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Abstract: To accurately extract the
characteristics of transmission line short-
circuit fault, a fault detection method based
on comprehensive ensemble empirical mode
decomposition (CEEMD), arithmetic
optimization algorithm (AOA) and support
vector machine (SVM) is proposed. Taking
the three-phase voltage of the line after fault
as the feature vector, CEEMD method is used
to decompose it, and a series of modal
components are obtained. Calculate the
multi-scale sample entropy (MSE) of each
mode and the MSE of the obtained
component is composed of the fault feature
set. Because the penalty parameters and
kernel function of SVM have a direct impact
on the classification accuracy in the
classification process, the parameters are
determined by arithmetic optimization
algorithm (AOA), and the obtained fault
feature set is used for fault detection using
AOA-SVM model. The simulation results
indicate that the fault detection rate of
CEEMD-AOA-SVM is 98.28%, which is
significantly higher than that of EMD-SVM
and CEEMD-SVM.
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1. Introduction
The transmission line is the main component of
the power system and undertakes the task of
energy transmission. Due to long-term exposure
to the natural environment, the failure rate of
transmission lines is higher than that of indoor
power facilities[1-5]. Therefore, once a line fault
occurs, it is necessary to determine the fault type
and remove the fault in time[6-8].
At present, the fault detection methods of
transmission lines are mainly divided into two

steps: the first step is fault feature extraction, and
the second step is fault classification[9]. Firstly,
the fault signal is properly converted and
processed to extract the eigenvalue of the fault
signal. Then, select the appropriate classification
method to learn the eigenvalues and realize fault
detection. However, due to the strong
irregularity of transmission line signals, it is
impossible to directly use them for fault
detection.
EMD can decompose different load signals into
multiple intrinsic mode function components
(IMF), However, EMD is prone to IMF mode
aliasing, resulting in feature extraction failure,
which is not conducive to accurate fault
identification[10-12]. Aiming at the problem of
EMD, ensemble EMD (EEMD) is proposed,
which can effectively alleviate the problem of
mode aliasing, but EEMD has the problems of
reconstruction error and slow calculation
efficiency[13]. In view of the shortcomings of
EMD and EEMD methods, scholars have
applied CEEMD method to fault detection,
which can effectively reduce the reconstruction
error and improve the convergence speed[14-17].
On the basis of frequency domain analysis, the
energy entropy is introduced into the
transmission line fault analysis, which can
extract the fault characteristic information of the
line more effectively. SVM has strong
classification ability and is widely used in the
process of fault detection. However, the
accuracy of SVM is greatly affected by
parameters, and the selection of parameters is
particularly important for SVM[18-20]. A fault
detection model based on CEEMD-AOA-SVM
is proposed. The parameters of SVM are
determined by AOA, and the AOA-SVM model
is used for fault detection.

2. Fault Feature Extraction
CEEMD is an improvement of EMD. Firstly,
based on the EMD decomposition algorithm,
CEEMD adds white noise sequences with
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opposite numbers and in pairs to the original
data, which overcomes the problems of EMD
mode aliasing and poor completeness of EEMD
decomposition, and reduces the aggregate
average from hundreds to tens or even several
orders of magnitude, greatly improving the
computational efficiency[21-23].
1) Add noise of a specific amplitude to )(tx .

)()()( tntxtx jj  (1)

Where, )(tx j is the signal after adding noise,

and )(tn j is the added positive noise.

2) )(tx j is decomposed by EMD.
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3) Add noise of opposite amplitude in step 1 and
perform EMD decomposition.
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4) Repeat steps 1-3, add n groups of white noise
with opposite symbols, and decompose them to
obtain jnc , and jnc , modal components IMF.
5) The final result of CEEMD decomposition is
the set average of multiple groups of IMF, and
the decomposition result is obtained:
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Where, jD is the j -th component after
decomposition.

3. Multiscale Sample Entropy
For ),,3,2,1( )( Niix  , the process of MSE
is:
1) The implanting dimension is used to construct
the m -dimensional vector of time series.
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Where, 1,,2,1  mNi  .
2) The maximum distance of corresponding
elements between )(iX and )( jX as:
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3) Determine the similarity tolerance r ,
Calculate the value of )(rBm .
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4) When the dimension is 1m , repeat 1, 2 and
3 to get )(1 rBm .
5) Define the SE as:
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6) When the time series is finite, the SE is:
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According to the principle of sample entropy,
the calculation steps of multi-scale sample
entropy are as follows:
1) The signal )(ix is coarsened to obtain the

coarsening sequence s
jy .
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Where, 
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2) The MSE is obtained by normalizing the SE
value after coarse graining

4. Support Vector Machine
As a binary classification method, the main
principle of SVM is to give a set of training data
with known labels, classification or continuity,
and support vector machine (SVM) analyzes
these data to derive a supervised learning model.
The basic idea of SVM is to map the data
samples to the high-dimensional space, and find
the hyperplane that can classify the data in the
high-dimensional space.
Let the two types of samples be linearly
separable, and their sets be expressed as:

 nixxA ji ,,2,1),(  (11)

In equation (11), n
i Rx  ,  1,1iy , the two

types of samples can be effectively separated by
0 dx .

