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Abstract: Maritime vessel recognition is a
crucial task in maritime monitoring and
traffic management, supporting various
applications such as vessel tracking,
operational safety, and anomaly detection.
Traditional vessel detection and recognition
processes rely heavily on manual inspection,
which is constrained by environmental noise,
low visibility, and the need for real-time
performance, making high accuracy and
reliability difficult to achieve. This study
develops a multimodal classification method
that effectively integrates image data with
vessel identification numbers to improve the
accuracy of automated vessel recognition. A
comprehensive recognition system,
integrating vessel detection and
classification, has been successfully
developed and deployed in a maritime
monitoring center. With the inclusion of
vessel identification numbers as auxiliary
data, the system achieved an accuracy of
89% in practical applications. The
innovation of this research lies in the
application of a multimodal model to
address the challenges of vessel recognition,
significantly enhancing recognition
accuracy and establishing an intelligent
recognition system suitable for real-world
maritime monitoring and analysis.
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1. Introduction
Accurately identifying maritime vessels is a
critical task in maritime operations and
intelligence gathering. Beyond its importance
in assessing maritime security, vessel
recognition also plays a key role in maritime

traffic management and the protection of
marine resources. However, the inherent
complexities of the maritime environment—
such as variations in lighting conditions,
adverse weather, wave interference, and long-
range imaging—pose significant challenges for
recognizing vessels from real-world imagery.
These challenges are further compounded by
issues such as low image resolution and high
levels of noise, which can degrade the
performance of recognition systems.
In recent years, machine learning techniques,
particularly convolutional neural networks
(CNNs), have achieved significant
advancements in image recognition tasks.
While these methods have demonstrated
success in controlled environments, their
reliance on single-modality data, such as
image-only inputs, limits their effectiveness in
real-world scenarios. Maritime vessel
recognition, in particular, suffers from the
drawbacks of such approaches when faced
with noisy, low-resolution, or incomplete data
captured in complex maritime environments.
To address these limitations, this study
proposes an innovative multimodal approach
to maritime vessel recognition. By integrating
diverse data sources, such as visual imagery
and hull number information, the proposed
method enhances recognition accuracy under
challenging conditions. The approach also
leverages advanced image processing
techniques to improve the quality of real-world
maritime images, enabling the model to extract
more robust features from noisy data. The
combination of multimodal data and enhanced
image processing ensures that the system
performs reliably, even in adverse
environments.
This paper introduces the methodology and
technical framework of the proposed
multimodal recognition system, emphasizing
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its potential to overcome the challenges of
traditional single-modality approaches. The
effectiveness of the method is demonstrated
through its deployment in real-world scenarios,
where it significantly improves the accuracy
and reliability of maritime vessel recognition.
By providing a practical and precise automated
recognition solution, this work contributes to
advancing the field of maritime intelligence
gathering and maritime security monitoring,
offering a robust foundation for future
developments in complex maritime
environments.

2. Related Works

2.1 CNN-Based Classification Model
In the field of automatic vessel recognition,
image classification and object detection
technologies play a crucial role. Convolutional
Neural Networks (CNNs) have become the
core technology for image classification tasks
[1]. Leveraging their deep structures and
complex feature extraction capabilities, CNNs
have demonstrated remarkable performance in
classifying maritime vessel images captured in
complex environments. Notable architectures
such as AlexNet [2] and VGGNet [3] have
achieved significant success in image
classification tasks.
Moreover, multimodal classifiers [4] are
increasingly recognized for their value in
automatic vessel recognition. These methods
integrate information from multiple data
sources, such as visual images, textual labels,
or other sensor data, providing a more
comprehensive and accurate perspective for
classification. In vessel recognition tasks,
multimodal approaches enhance classification
accuracy and robustness by combining visual
features of images with key information such
as hull numbers.

