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Abstract: With the widespread application
of deep neural networks (DNNs) in critical
fields such as autonomous driving and
medical diagnosis, their adversarial
robustness has become a research hotspot.
In black-box attack scenarios, the
transferability of targeted adversarial
examples is limited by differences in
decision boundaries between models, and
existing methods struggle to achieve
efficient attacks. To address this, we
propose a novel targeted adversarial attack
method, SCF-FGSM, which combines Self-
Universality (SU), Clean Feature Mixup
(CFM), and Feature Space Fine-Tuning.
This method enhances the local feature
consistency of adversarial examples through
SU, utilizes CFM to generate diverse
perturbations to overcome inter-model
differences, and incorporates feature space
fine-tuning to achieve precise alignment of
target features across models. Experiments
on the ImageNet dataset demonstrate that
SCF-FGSM significantly outperforms
existing methods in transferability and
attack success rate, especially under Logit
loss. Ablation studies and visualization
analyses further validate the contributions
of each module to transferability, revealing
a synergistic mechanism between feature
space alignment and perturbation diversity.
This provides theoretical support and a
technical pathway for improving the
transferability of adversarial attacks.
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1. Introduction
Deep neural networks (DNNs) have been
widely adopted in various fields, raising
concerns about their robustness and security.

Adversarial attacks pose a significant threat by
introducing subtle perturbations that cause
misclassification [1]. The transferability of
adversarial examples enables black-box attacks,
increasing security risks. Studying
transferability not only improves defense
mechanisms but also provides insights into
DNN behavior.
Adversarial attacks can be classified as
untargeted or targeted. Untargeted attacks push
predictions toward any incorrect label, while
targeted attacks force misclassification into a
specific class. However, targeted attacks suffer
from lower transferability due to inconsistent
decision boundaries across models [2], making
them particularly challenging in black-box
scenarios.
To enhance transferability, researchers have
explored feature alignment-based methods.
Inkawhich et al. [3] proposed aligning
adversarial examples with target class feature
distributions, but this requires auxiliary models
for each class, increasing computational cost
and reliance on shared data distributions.
Another study [4] optimized transferability by
perturbing intermediate-layer features, yet it
assumes that source and target models share
the same data distribution, which is often
impractical. Additionally, it applies fixed
hierarchical perturbations, lacking adaptive
feature optimization.
Wei et al. [18] introduced Self-Universality
(SU) to remove the need for auxiliary models,
improving targeted attack success rates.
However, SU suffers from overfitting to source
model features and limited feature space
utilization, restricting its transferability to
black-box models.
To address these limitations, this study
proposes SCF-FGSM, integrating Self-
Universality (SU), Competition Feature Mixup
(CFM) [19], and Feature Space Fine-
Tuning[20]. CFM enhances perturbation
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diversity through feature competition, while
FSFT optimizes feature alignment, improving
transferability across models.
Experiments on ImageNet demonstrate that
SCF-FGSM significantly improves
transferability and targeted attack success rates,
outperforming SU and validating its
effectiveness and robustness.

2. Related Works

2.1 Transferable Untargeted Attacks
Untargeted attacks aim to mislead DNN-based
classifiers into producing incorrect outputs.
The iterative fast gradient sign method (I-
FGSM) [5] is a baseline method for many
untargeted attacks and can be expressed by the
following formula:

(1)
where is the original image; is the
adversarial example; is the step size used to
update the sample with the gradient sign in
each iteration; is the original label; is
the sign function; is the clipping
function that ensures the generated adversarial
example satisfies the norm constraint; and

is the gradient of the loss function with
respect to the input .
I-FGSM’s iterative updates improve attack
effectiveness in white-box models but result in
poor transferability. To address this,
researchers have explored data augmentation
techniques to mitigate overfitting and enhance
transferability.
The transferability of adversarial examples has
been explored in multiple ways, primarily
through optimization-based and generation-
based methods[26].The diverse input method
(DI) [6] improves adversarial perturbations by
applying random resizing and zero-padding.
Lin et al. [7] proposed the scale-invariant
method (SIM), which scales input values by a
factor of 2 per iteration to introduce scale
variations. The admix method [8] extends SIM
by integrating images from other labels into
the optimization process.To further increase
sample diversity, Dong et al. [9] introduced the
translation-invariant method (TIM), which
optimizes perturbations by incorporating
multiple pixel-shifted input versions.Beyond
data augmentation, gradient-based
optimization strategies also improve

