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Abstract: The application of fluid dynamics
and interface phenomena in multiple
industrial domains has been expanding
continuously, and the demand for in-depth
research has become increasingly prominent.
Particularly, the fractal finger phenomenon,
which is characterized by its complex
multi-physical attributes, poses challenges to
traditional experimental and theoretical
approaches. This paper primarily proposes a
finite element simulation method
implemented through COMSOLMultiphysics
software, with the aim of conducting a
comprehensive analysis of the fractal finger
phenomenon. Through the simulation, we are
able to delve deeply into the underlying
physical mechanisms of this phenomenon,
including factors such as fluid dynamics, heat
exchange, and interfacial tension.
Simultaneously, the highly customizable
nature of COMSOL offers us a platform for
making detailed comparisons with
experimental results, thereby validating the
accuracy of the model. The core novelty of
this paper lies in the employment of
COMSOL to provide an efficient and
accurate simulation strategy for the complex
fractal finger phenomenon, presenting a new
perspective and methodology for research in
related fields.
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1. Introduction
At micro- and nanoscale levels, the study of
fluid dynamics has assumed a central role in
coating technology, materials science, and
printed electronics. Specific fluid patterns, such
as "fractal fingering" (as shown in Figure 1),
offer a unique perspective for investigating these
microscopic processes. The formation of such
patterns is closely tied to the physical properties

of the fluid, the chemical characteristics of the
coating, and their interactions, with particular
significance in complex multiphase flows or
three-phase displacement processes. For
technological applications such as
high-performance coatings, superhydrophobic
surfaces, and efficient optoelectronic materials,
precise control of microstructures is critical.
Among these, the well-known "fractal fingering"
pattern, a hallmark of fractal phenomena,
provides a pathway to understanding these
intricate processes.
Significant research progress has been achieved
in various directions concerning the
displacement processes between two-phase
fluids. Notably, researcher Li Yanshen, through
experiments and simulations, identified the
influence of gravitational effects with a stable
density gradient on the fluid displacement
process[1]. Huang Jianlin, Song Guangyi, and
their team investigated the impact of viscosity
on interfacial instability of droplets in gas-liquid
two-phase systems[2]. Scholars Sun Beibei, Ye
Wenhua, and others conducted numerical
simulations to analyze the growth of
Richtmyer-Meshkov instability at fluid
interfaces[3]. Zhang Shengbo and his team
employed two-dimensional unsteady Euler
equations to numerically simulate the
Richtmyer-Meshkov instability induced by
planar shock waves interacting with interfaces of
varying compositions[4]. Additionally,
researcher Liu Bin utilized the Boltzmann
method to study the late-stage growth of
Rayleigh-Taylor instability in three-dimensional
scales[5].
In the domain of numerical simulation for
two-phase displacement processes, various
scholars have proposed distinct research
approaches and findings. Ma Cong and
colleagues, focusing on coupled interfacial
tension, employed the Boltzmann method to
conduct simulation studies of three-dimensional
fluid interfaces[6]. Guo Hailong and his team
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utilized the interface tracking method to
simulate interfacial instability in immiscible
fluids[7]. Yao Mengjun investigated the motion
states of multiphase flows under different
temperature boundary conditions through
simulations[8]. Wang Xiaoying and her team
explored the unique properties of liquids,
analyzing interfacial instability between
discrete-phase liquids (e.g., deionized water and
biodiesel) and continuous-phase liquids under
the influence of needle-plate electrodes[9].
Furthermore, Liu Cheng adopted an
axisymmetric approach and developed a
three-phase flow lattice Boltzmann model to
compute interfacial stability[10].

Figure 1. Schematic Diagram of the Fingering
Phenomenon Observed in Experiments

2. Mechanisms of Fractal Fingering
Formation and Dynamic Model Analysis

2.1 Overview of Fractal Fingering Formation
Mechanisms and Origin Analysis
In the field of fluid dynamics, the interfacial
behavior of multiphase flows frequently exhibits
rich and complex phenomena, with the
formation of fractal fingering being a notable
example. This phenomenon typically occurs
during the interaction between a non-viscous
fluid and a higher-viscosity fluid, driven by
differences in their physical properties. When
the non-viscous fluid displaces the
higher-viscosity fluid, a pressure difference
emerges at the interface, resulting in unstable
fluid behavior. In the initial stage, the
non-viscous fluid forms a protrusion resembling
a droplet. However, under the influence of the
pressure difference, this protrusion gradually
deforms and branches (as shown in Figure 2).