2.2 Object Detection Techniques
This study employs two advanced technologies
at different stages of the automatic vessel
recognition process: YOLO (You Only Look
Once) [5] and Grounding DINO [6]. YOLO, a
highly efficient real-time object detection
method known for its speed and accuracy, is
primarily utilized during the recognition
process. It directly predicts the bounding boxes
and class probabilities of targets from input
images, making it particularly suited for

handling maritime images with multiple
objects or complex backgrounds. YOLO is
used in the initial stage of the recognition
pipeline to determine whether vessel targets
exist in the image, laying the foundation for
subsequent vessel classification tasks.
In the automated construction of training
datasets, where the image quality is relatively
high, zero-shot learning techniques that require
no additional training are employed.
Grounding DINO, a zero-shot object detection
model, excels in recognizing objects beyond
the training set by leveraging its deep
understanding of language and visual content.
This study uses Grounding DINO primarily for
automated annotation and classification of
training set images, particularly for filtering
and identifying complex objects in maritime
environments.

2.3 Image Quality Enhancement
Image clarity has a significant impact on
classification accuracy in the field of automatic
vessel recognition. The complexities of the
maritime environment, such as weather
conditions (e.g., fog, rain) and lighting issues
(e.g., shadows, backlighting), as well as
inherent image noise, motion blur, or low
resolution, often degrade image quality. These
factors adversely affect feature recognition and
classification. Therefore, applying image
quality enhancement techniques to mitigate
these challenges is essential before image
classification.
Image enhancement methods include
denoising, deblurring, and super-resolution
techniques. Over the past few decades, these
methods have evolved from traditional filter-
based approaches to deep learning-based
techniques. For example, autoencoders (AE) [7]
and Generative Adversarial Networks (GANs)
[8] have achieved significant success in image
deblurring and denoising.
This study utilizes Real-ESRGAN (Real
Enhanced Super-Resolution Generative
Adversarial Network) [9], which demonstrates
superior performance in super-resolution tasks
and is particularly suitable for processing
vessel images. Real-ESRGAN enhances the
resolution of images through deep learning,
making fine details more discernible. This
capability is crucial for processing vessel
images, as such images often contain structural
features and intricate details that are critical for
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accurate vessel recognition. By improving the
quality of these images, Real-ESRGAN
provides a clearer visual foundation for
subsequent object detection and classification.

2.4 Semantic Segmentation
Semantic segmentation is a key task in
computer vision that aims to classify each
pixel in an image into different object
categories. Unlike traditional object detection,
which identifies entire objects, semantic
segmentation focuses on accurately delineating
and distinguishing the boundaries of objects at
the pixel level. In this domain, the U-Net
model [10] has been widely applied to various
image segmentation tasks due to its
exceptional performance.
In recent years, the Segment Anything Model
(SAM) [11] has brought innovative
advancements to image segmentation tasks.
With its efficiency and versatility, SAM can
precisely segment objects in any image.
Trained on extensive datasets, SAM possesses
powerful recognition capabilities, enabling it
to accurately identify vessel boundaries in
diverse scenarios.
In this study, SAM is used in conjunction with
object detection models like Grounding DINO
and YOLO to accurately extract the hull
regions in vessel images. The combination of
SAM with Grounding DINO, referred to as the
Grounded-Segment-Anything framework,
leverages text prompts to achieve zero-shot
object detection and semantic segmentation.
This integrated approach effectively filters out
background noise, such as waves, ripples, and
weather interferences, enhancing the accuracy
and robustness of vessel classification tasks.
By combining SAM with object detection
models, this study not only improves
segmentation accuracy but also provides a
clearer and more reliable foundation for
subsequent vessel recognition and
classification tasks.

3. Dataset Description
The quality and diversity of a dataset directly
impact the performance of recognition
algorithms. Larger and more comprehensive
datasets tend to enhance the accuracy and
robustness of machine learning models.
However, there is no publicly available dataset
that categorizes vessel images based on
country, type, specific model, or hull number.

To address this gap, this study constructed a
vessel knowledge base and a corresponding
image dataset. By systematically combining
information from multiple sources and
employing advanced data collection techniques,
the resulting dataset provides a detailed and
reliable foundation for vessel recognition and
classification tasks.