transferability. The momentum iterative
method (MI) [10] accumulates gradients to
escape local minima, while variance tuning
(VT) [11] refines gradient updates by adjusting
variance, stabilizing optimization, and
increasing attack success rates. Previous
studies [9] demonstrated that combining DI [6],
TI [9], and MI [10] referred to as DTMI—
achieves superior transferability.
In contrast to input-level augmentation and
gradient optimization, feature space operations
directly manipulate intermediate model layers
to enhance transferability. Wang et al. [12]
proposed the Feature Importance-Aware
Attack (FIA), which evaluates feature
contributions and prioritizes perturbations on
critical features while avoiding excessive
reliance on model-specific representations.
This significantly improves cross-model
transferability.
Zhou et al. [13] further optimized adversarial
transferability by maximizing the distance
between natural and adversarial images in the
intermediate feature space, mitigating gradient
vanishing and penalizing high-frequency
perturbations. Zhang et al. [14] refined this
approach by incorporating integrated gradients
[15] to measure feature importance more
effectively.

2.2 Transferable Targeted Attacks
Transferable targeted attacks aim to mislead
models into predicting a specified target class.
Compared to untargeted attacks, they require
more precise perturbation optimization,
making transferability a greater challenge.
The Feature Distribution Attack (FDA) [3]
enhances transferability by modeling intra-
class and intra-layer feature distributions,
modifying intermediate-layer features instead
of solely relying on classification layers. This
approach improves black-box transferability
more effectively than decision boundary-based
methods. FDA further incorporates feature
disruption and source minimization terms, and
subsequent work [4] refined its performance
by integrating cross-entropy loss and multi-
layer optimization.
The Targeted Transferable Perturbations (TTP)
method [16] improves transferability by
maximizing feature space consistency between
source and target models. Instead of relying on
explicit decision boundary information, TTP
adopts a generator-discriminator framework,
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using global distribution matching and local
neighborhood similarity optimization to
enhance black-box attack success. However,
TTP requires additional training on auxiliary
networks, increasing computational cost.
Another approach to improving transferability
is loss function optimization. Zhao et al. [17]
demonstrated that directly optimizing the Logit
output of the target class mitigates the gradient
vanishing problem in cross-entropy loss,
leading to stronger attack performance. Unlike

resource-intensive methods, Logit loss-based
attacks require no additional data or model
training, achieving higher targeted
transferability through simple iterative
optimization.

(2)
where represents the white-box source
model, denotes the Logit loss, is the
target class, and represents the
logit value of the model for the target class .

Figure 1. Overview of the SCF-FGSMMethod

3. Methodology

3.1 Self-Universality (SU) Attack
Wei et al. [18] demonstrated that DTMI
achieves higher targeted transferability than I-
FGSM by generating more generalizable
perturbations, which enhance attack
effectiveness across models. Based on this,
Self-Universality (SU) was proposed to further
improve transferability in targeted attacks.
Unlike traditional methods that optimize
perturbations across different images, SU
enhances self-universality by making
perturbations agnostic to different local regions
within a single image. This allows
perturbations to generalize without additional
data. SU achieves this by randomly cropping
local regions of an image and incorporating
them into the iterative attack process. The

cropped regions are resized to match the
original image dimensions, ensuring
consistency.
To strengthen local robustness, SU introduces
a feature similarity loss, which maximizes
cosine similarity between intermediate features
of the global and local inputs. The similarity
loss can be formulated as follows:

(3)

where represents the operation of
randomly cropping and adjusting the image
shape; denotes the extraction of features
from the -th layer of the white-box source
model  ; and calculates the cosine
similarity score between the global and local
input features of the adversarial example.
Combining SU with DTMI improves self-
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universality, leading to better transferability in
targeted attacks. However, SU primarily
optimizes local feature consistency, limiting its
impact on global feature diversity. As a result,
SU-generated adversarial examples may lack
sufficient global coverage, reducing their
adaptability in black-box models.