Figure 2. Schematic Diagram of the Liquid
Droplet Model.

The fundamental origin of the fractal fingering
phenomenon lies in fluid instability, which is
primarily caused by the property differences
between two fluids. This instability becomes
particularly pronounced when there is a disparity
between the dynamic and static pressures of the
fluids.
First, fluids with different viscosities exhibit
distinct flow rates. When they encounter each
other in a given region, the faster-moving
non-viscous fluid forms a protrusion in the
contact area, attempting to bypass or penetrate
the slower-moving viscous fluid (as shown in
Figure 3).

(a) Schematic Diagram of the Three-Phase
Displacement Process in Droplet Dynamics

(b) Schematic Diagram of Displacement
Process Parameters

Figure 3. Schematic Diagram of the
Three-Phase Displacement Model

Secondly, due to friction and surface tension
between the fluids, a local pressure gradient is
generated, which further exacerbates the
unstable behavior of the fluids. These complex
interactions collectively contribute to the
formation of fractal fingering, where
morphological instability leads to structural
branching and increased complexity.
In summary, the fractal fingering phenomenon
represents a complex interfacial behavior in
fluid dynamics, involving the interplay of
multiple physical mechanisms, including
pressure differences, dynamic and static fluid
properties, friction, and surface tension.

2.2 Two-Phase Displacement Phenomenon
and Mathematical Model of Its Field
Environment
The basic equation of the surface tension model
is given by Equation (1):

�� = � ⋅ � (1)
In this context, FT denotes the surface tension
force exerted on the liquid surface, (r) represents
the surface tension coefficient of the liquid, and
(L) indicates the line length of the liquid surface.
The Navier-Stokes equations within the fluid
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dynamics model govern the motion of the liquid,
encompassing the mass conservation equation
and the momentum conservation equation, with
their specific formulations presented in Equation
(2):

∂�
∂�

+ ∇ ⋅ (��) = 0

�[ ∂�
∂�

+ (� ⋅ ∇)�] =− ∇� + �∇2� + �
(2)

where � denotes the fluid density, u the
velocity field, � hydrodynamic pressure,
�dynamic viscosity, and f body forces per unit
volume. Under the experimentally observed
flattening of the coating surface, the
morphological transition of the ink-ethanol
binary system from a droplet regime to a sessile
film configuration is governed by the coupled
governing Equation (3):

∂�
∂�

= �1
�

⋅ ∂
∂�

(�� ∂�
∂�

) − �2�2 (3)
where α denotes the droplet number density, k1
the pressure-driven flow coefficient, k2 the
chemical reaction rate constant, S the interfacial
perimeter, and r the radial coordinate from the
droplet centroid. The experimentally observed
liquid vortex formation and fingering bifurcation
patterns emerge fundamentally from interfacial
instabilities, which are analytically described by
the modified Rayleigh-Taylor instability
framework as formalized in Equation (4):

�2 = �Δ�ℎ
��+�ℎ

(4)
where k represents the dominant wavelength of
interfacial instability, g the gravitational
acceleration, �� and �ℎ the mass densities of
the lower and upper fluid layers, and h the
interfacial height differential.
When ink-ethanol binary droplets impinge on a
coated substrate, their capillary-driven
interfacial interaction initiates a funneling flow
regime governed by the following formulation.
As derived from the surface tension constitutive
relation (Eq. 1), the force equilibrium between
capillary stresses and gravitational loading
dictates droplet migration directionality. This
stress balance orients the flow along the
resultant surface tension vector, formally
expressed as Equation (5):

�� = �� (5)
where m is the droplet mass and g gravitational
acceleration. By coupling the surface tension
constitutive law (Eq. 1) with the
capillary-gravity stress balance (Eq. 5), the
governing equation for droplet migration

dynamics is derived as Equation (6):
� ⋅ � = �� (6)

Derivation of Contact Line Length Equation (7):
� = ��

�
(7)