3.1 Construction of the Training Dataset
3.1.1 Comprehensive maritime vessel
knowledge base
This study established a comprehensive
knowledge base containing information on 205
distinct maritime vessel classes. The database
encompasses a wide range of vessel categories,
including surface combatants, aircraft carriers,
amphibious ships, and electronic
reconnaissance vessels. Detailed records of
subclassifications, designations, hull numbers,
and service statuses were included to ensure
thorough data representation.
The knowledge base was developed through
extensive analysis of 205 active vessel models
and incorporated insights from historical and
potentially relevant vessel models worldwide.
Based on this analysis, 101 representative
vessel models were selected to construct the
training dataset. This process was guided by
the need to create a robust foundation for
future research and technical development.
3.1.2 Image collection and filtering
To support the knowledge base and subsequent
applications, a web scraping technique was
employed to gather vessel images from various
sources, including popular search engines like
Google and Bing. The goal was to acquire a
diverse set of high-quality images suitable for
tasks such as vessel recognition and
classification.
During the image collection process, a
stringent filtering mechanism was applied.
Only high-quality images that clearly and
completely depicted the side view of vessels
were retained. Images missing critical portions
of the hull, showing only top-down
perspectives, or unrelated to the research
objectives were excluded. This rigorous
selection process ensured that the dataset
contained precise and reliable data, enabling
effective training of automatic recognition and
classification algorithms.

3.2 Testing Dataset
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The testing dataset used in this study consists
of 2,482 real-world images of maritime vessels
captured in open water. Each image is
accompanied by metadata, including hull
numbers, geographic coordinates, and vessel
classification labels. These labels provide
critical information for image analysis and
vessel recognition tasks.
The images in the testing dataset
predominantly feature side views of vessels
captured under challenging maritime
conditions. Issues such as low image clarity,
lighting variations, and long-distance
perspectives present significant challenges for
recognition tasks. Additionally, some vessel
colors closely match the blue hues of the ocean
and sky, further complicating the visual
distinction between vessels and their
backgrounds.
This testing dataset provides a realistic and
challenging application scenario for evaluating
recognition models. It underscores the
importance of robust image processing and
recognition techniques capable of overcoming
low-quality visuals and high background
similarity. Successfully identifying vessels
under such conditions demonstrates the
practical applicability of the developed
recognition system and highlights the critical
role of a high-quality knowledge base and
dataset in advancing maritime monitoring and
intelligence capabilities.

4. Methodology
This section describes the methodology
employed to optimize product assortment,
encapsulated within a framework that is
referred to as the Discrete Choice Model
(DCM) [10]. This model comprises four
essential components: Substitution Group
Learning, Within Group Demand Model, Cross
Group Complementarity Model, and
Constrained Assortment Optimization.
Together, these modules form an integrated
approach to understanding customer behavior
and making optimal product selection
decisions. Each module is introduced below,
with a more detailed explanation provided in
the appendices.

4.1 System Architecture
This study proposes a comprehensive vessel
classification system designed to achieve high
accuracy and efficiency in vessel recognition

and classification. As shown in Figure 1, the
system consists of four key components, each
performing specific functions to ensure a
seamless workflow:

Figure 1. System Architecture
(1) Target detection module
This module employs the YOLO algorithm to
detect vessels in real-world images. When a
vessel is detected, the system extracts the
bounding box region containing the vessel. If
no target is identified, the module returns a
"No Target" result. This step forms the
foundation for subsequent processing, ensuring
that only regions containing potential targets
are analyzed further.
(2) Image quality enhancement module
The extracted regions from the target detection
module are processed using the Real-ESRGAN
technique to enhance image clarity. Improving
the quality of these images is crucial for
ensuring the effectiveness and reliability of the
subsequent background segmentation module.
(3) Background segmentation module
This module leverages semantic segmentation
models, such as the Segment Anything Model
(SAM), to accurately segment the hull of the
vessel from the image. The goal of this step is
to filter out non-target elements like waves and
the sky, thereby improving the precision and
effectiveness of the classification model.
(4) Vessel classification model
Finally, the system utilizes a multimodal
classification model with dual input streams
(image and hull number) to categorize the
vessel. Based on the input data, the model
returns the probabilities for each vessel
category. In practical applications, the system
outputs the top three categories with the
highest probabilities.
This architecture integrates advanced
techniques in object detection, image
enhancement, semantic segmentation, and
multimodal classification to create a robust and
reliable system for automatic vessel
recognition and classification.