3.2 Clean Feature Mixup (CFM)
CFM [19] enhances the transferability of
targeted adversarial examples by introducing
feature competition during the attack process.
Unlike SU, which optimizes local features,
CFM optimizes the global feature distribution
by randomly mixing clean and adversarial
features in the feature space.
CFM applies linear interpolation [21] to blend
outputs from selected convolutional and fully
connected layers with stored clean features. To
prevent excessive interference, it is only
attached to deeper layers, where feature maps
are smaller, minimizing disruptions from input
transformations. Non-activated features are
stored before mixing to preserve critical
information.To maintain stability across
network depths, CFM randomly applies feature
mixup with probability . Within a batch, clean
features are shuffled at the image level,
enabling adversarial perturbations to mix with
both target-class and non-target-class features,
enhancing competitive interference.
Additionally, the mixing ratio is randomly
sampled per channel, increasing diversity
across different feature dimensions.
This method efficiently balances feature
competition and diversity, improving targeted
attack transferability while minimizing
distortions to the original feature
representation.Mathematically, during the
inference phase, the CFM module performs
linear interpolation between the input features
and the stored clean features. For a batch
containing images, the CFM module
stores clean feature maps, denoted as

 , where each feature map has a
dimension of .The formula for random
feature mixing is given as follows:

(4)
where represents element-wise
multiplication; denotes the randomly
shuffled indices; and is the
randomly sampled channel-wise mixing ratio,

satisfying .
This study integrates the CFM module into the
base perturbations provided by SU, leveraging
its random activation and feature shuffling
strategies to enhance the diversity of
perturbations. Furthermore, by adjusting the
upper bound parameter for the mixing
ratio and the activation probability , the
method further optimizes the alignment of
adversarial examples with target class features,
improving the transferability of targeted
attacks.

3.3 Feature Space Fine-Tuning(FT)
In untargeted attacks, adversarial examples are
pushed away from the clean image in the
feature space. However, in targeted attacks, no
single feature space point perfectly represents
the target class, making direct feature
alignment challenging. Feature Space Fine-
Tuning addresses this by adjusting feature-
level representations of adversarial examples
to improve black-box transferability.
Feature space fine-tuning starts with the
adversarial example generated by the
baseline attack and optimizes its feature
distribution through the following steps: First,
the accumulated gradient is computed by
extracting features from an intermediate layer
of the source model and calculating the
accumulated gradient with respect to the target
class :

(5)

where represents the feature output of the
-th layer, and is the classification loss

function. At the same time, the accumulated
gradient with respect to the original class is
computed from the clean image :

(6)

Afterward, the gradients of the target class and
the original class are weighted and combined
to guide the subsequent optimization:

(7)
where is a weighting factor that balances the
influence of the target class and the original
class.Finally, feature space fine-tuning is
applied to the adversarial example using
the following optimization objective:
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(8)

his objective encourages features related to the
target class  while suppressing features
associated with the original class . The
implementation of feature space fine-tuning is
illustrated in Figure 1.

3.4 SCF-FGSM
The proposed SCF-FGSM method first
generates base perturbations using the SU
method, ensuring self-universality within the
local feature space. Based on the perturbations
generated by the SU method, the CFM module
is introduced to further enhance the global
feature diversity of adversarial perturbations
through random activation and feature mixing
strategies. Finally, feature space fine-tuning is
applied to optimize the perturbations, further
improving the alignment of adversarial
examples with the target class features while
suppressing original class features. The
detailed process is shown Figure 1.