When a droplet impacts a coated surface, the
contact line length L gradually decreases due to
surface tension, leading to the formation of a
funnel-like structure. The morphology and scale
of this funnel are governed by the surface
tension coefficient (γ), droplet mass (m), and
gravitational acceleration (g). Concurrently, a
liquid vortex emerges during this process. By
employing a three-dimensional Navier-Stokes
equation in the hydrodynamic model, the
governing equation for the vortex dynamics can
be expressed as Equation (8):

� ⋅ ( ∂�
∂�

+ � ⋅ ∇�) =− ∇� + �∇2� + � ⋅ � (8)
where ρ, u, p, μ, and f denote fluid density,
velocity field, pressure, dynamic viscosity, and
external body forces, respectively. Solving these
equations yields velocity and pressure fields.
Interfacial instabilities arise when shear stresses
act at free surfaces, generating capillary waves
that amplify through mutual interactions,
ultimately forming liquid vortices. These
dynamics explain the capillary-driven funnel
flow observed during ink-alcohol droplet
deposition on coated substrates.
Fractal fingering patterns, however, deviate
fundamentally from conventional three-phase
immiscible displacement models. The omission
of viscous coupling between phases in such
models necessitates a viscoelastic constitutive
framework. Viscoelastic fluids exhibit
stress-dependent rheological responses
unaccounted for in Newtonian approximations.
Their effective viscosity (η) depends on both
instantaneous strain rates (γ) and stress
relaxation history. The viscoelastic behavior is
modeled as Equation (9):

��� =− ���� + ������� + 2���� (9)
where p denotes pressure, ��� is the Kronecker
Delta (1 if i=j, 0 otherwise), and �, μ represent
the Lamé coefficient and dynamic viscosity,
respectively. For viscoelastic fluids, the
Navier-Stokes equations can be modified as
Equation (10):
� ⋅ ( ∂�

∂�
+ � ⋅ ∇�) =− ∇� + ∇ ⋅ � + � ⋅ � (10)

The viscous stress tensor σ is given by Equation
(11):

� = �(∇� + (∇�)T) + � ⋅ (∇ ⋅ �) ⋅ � (11)
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where I is the identity matrix, ∇ is the gradient
operator, and (∇�)T represents the transpose of
∇�. Therefore, the complete derivation of Model
1 incorporating the viscoelastic fluid model can
be expressed as Model 2. Model 2 couples the
surface tension model, hydrodynamic model and
viscoelastic flow model together for more
in-depth study of complex fluid flow behaviors
and properties.
Considering that in the liquid droplet model, the
fluid motion of internal airflow at the contact
interface will affect the three-phase
displacement motion, we also need to adjust
parameters for geometric shape and dynamic
influences. Assuming the droplet forms an
annular liquid film on the plane with width 2a,
height h, film thickness d, areal density � ,
surface saturation vapor pressure PS,
gravitational acceleration g, surface tension � ,
liquid viscosity coefficient μ, liquid density ����,
and medium density beneath the annular film
����.
First, we assume the airflow velocity V within
the annular film is sufficiently small to be
negligible. The flow in the annular film can then
be described using the Navier-Stokes equations,
as shown in Equation (12):
����( ∂�

∂�
+ � ⋅ ∇�) =− ∇� + ∇ ⋅ � + ���� ⋅ � (12)

where u is the fluid velocity vector and g
represents the gravitational acceleration vector.
Assuming the liquid is a Newtonian fluid, the
viscous stress tensor can be expressed by
Equation (13):

� =− � ⋅ � + 2� ⋅ � (13)
where � denotes the strain rate tensor. For
liquid flow in the annular film, the non-zero
components of this tensor are given by Equation
(14):

��� = ∂�
∂�

��� =− �
�

(14)

��� = 1
2

( ∂�
∂�

+ 1
�

∂�
∂�

) (15)
Therefore, the radial and angular components of
the Navier-Stokes equations can be expressed by
Equation (16):

∂2�
∂�2 + 1

�
∂�
∂�

− �
�2 = 1

����

∂�
∂�

+ 2
����

∂
∂�

[�( ∂�
∂�

+ 1
�

∂�
∂�

)]

1
�2

∂
∂�

(�2 ∂�
∂�

) = 1
����

1
�

∂�
∂�

+ 2
�����

∂
∂�

[�( ∂�
∂�

+ 1
�

∂�
∂�

)]
(16)

Assuming the fluid in the annular film is
stationary (i.e., zero velocity), the coupled
solution of the above two equations is given by
Equation (17):