4.2 Image Processing and Enhancement
4.2.1 Image augmentation during training
(1) Image segmentation
Given the high quality of training images and
the prominence of vessels within these images,
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this study employed the Grounded-Segment-
Anything framework for semantic
segmentation. This framework integrates the
zero-shot object detection model
GroundingDINO, eliminating the need for
complex data preprocessing or additional
training. By using "ship" as the prompt to
activate the GroundingDINO model, vessels
were effectively detected. Subsequently, the
Segment Anything Model (SAM) was applied
for precise and rapid segmentation, generating
accurate masks to filter out non-relevant
elements such as oceans, waves, and skies,
leaving only the hull of the vessel. This
process enhances vessel recognition accuracy
by reducing environmental noise, as illustrated
in Figure 2.

Figure 2. Prompt-Driven Image
Segmentation Process

(2) Blur simulation
Real-world maritime images often exhibit
varying degrees of clarity due to external
factors such as distance or weather conditions.
To simulate these real-world scenarios,
extracted vessel images underwent median blur
augmentation with varying kernel sizes (e.g.,
3×3, 7×7, up to 31×31 pixels). This method,
illustrated in Figure 3, enhances the model’s
robustness to real-world conditions,
particularly for long-distance or weather-
affected images.

Figure 3. Examples of Blur Effects with
Different Kernel Sizes

(3) Image padding
For neural network training, input images must
be standardized to a square format. Direct
resizing can distort vessel proportions,
negatively affecting classification accuracy. To
preserve the original proportions of the vessel,
this study employed image padding. Vessel-

only images were padded at the edges to create
square images while maintaining the vessel’s
visual integrity, as demonstrated in Figure 4.

Figure 4. Example of Image Padding
(4) Additional augmentation techniques
The training process incorporated additional
augmentations, including random affine
transformations such as slight rotations and
translations to simulate perspective variations.
Color adjustments, such as modifications to
brightness, contrast, saturation, and hue,
simulated diverse lighting conditions. Random
horizontal flipping was also applied to improve
robustness to directional changes. These
combined techniques significantly enhanced
the model’s performance in diverse maritime
environments.
4.2.2 Image processing during recognition
For real-world vessel recognition tasks, a
series of key image processing steps were
implemented, including contrast adjustment,
target detection, image enhancement,
segmentation, and padding. To address the
challenges of real-world test images, the
previously unified Grounded-Segment-
Anything framework was split into separate
modules for target detection and semantic
segmentation.
(1) Contrast adjustment
To address the common challenge of visual
similarity between vessels and their ocean or
sky backgrounds, contrast adjustment was
applied to enhance the color difference. This
step facilitates clearer differentiation of the
vessel from its background during subsequent
recognition stages.
(2) Target detection and bounding box
extraction
The YOLOv8 model, specifically enhanced
with Coordinate Attention (CA), was
employed for vessel detection. This model was
fine-tuned using a training dataset of 3,277
images, with 100 representative images
carefully annotated with bounding boxes to
provide high-quality supervision. These
annotations captured vessels in various real-
world scenarios, including challenging
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conditions like cluttered backgrounds and low
visibility.
During the detection process, YOLOv8-CA
identified vessel locations within images and
extracted bounding box regions containing the
hulls. This step ensured that only relevant
portions of the images were passed on for
subsequent processing. The integration of the
CA mechanism significantly improved the
model's ability to focus on vessel features
amidst distracting maritime elements such as
waves, skies, and reflections. An example
detection is illustrated in Figure 5, showing the
precise localization of vessels under real-world
conditions.