4. Experiment

4.1 Experimental Settings
Dataset: Our experiments use the dataset first
introduced in the NIPS 2017 Adversarial
Attacks and Defenses Competition*.(dataset:
https://github.com/cleverhans-
lab/cleverhans/tree/master/cleverhans_v3.1.0/e
xamples/nips17_adversarial_competition/datas
et). It consists of 1000 images of size 299×299,
along with their corresponding ground truth
labels and target classes.
Models: We evaluate the transferability of
SCF adversarial examples using four
pretrained models: Inceptionv 3(Inc-v3)[22],
Resnet 50[25][25],DenseNet 121[23] and
VGG 16[24]
Hyperparameter settings:The maximum
perturbation of adversarial examples is
set .The step size is set to .The
maximum number of iterations is set
to .In the CFM parameter settings, the
channel mixing ratio is randomly
sampled, and the mixing probability is set to
0.1.The number of iterations for feature space
fine-tuning is set to  .For the fine-
tuning layer , we select:Mixed_6b for Inc-
v3,The last layer of the third block for ResNet-

50 and DenseNet-121,Conv4_3 for VGG-16.
Table 1. The Table Presents the Impact of
SCF-FGSM on the Attack Success Rate
(TASR) Compared to the Baseline SU
Attack under Different Source Models.

Attack White-box Model: Res50
Dense121 VGG16 Inc-v3

CE-SU 52.2 41.8 8.5
CE-SCF 44.4 41.5 7.9
Logit-SU 76.6 67.8 11.9
Logit-SCF 74.0 68.8 16.9

Attack White-box Model: Dense121
Res50 VGG16 Inc-v3

CE-SU 34.8 29 9.8
CE-SCF 41.7 38.3 11.5
Logit-SU 51.6 47.6 12.3
Logit-SCF 63.5 58.6 17.2

Attack White-box Model: VGG16
Res50 Dense121 Inc-v3

CE-SU 2.2 2.1 0.1
CE-SCF 3.3 3.1 0.2
Logit-SU 14.5 16.8 1.3
Logit-SCF 16.7 20.4 0.8

Attack White-box Model: Inc-v3
Res50 Dense121 VGG16

CE-SU 2.7 4.7 1.9
CE-SCF 4.4 6.6 5.1
Logit-SU 3.4 6.1 3.2
Logit-SCF 6.1 11.7 8.8

4.2 Single-Model Transfer Attack
To evaluate the effectiveness of the SCF
method, we conducted single-model transfer
attack experiments, where adversarial
examples generated from a white-box model
were tested on three black-box models. The
results, shown in Table 1, are evaluated using
the targeted attack success rate (TASR).
SCF achieves a higher TASR under Logit loss,
outperforming Logit-SU across multiple
models. For instance, when DenseNet-121 is
the white-box model, SCF improves the attack
success rate on ResNet-50 and VGG-16,
indicating that feature mixing and optimization
enhance perturbation transferability beyond
merely minimizing classification loss. Among
different white-box models, ResNet-50 and
DenseNet-121 demonstrate better
transferability compared to VGG-16 and
Inception-v3, likely due to their richer feature
representations. In contrast, shallower models
rely more on surface-level features, limiting
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their ability to generate effective perturbations
for black-box attacks. While SU outperforms
SCF in certain CE loss scenarios, Logit-SCF
consistently achieves higher success rates,
especially in cases where feature alignment
with the target class is crucial. This suggests
that Logit-SCF better optimizes perturbations
for targeted attacks, making it more effective
in cross-model transferability.
Despite lower overall success rates when
VGG-16 and Inception-v3 are used as white-
box models, SCF still shows improvements
over SU, leveraging feature space fine-tuning
to capture target class features more effectively.
This demonstrates SCF’s adaptability in
constrained scenarios.
Experimental results confirm that SCF
significantly outperforms SU in single-model
transfer attacks, particularly under Logit loss.
SCF is especially effective when applied to
deeper models like DenseNet-121 and ResNet-
50, highlighting its ability to generate globally
robust adversarial perturbations. Furthermore,
its adaptability across different architectures
reinforces its potential in enhancing targeted
adversarial attacks.