�(�, �) =− Δ�
4�

�2(1 − �2

�2 ) + ��sin � (17)
where Δ� represents the pressure difference
between the upper and lower surfaces of the
annular film, and V denotes the airflow velocity
outside the film. The liquid surface profile and
droplet morphology can then be determined. The
liquid surface shape is derived from a modified
Young-Laplace formulation, accounting for
internal pressure effects on surface morphology.
Experimentally, the liquid film is characterized
as annular. Consequently, the pressure at any
point on the annular film is given by Equation
(18):

� = �� + Δ�
2

− ��ℎ + �( 1
�

∂ℎ
∂�

)2 (18)
where �� is the liquid's saturated vapor pressure,
Δ� the pressure difference across the liquid film,
and h the annular film height. Using the
Young-Laplace equation, we obtain the film's
morphological equation as Equation (19):

1
�

∂
∂�

(� ∂ℎ
∂�

) + 1
�2

∂2ℎ
∂�2 = 1

�
[ Δ�

2
− �� + ��ℎ − �

�
⋅ ∂2ℎ

∂�2 ] (19)
The solution of the Young-Laplace equation
yields the film height function h(r,0), which
typically requires numerical methods (finite
element or finite difference) or perturbation
techniques due to the absence of analytical
solutions. The finite element method discretizes
the rigid surface into elements to solve
fundamental equations locally for global
solutions, while the finite difference method
replaces partial derivatives with nodal
differences along grids to solve discretized
equations. The perturbation method obtains
approximate solutions through series expansion
and iterative refinement of terms at different
orders.
For the perturbation approach, we solve the
problem by expanding both the height function h
and the corresponding pressure equations as
power series. The constraint conditions for this
process are specified in Equation (20):

ℎ(�, �) = ℎ0(�) + �ℎ1(�, �) + �2ℎ2(�, �) + . . . (20)
where, e denotes a small parameter that is
substituted into the Young-Laplace equation. The
solution procedure involves applying boundary
conditions, linearizing the governing equations,
and solving the resulting ordinary differential
equations to obtain hierarchical approximations
of h at different perturbation orders.

3. Numerical Simulation of Two-Phase
Displacement
The formation and evolution of fractal fingering
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patterns represent a multiscale, multiphysics
challenge in interfacial hydrodynamics. While
experimental and theoretical studies have
advanced significantly, accurate numerical
modeling of these nonlinear phenomena remains
critical. COMSOL Multiphysics provides an
effective finite-element framework for such
simulations, combining computational precision
with robust multiphysics coupling capabilities.
Our simulations reveal the underlying
mechanisms governing fingering dynamics,
spanning fluid flow, heat transfer, and interfacial
tension effects.
COMSOL's visualization and customization
capabilities enable tailored model development
for direct experimental validation. Compared to
conventional approaches, this numerical
framework offers both deeper physical insight
and computational efficiency. For the current
study, we coupled the Laminar Flow and Ternary
Phase Field modules, with the model geometry
illustrated in Figure 4.
The simulation results are shown in Figure 5,

including: (a) velocity contours of the two-phase
displacement, (b) pressure variation diagram,
and (c) fluid volume fraction diagram. Analysis
of these figures reveals that during the
displacement process, the velocity contours
show the air phase velocity increases as
displacement progresses, though this
acceleration does not affect the pressure
variation between liquids. The main driving
force remains the interfacial pressure difference,
which gradually decreases with time-step
convergence and eventually reduces to zero
when displacement is completed.

Figure 4. Schematic Diagram of the
Simulation Model Geometry Setup

t=0.000s t=0.002s t=0.004s t=0.006s t=0.008s
(a) Schematic Diagram of Velocity Contour Evolution

t=0.000s t=0.002s t=0.004s t=0.006s t=0.008s
(b) Schematic Diagram of Pressure Variation

t=0.000s t=0.002s t=0.004s t=0.006s t=0.008s
(c) Schematic Diagram of Fluid Volume Variation
Figure 5. Schematic Diagram of Simulation Results