Figure 5. Object Detection Module
(Contrast Adjustment and Target Detection)
(3) Image enhancement
Once the bounding box regions were extracted,
the Real-ESRGAN super-resolution model was
applied to address the common issue of vessels
occupying small, low-resolution regions within
images. This model enhanced the clarity of
these regions by reconstructing finer details,
such as structural lines and edges, while
resizing the longest edge to 512 pixels. This
resizing ensured a standardized input size
suitable for subsequent segmentation and
classification tasks, maintaining the balance
between computational efficiency and image
quality.
The enhanced images were then processed
using the Segment Anything Model (SAM).
SAM utilized semantic segmentation to
distinguish vessels from background elements
with high precision. This step involved
generating hull masks that excluded irrelevant
features like waves, skies, and reflections,
isolating the vessel for detailed analysis. These
masks provided a clean and accurate
representation of the vessel, ensuring the
effectiveness of downstream classification
tasks.
(4) Image padding
As illustrated in Figure 6, padding was applied
to maintain the vessel’s original proportions,
ensuring the preservation of key visual features,
after segmentation. This padding strategy
significantly improved the overall accuracy
and robustness of the recognition process.

Figure 6. Semantic Segmentation Module
and Subsequent Operations

These techniques collectively form a robust
image processing pipeline, ensuring that the
recognition system can handle diverse real-
world challenges while maintaining high
accuracy and efficiency.

4.3 Multimodal Classification Model
The multimodal classification model is the
final stage in the vessel recognition framework,
designed to integrate image features with hull
number information to enhance classification
accuracy. The overall model structure is shown
in Figure 7. This model effectively addresses
challenges such as low-resolution images and
incomplete data by combining visual and
textual inputs through a carefully structured
pipeline. The main components of the model
include the following:
(1) Image feature extraction
The model uses a ResNeXt architecture
enhanced with the Convolutional Block
Attention Module (CBAM). This component
captures high-level features from vessel
images, with CBAM focusing on critical
regions, such as vessel structures, while
suppressing irrelevant background elements
like waves or skies.
(2) Hull number embedding
Hull numbers are processed through an
embedding layer that maps alphanumeric
sequences into a high-dimensional vector
space. This representation captures the
semantic and structural information of the hull
numbers, providing auxiliary input to
complement the image features.
(3) Feature fusion
The extracted image features and hull number
embeddings are concatenated into a unified
vector representation. This fusion step ensures
that the model can simultaneously leverage
both modalities, improving robustness even
when one modality (e.g., image data) is less
informative due to noise or low resolution.
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(4) Classification layer
The unified feature vector is passed through a
fully connected layer that outputs probabilities
for each vessel category. In practical scenarios,
the model also provides the top-3 predictions,
accommodating cases where multiple
classifications are relevant.

Figure 7. Multi-Modal Classification Model
This design enables the multimodal
classification model to achieve superior
performance by leveraging the complementary
strengths of image features and hull number
information. Experimental results in Section 5
validate the effectiveness of this approach,
showing significant accuracy improvements
when incorporating CBAM and hull number
embeddings, particularly in challenging
maritime environments.

5. Experiments and Results
This section presents the experimental setup,
training details, and results of the proposed
framework for vessel detection and
classification. The evaluation focuses on the
YOLOv8 detection models and multimodal
classification models, with detailed analysis of
the impact of attention mechanisms and super-
resolution techniques.

5.1 Training Details
The training process utilized the datasets
described in Section 4.1, comprising 3,277
high-resolution images for training and 655
low-resolution real-world images for testing.
Images were preprocessed using Real-
ESRGAN for super-resolution, YOLO-CA for

object detection, and SAM for background
segmentation. Hull numbers were either
manually annotated or randomly selected
based on the vessel knowledge base.
(1) Data augmentation
To enhance the generalization capability of the
models, various augmentation techniques were
applied, including random horizontal flipping,
cropping, rotation, brightness adjustment,
saturation adjustment, and Gaussian noise. All
images were resized to a fixed 512×512
resolution for consistency in training.
(2) Optimization and loss function
The Adam optimizer was employed for both
the detection and classification models, with a
learning rate scheduler ensuring stable
convergence. Cross-entropy loss was used for
classification tasks, incorporating label
smoothing to prevent overfitting.
(3) Pretraining and transfer learning
The YOLOv8 models were initialized with
pre-trained weights from the COCO dataset,
fine-tuned on the vessel detection dataset to
adapt to the specific requirements of maritime
scenarios.