4.3 Ablation Studies
Effectiveness of the CFM Module: We
evaluated the effectiveness of the CFM module
through ablation experiments, with results
presented in Table 2. The findings indicate that
CFM improves attack success rates,
particularly under Logit loss, by enhancing
feature mixing and increasing perturbation
diversity.
For example, when DenseNet-121 is the white-
box model, Logit-SCF with CFM (Logit-
SCFw) achieves higher transferability than
Logit-SCF without CFM (Logit-SCFwo),
increasing the success rate on ResNet-50 and
VGG-16. Similarly, using VGG-16 as the
white-box model, the attack success rate on
DenseNet-121 improves, confirming CFM’s
role in boosting transferability for smaller
models.
However, CFM does not always enhance
performance. For instance, with ResNet-50 as
the white-box model, attack success rates on
DenseNet-121 and Inception-v3 slightly
decrease. This may result from CFM
intensifying global perturbations, leading to
the loss of local feature information, reducing
adaptability for certain target models. Under

CE loss, the impact of CFM is less pronounced,
with minor performance drops in some cases.
These results suggest that CFM's effectiveness
depends on the attack environment, and its
feature mixing mechanism varies across
different target models. Future work could
optimize CFM hyperparameters to refine
feature mixing strategies, ensuring it
maximizes transferability while minimizing
negative impact on specific models.
Table 2. The Table Presents the Effect of
Incorporating the CFMModule on the
Attack Success Rate (TASR) across

Different Source Models

Attack White-box Model: Dense121
Res50 VGG16 Inc-v3

CE-SCFwo 41.6 37.5 9.9
CE-SCFw 41.7 38.3 11.5
Logit-SCFwo 62.1 57.6 17.1
Logit-SCFw 63.5 58.6 17.2

Attack White-box Model: VGG16
Res50 Dense121 Inc-v3

CE-SCFwo 2.3 2.4 0
CE-SCFw 3.3 3.1 0.2
Logit-SCFwo 18.7 19.4 1.3
Logit-SCFw 16.7 20.4 0.8

Attack White-box Model: Inc-v3
Res50 Dense121 VGG16

CE-SCFwo 3.9 6.2 5.1
CE-SCFw 4.4 6.6 5.1
Logit-SCFwo 6.5 11.2 7.9
Logit-SCFw 6.1 11.7 8.8
w/ indicates that the CFM module is included,
while w/o denotes that the CFM module is not
applied.
Number of Iterations for Feature Space
Fine-Tuning: We conducted an ablation study
to assess the impact of feature space fine-
tuning iterations on TASR, with results shown
in Figure 2. Figure 2(a) corresponds to CE loss,
and Figure 2(b) to Logit loss.
Regardless of the loss function, TASR
converges around 10 iterations, with limited
improvements beyond this point. Increasing
iterations to 15 or 20 yields minimal gains and
may even degrade performance in certain

Attack White-box Model: Res50
Dense121 VGG16 Inc-v3

CE-SCFwo 47.4 40.2 7.7
CE-SCFw 44.4 41.5 7.9
Logit-SCFwo 73.2 68.1 17.8
Logit-SCFw 74.0 68.8 16.9
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models. For example, under Logit loss, the
TASR for ResNet-50 and VGG-16 stabilizes at
50% and 20%, respectively, after 10 iterations.
For complex models like Inception-v3, an
optimal iteration count enhances adversarial
feature alignment. Under Logit loss, the TASR
of Inception-v3 improves from 15% initially to
nearly 20% at 10 iterations, after which
performance plateaus.
In summary, 10 iterations provide an effective
balance between optimization and
computational efficiency, enhancing
transferability while avoiding performance
degradation or unnecessary computational
costs. This setting ensures efficient fine-tuning
across various models and loss functions.

Figure 2. Number of Iterations for Feature
Space Fine-Tuning, Figure 2(a) corresponds
to CE loss, and Figure 2(b) corresponds to

Logit loss.

5. Conclusion
This study addresses the challenge of
improving the transferability of targeted
adversarial examples by proposing an efficient
attack method, SCF-FGSM, which integrates
the SU method, CFM module, and feature
space fine-tuning. Experimental results
demonstrate that the proposed method
significantly enhances transferability across
multiple white-box and black-box models,
particularly achieving superior performance in

targeted attack success rate under Logit
loss.Ablation studies validate the effectiveness
of both the CFM module and feature space
fine-tuning, while further exploring the
optimization of hyperparameters such as the
number of iterations.For future work, dynamic
feature selection mechanisms and more
efficient feature mixing strategies can be
explored to further improve the generalization
and transferability of adversarial examples.
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