition accuracy is marginally enhanced.
Nevertheless, the final outcome is comparable
to that of the OFS-LS-SVM model. For the
OFS-LS-DBN model, with the exception that
the number of Input - layer units was modified
to sfn, all other parameters remained analogous
to those in the first experimental group. The
recognition accuracies of this model are
exhibited in Table 8. It can be discerned that
the maximum recognition accuracies in Cases
1 - 4 attain 100%, 99.79%, 100%, and 99.79%
respectively. Subsequent to the introduction of
LS, the fault recognition accuracies for all
cases are conspicuously enhanced, as
demonstrated in Table 5. Figure 6 portrays the
variation of the the precision rate of fault
identification of the OFS-LS-DBN model with
respect to sfn.

Table 6. Fault Recognition Accuracy (%) of
the OFS-LS-SVMModel in Cases 1-4
sfn Case 1 Case 2 Case 3 Case 4
10 86.67 81.04 83.96 69.38
40 81.04 65.47 81.04 81.88
70 93.54 95.83 96.04 90.00
100 99.79 99.79 100.00 99.79
130 99.79 93.96 100.00 85.42
160 98.96 97.29 99.79 90.21
190 98.96 77.92 100.00 89.17
220 97.92 86.04 98.96 91.04
250 98.96 93.75 99.17 96.67
280 99.58 92.50 99.17 98.12
310 98.33 88.75 98.12 78.33

Table 7. Fault recognition accuracy (%) of
the LS-PCA-SVMmodel in Cases 1-4 with a

number of PCA of 20
sfn Case 1 Case 2 Case 3 Case 4
20 91.88 84.17 92.50 83.75
40 92.50 90.00 85.83 86.88
70 99.58 98.96 99.58 88.33
100 100.00 99.17 99.79 99.38
130 100.00 88.96 99.79 93.33
160 100.00 74.79 100.00 68.54
190 99.58 85.63 99.17 72.50
220 98.54 89.79 98.13 84.38
250 98.13 86.88 99.38 92.08
280 98.75 87.71 99.58 92.08
310 99.17 87.08 99.58 90.00

Table 8. Fault Recognition Accuracy (%) of
the OFS-LS-DBN Model in Cases 1-4
sfn Case 1 Case 2 Case 3 Case 4
10 8.33 8.33 8.33 8.33
40 100.00 77.08 99.79 98.75
70 100.00 79.38 100.00 99.58
100 99.79 92.92 100.00 99.79
130 99.79 98.75 100.00 98.96
160 99.17 99.17 100.00 99.38
190 98.58 96.46 100.00 99.79
220 99.58 97.71 100.00 99.58
250 99.79 97.50 100.00 99.38
280 99.58 99.38 100.00 98.96
310 99.58 99.79 100.00 98.13

Figure 7 presents a comparative analysis of the
variations in the recognition accuracy of the
OFS-LS-SVM, LS-PCA-SVM, and OFS-LS-
DBN fault diagnosis models with respect to sfn,
under the condition where the number of
Principal Component Analysis (PCA)
components is set at 30. It can be discerned
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that the OFS-LS-DBN model demonstrates
more prominent performance with respect to
fault recognition accuracy in contrast to the

other two models and exhibits the lowest
sensitivity to the variation of sfn.

(a) cases 1-2 (b) cases 3-4
Figure 4. Fault Diagnosis Accuracy (%) of the OFS-LS-SVMModel with Respect to Sfn in Cases

1-4

(a) cases 1 (b) cases 2
Figure 5. Fault Diagnosis Accuracy (%) of the LS-PCA-SVMModel with Respect to sfn in Cases

1-4

(a) cases 1-2 (b) cases 3-4
Figure 6. Fault Diagnosis Accuracy (%) of the OFS-LS-DBN Model with Respect to sfn in Cases

1-4
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Figure 7. Comparison between the Variations of the Recognition Accuracy of the OFS-LS-SVM,
LS-PCA-SVM, and OFS-LS-DBN Fault Diagnosis Models with Respect to SFN

6. Conclusion
This paper proposes the LS method, which
represents a fault-sensitive feature extraction
technique predicated on the maximum discrete
wavelet packet analysis of vibration signals. A
DBN (Deep Belief Network)-oriented
intelligent diagnosis model was additionally
constructed for rolling bearings. The ensuing
conclusions can be derived:
(1) The statistical features obtained after the
time-frequency analysis of vibration signals
had varying impacts on the rolling bearing
fault recognition. The LS (Least Squares)
method can be employed to gauge the
sensitivity of these features with respect to
fault types. In addition, the features that are
more favorable for fault recognition can be
filtered out by ranking the feature sensitivity;
(2) Compared with the SVM classifiers and
PCA dimensionality reduction methods, the
DBN-based diagnosis model can effectively
enhance the feature space analysis and fault
recognition capacity;
(3) The fault diagnosis model which combines
DTCWPT, LS, and DBN can significantly
improve the fault recognition accuracy, and it
has high adaptability for bearing fault
diagnosis under varying load conditions.
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