The hyperplane equation is:









1,1

1,1
)(

i

i

ydx
ydx

xf



(12)

In equation (12),  is the normal vector of the
hyperplane and d is the constant term. When it
is linearly separable, the constraints of the
optimal hyperplane are as follows:
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For the unclassifiable problem, penalty function
C and relaxation variable  are introduced.
The model of SVM is:
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Where, 0i and C are constants greater than
zero. The value of C is positively correlated
with the penalty degree of the function. The
larger the penalty parameter is, the smaller the
value of the relaxation variable is required,
which mainly plays a trade-off role.
Using Lagrange multiplier method, the above
problem can be changed into:





















11

1

2

)](1[

2/1),,,,(

i
ii

i
i

T
iii

i
i

dxya

CadL
(15)

By solving the equation (15), the decision
function can be obtained as:

])(sgn[)(
1





   dxxyaxf ii

n

i
i (16)

In order to solve the nonlinear problem, the
kernel function is introduced. In this paper, the
Gaussian radial basis kernel function is selected.
The decision function after introducing the
kernel function is as follows:
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5. AOA
AOA is a new method proposed in 2021 [24-26].
Arithmetic operators are usually used to study
the traditional calculation methods of numbers.
A simple operator is used as a mathematical
optimization to determine the best elements that
meet the specific criteria from a group of
candidate schemes. The AOA enhances the
optimization ability by using multiplication and
division operations in arithmetic, and improves
the search accuracy by adding and subtracting
operations.
First stage, mathematical optimizer acceleration
function (MOA).
The arithmetic optimization algorithm judges the
next search stage through MOA. First, select the
number 1r . If 1r is bigger than mathematical
optimizer acceleration, the global search phase
will be executed, or else, the local development
phase will be entered. The mathematical model

of MOA is shown in equation (18).
]/min)[()( maxiMaxiMiniMOA  (18)

Second stage, exploration stage.
In the global exploration phase, random
exploration will be carried out in multiple areas.
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Where, )1(, ix ji is the solution of the 1i
iteration, )( jxbest is the best position currently
obtained, and  is the minimum value to avoid
zero denominator. jUB and jLB are the upper

and lower bounds of the search space, ]1,0[2 r ，

When 5.02＜r , execute the division strategy,
otherwise execute the multiplication strategy.
The math optimizer probability calculation
formula is:

aa iiiMOP /1
max

/1 /1)(  (20)
Third stage, development stage.
In AOA, if MOA is less than 1r , the arithmetic
optimization algorithm will randomly select
addition or subtraction to execute the
development phase. The location update model
is:
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In equation (21), ]1,0[3 r , When 5.03＜r ,
execute subtraction strategy, otherwise execute
addition strategy.

6. Simulation Test

6.1 Analysis of Experimental Data
The 110kV power supply system model is built
through Simulink to simulate four types of faults:
single-phase grounding, two-phase short circuit,
two-phase grounding and three-phase short
circuit. The total simulation time of the model is
0.3s, and the fault starts at 0.1s. When a fault
occurs, the voltage will change accordingly. By
collecting the three-phase voltage as the fault
feature, and a total of 580 fault data are collected,
including 145 fault samples for 4 different short-
circuit faults.
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6.2 Experimental Analysis and Verification
The collected signal is disassembled by CEEMD.
Limited to space, single-phase grounding is
selected for analysis. In the fault data, a group of
single-phase grounding fault data is randomly
selected. The IMF component diagram after
signal decomposition is shown in Figure 1-3.
After 580 groups of fault signals are
decomposed by CEEMD, the multi-scale sample
entropy of each group of data is calculated
respectively, and finally the fault feature set is
formed.

Figure 1. Decomposition Diagram of A-Phase
VMD During B-Phase Short Circuit

Figure 2. Decomposition Diagram of B-Phase
VMD During B-Phase Short Circuit

Figure 3. Decomposition Diagram of C-Phase
VMD During B-Phase Short Circuit

Randomly allocate training and testing sets in a
4:1 ratio among 580 sets of fault data. The
CEEMD-AOA-SVM, EMD-SVM and CEEMD-
SVM models are used for fault detection. During
the experiment, the labels corresponding to
different fault types are: 1 for single-phase
grounding, 2 for two-phase grounding, 3 for

two-phase short circuit, and 4 for three-phase
short circuit. The final fault diagnosis results are
shown in the following Figures.

Figure 4. CEEMD-AOA-SVMModel

Figure 5. EMD-SVMModel

Figure 6. CEEMD-SVMModel
The simulation test results show that in the
detection results of CEEMD-AOA-SVM method,
one sample with single-phase grounding fault is
wrongly divided into two-phase grounding, and
one sample with two-phase grounding fault is
wrongly divided into three-phase short circuit, in
which the detection accuracy of single-phase
grounding fault is 96.55%, the detection
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accuracy of two-phase grounding fault is 96.55%,
the detection accuracy of the other two types of
fault is 100%, and the detection accuracy of
comprehensive fault is 98.28%. Similarly, in the
detection results using EMD-SVM method, the
detection accuracy of single-phase grounding is
96.55%, two-phase grounding is 81.25%, and
two-phase short circuit is 96.55%, three-phase
short circuit is 81.25%, and the comprehensive
fault detection accuracy is 93.10. Similarly, in
the detection results using CEEMD-SVM
method, the accuracy of single-phase grounding
is 100%, and two-phase grounding is 87.50%,
and two-phase short-circuit fault detection is
87.50%, and three-phase short circuit is 87.50%,
and comprehensive fault detection accuracy is
94.83%.
The above results verify the powerful effect and
high accuracy of CEEMD-AOA-SVM method in
power line fault prediction. It can be widely used
in the real environment, so as to shorten the time
required for power line fault treatment.

7. Conclusion
A transmission line fault detection method based
on CEEMD-AOA-SVM is proposed, and the
main conclusions drawn are as follows:
1. CEEMD combined with MSE can effectively
extract fault features, and obtain a better fault
feature set.
2. After using AOA to determine SVM
parameters, the classification ability of SVM can
be effectively improved.
3. The fault detection method based on CEEMD-
AOA-SVM has higher accuracy than EMD-
SVM and CEEMD-SVM.
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