The observation of velocity contours, pressure
diagrams, and fluid motion diagrams reveals that
the displacement of pressure points aligns with
the aforementioned theoretical predictions, thus
confirming that the main driving forces are
surface tension and viscous forces.
From the top-view observation of the petri dish,
the simulation results are shown in Figure 6.
Analysis of the top view indicates that after the

completion of the cross-sectional displacement
process, the stratification process continues.
Since the model was constructed by simulating
the cross-section and then extending it through
rotational simulation, the in-plane stratification
phenomenon is not directly visible in the model.
However, the annular pressure difference in the
plane can be used to infer the fractal process.
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t=0.000s t=0.001s t=0.003s

t=0.004s t=0.005s t=0.006s
Figure 6. Schematic Diagram of 3D Perspective Simulation Results

Observation of the three-dimensional velocity
contour clearly reveals distinct stratification
phenomena, confirming the validity of the
simulation model construction.

4. Conclusions
Based on theoretical analysis and simulation
results:
Gas velocity exceeds liquid velocity during
two-phase displacement, but its increase does
not affect displacement efficiency.
The primary driving force originates from the
interphase pressure difference, which gradually
decreases until vanishing at displacement
completion.
Increasing temperature accelerates fingering
instability development.

Acknowledgments
2024 College Student Innovation and
Entrepreneurship Training Program (National
Level): Simulation and Performance
Optimization of High-Voltage Switchgear Based
on Digital Twin Technology (No.
202414435011).
2024 College Student Innovation and
Entrepreneurship Training Program (University
Level): Effect of Bubble Impurities on Partial
Discharge Characteristics of Transformer Oil
Engineering Liquid Dielectrics (No.
X202414435027).
2024 Yingkou Institute of Technology Education
and Teaching Reform Research Project (No.
JG202402): Ideological and Political Teaching
Design and Practice of 'College Physics' Course
under Online-Offline Hybrid Teaching Mode.

References
[1] Li Yanshen. Research progress on flow

instability of spherical interfaces in stable

density gradients[J]. Chinese Journal of
Theoretical and Applied Mechanics, 2024,
56(06): 1540-1551.

[2] Huang Jianlin, Song Guangyi, Wang Jingzhu,
et al. Effect of viscosity on interface
instability of cylindrical droplets induced by
internal cavitation[J]. Chinese Journal of
Theoretical and Applied Mechanics, 2024,
56(02): 377-386.

[3] Sun Beibei, Ye Wenhua, Zhang Weiyan.
Numerical simulation of density-perturbed
Richtmyer-Meshkov-like instability growth
and its coupling with unperturbed
interfaces[J]. Acta Physica Sinica, 2023,
72(19): 123-130.

[4] Zhang Shengbo, Zhang Huanhao, Chen
Zhihua, et al. Influence of different interface
component distributions on
Richtmyer-Meshkov instability[J]. Acta
Physica Sinica, 2023, 72(10): 248-261.

[5] Liu Bin. Late-stage growth study of
three-dimensional Rayleigh-Taylor
instability using lattice Boltzmann
method[D]. Hangzhou Dianzi University,
2022.

[6] Ma Cong, Liu Bin, Liang Hong. Lattice
Boltzmann simulation of three-dimensional
fluid interface instability coupled with
interfacial tension[J]. Acta Physica Sinica,
2022, 71(04): 153-163.

[7] Guo Hailong, Zhang Ying, Li Wenbin, et al.
Direct numerical simulation of
Kelvin-Helmholtz instability using interface
tracking method[J]. Chinese Internal
Combustion Engine Engineering, 2021,
42(03): 16-25. [8] Yao Mengjun. Numerical
simulation of multiphase flow instability in
heat collection tubes under different
temperature boundary conditions[D].
Nanchang University, 2021.

Journal of Industry and Engineering Management (ISSN: 2959-0612) Vol. 3 No. 1, 2025 99

Copyright @ STEMM Institute Press http://www.stemmpress.com



[9] Wang Xiaoying, Wu Shibo, Wang Dongbao,
et al. Analysis of liquid interface instability
under needle-plate electrode action[J].
Journal of Jiangsu University (Natural
Science Edition), 2020, 41(05): 523-529.

[10] Liu Cheng. Axisymmetric three-phase flow
lattice Boltzmann model and its application
in Rayleigh-Plateau instability[D].
Hangzhou Dianzi University, 2023.

100 Journal of Industry and Engineering Management (ISSN: 2959-0612) Vol. 3 No. 1, 2025

http://www.stemmpress.com Copyright @ STEMM Institute Press