5.2 Object Detection Results
The performance of the YOLOv8 models was
evaluated using precision, recall, and mean
average precision (mAP) metrics. Table 1
summarizes the results of the YOLOv8L and
YOLOv8X models, with and without the
inclusion of the Coordinate Attention (CA)
mechanism.
Table 1. YOLOv8 Performance with and

without Coordinate Attention

Model Precision
(%)

Recall
(%)

mAP@0.5
(%)

YOLOv8L 90.5 88.7 90.1
YOLOv8L-CA 91.6 90.4 91.1
YOLOv8X 94.2 93.3 95.4

YOLOv8X-CA 95.9 93.4 98.3
The YOLOv8X-CA model achieved the
highest detection performance, demonstrating
the effectiveness of the CA mechanism in
improving vessel localization and feature
extraction. The incorporation of CA resulted in
notable improvements in mAP, particularly
under challenging conditions such as complex
backgrounds.

5.3 Classification Results
The classification performance of three
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ResNeXt-based models was evaluated:
(1) ResNeXt: A baseline model for image
classification.
(2) ResNeXt-CBAM: Incorporates the CBAM
attention mechanism to focus on relevant
spatial and channel information.
(3) ResNeXt-CBAM-Hull: Enhances
ResNeXt-CBAM with an additional hull
number input, utilizing multimodal data for
classification.
Table 2 compares the accuracy of these models
on the test set.
Table 2. Classification Model Performance

Model Test Accuracy (%)
ResNeXt 58.2

ResNeXt-CBAM 61.6
ResNeXt-CBAM-Hull 91.6
The results indicate that the CBAM module
improves feature extraction, boosting accuracy
by 3.4% compared to the ResNeXt baseline.
The integration of hull number embeddings in
the ResNeXt-CBAM-Hull model further
enhances accuracy, achieving a significant
improvement of 30% over ResNeXt. This
underscores the effectiveness of multimodal
data in distinguishing vessels with similar
visual features but different textual identifiers.

5.4 Impact of Super-Resolution
To investigate the impact of super-resolution,
the Real-ESRGAN model was applied to the
test set images prior to classification. The
results, presented in Table 3, show consistent
improvements across all models, with the
ResNeXt-CBAM-Hull model benefiting the
most.
Table 3. Performance on Super-Resolution

Test Set

Model
W/O Super-
Resolution

Accuracy (%)

With Super-
Resolution

Accuracy (%)
YOLOv8-

CA 17.3 21.4

ResNeXt 58.2 62.1
ResNeXt-
CBAM 61.6 65.7

ResNeXt-
CBAM-Hull 91.6 97.4

The ResNeXt-CBAM-Hull model achieved an
accuracy of 97.4% on the super-resolution test
set, demonstrating that enhancing image
quality can significantly improve classification
performance, particularly in low-resolution

scenarios. This result highlights the value of
integrating advanced image processing
techniques into the vessel recognition pipeline.

6. Conclusion
In this study, the integration of visual and
textual information, particularly through the
use of hull numbers, has demonstrated
significant potential for multimodal
classification models in vessel recognition
tasks. Despite the challenges posed by image
quality and incomplete information, the
proposed model has achieved notable
advancements in recognition accuracy.
Compared to existing research, this study
offers a new theoretical perspective and
practical evidence of its application value.
Future research will focus on continuously
updating and expanding the maritime vessel
knowledge base while increasing the diversity
of vessel types in the training dataset to
enhance the model's generalization capability.
Optimizing the model architecture, particularly
by incorporating advanced attention
mechanisms, will further improve its ability to
capture critical features. Additionally,
advancements in image enhancement
techniques will aim to address low-resolution
and high-noise maritime images more
effectively.
Exploration of the model's broader
applications in maritime surveillance tasks will
also be a key area of focus, especially in
enhancing real-time data processing
capabilities. These improvements are expected
to drive significant technological innovation
and performance enhancement in the field of
maritime monitoring, providing more effective
solutions to the complexities and challenges of
oceanic environments.
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