152 Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 3 No. 1, 2025

A Correspondence between Stack Permutations and Binary Trees
via Hille Encoding

Kelan Liu, Lijuan Du*
College of Applied Science and Technology, Beijing Union University, Beijing, China
*Corresponding Author.
Abstract: This paper systematically trees. This observation prompted us to re-

investigates the bijective or isomorphic
construction problem between stack
permutations and binary tree, with a focus
on the equivalence and differences between
Hille codes and stack codes. Through
constructive proofs, we correct algorithmic
errors in the original literature and
rigorously demonstrate the equivalence
between stack codes and Hille codes in the
bijective sense. Furthermore, we analyze the
intersection size of Hille codes and stack
codes, revealing that when the number of
binary tree nodes > , the overlapping
portion constitutes less than half of the total
cases. Additionally, we provide precise upper
and lower bounds for the effective length of
Hille codes, proving that their maximum
value is — and showing that the binary
tree structure achieving this bound is unique.
These results offer new tools and
perspectives for the study of stacks and
binary trees, while also laying a foundation
for subsequent algorithm design and
combinatorial optimization.

Keywords: Encoding; Binary Trees; Stack
Permutations; Correspondence

1. Introduction

The isomorphic relationship between binary
trees and stack permutations is a classical
problem in combinatorics and computer science,
centered on constructing a bijection between
the two structures. Knott defined a rank for
each binary tree [1] and provided an efficient
algorithm for computing the rank sum and its
inverse. Inspired by this, Hille proposed Hille
encoding [2], aiming to establish a
correspondence between binary trees and stack
permutations using binary sequences. However,
the original encoding algorithm in Hille's work
contained flaws, resulting in incorrect
computation of Hille codes for certain binary

http://www.stemmpress.com

examine the specifics of bijective construction.

2. Constructing the Bijection

A stack permutation is also called a stack
shuffle. Given a non-empty stack and empty
stacks and , only the following operations
are permitted at each step: (i) pop and push
(ii)) pop and push . It's easy to see that
eventually all elements of must enter . Such

is called a stack permutation of

All stack permutations of are exactly all
possible pop sequences of . It's well known

1 (2 .
that an -element stack has Tl() possible
pop scenarios. On the other hand, -nodes can

form %1(2) binary trees, both being Catalan

numbers. This shows that the two sets are
isomorphic as collections, and the natural and
important question is: how to implement this
isomorphism? That is, to explicitly write out
this bijection. The work in this direction first
came from Hille [2].

Since our discussion doesn't involve specific
elements, without loss of generality, we can fix
the push order of stack permutations as 123
These numbers are also the labels of binary tree
nodes. In keeping with the tradition of
computer science, the binary trees discussed in
this article distinguish between nodes that go to
the left and nodes that go to the right, except for
the root node.

On the other hand, what affects the pop
sequence are only the push and pop operations,
while constructing binary trees appears to allow
one more type of operation at first glance. We
encode stack pushes and pops as 1 and 0
respectively, and call the corresponding binary
sequence a stack code. Correspondingly, the
construction of binary trees is characterized by
Hille encoding [2].

2.1 Hille Encoding
The following three rules describe the

Copyright @ STEMM Institute Press

Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 3 No. 1, 2025 153

conversion process from Hille encoding to
binary trees. It can be easily verified that given
any binary tree, its Hille encoding can be
obtained through these three rules. 1 represents
adding a left subtree to the current tree node.
For example, 111 represents the tree ((())). 01
repre-sents adding a right subtree to the current
tree node. For example, 10101 represents the
tree (_(_())). As mentioned earlier, the binary
trees we are discussing must distinguish
between left and right nodes. Therefore, when
using this method of expression, it is inevitable
that symbols for empty nodes will be
introduced for placeholders. For the Os before
01, these Os are used to indicate backtracking
the current tree node to its -th ancestor. For
example, 11001 represents the tree (()()).
Note that each tree node has a unique parent
node, therefore the backtracking operation is
well-defined, where a backtrack means
changing the current node to its parent.

Accordingly, we can define parsing rules for
Hille encoding based on this, which are used to
convert such a valid binary sequence into a
series of operations for constructing a binary
tree. We use a BNF-like grammar to define this

parser.
<Ichild>:="1"
<rchild>:="01"
<up> ="

<parser> := (<Ichild>|<rchild>|<up>)*

22 =

To make it easier for readers to understand the
issues discussed in this article and to prepare
for constructing counterexamples later, we
present a simple enough example to illustrate
that Hille encoding contains information about
both constructing a binary tree and the stack
replacement sequence.

Figure 1 are all 5 possible cases of three-node
binary trees to demonstrate how their binary
sequences correspond to stack permutations.
The binary sequences are padded with trailing
zeros based on the stack being emptied.

The reverse of this process is non-trivial. If we
only consider the case of =3, as shown in
the figure above, we can observe that these
stack permutations precisely correspond to the
in-order traversal sequences of binary trees
when nodes are numbered according to their
insertion order. That is, nodes are added step-
by-step following the Hille encoding. For the
binary tree 1101000100, numbering the nodes

Copyright @ STEMM Institute Press

in insertion order and performing an in-order
traversal yields 2314.

— 111600 — 321

<Z - 110100 — 231
?3 — 101100 — 132
O\Oh - 101018 - 123

O/O\D - 110010 - 213

Figure 1. All Three Node Trees

Next, we will explain the non-trivial aspects of
this phenomenon and the specific conditions
under which this coincidence occurs, as detailed
in Proposition 3.1 and its construction process.
Subsequently, we will also make precise
assertions regarding the intersection size of the
two types of encodings generated by all binary
trees with a fixed number of nodes, as well as
the range of lengths for such encodings. This
involves a detailed examination of how
different binary trees, when subjected to our
revised encoding methods, produce sequences
that may overlap in certain aspects. By
analyzing the intersection size, we can gain
insights into the commonalities and differences
between these encodings, which is crucial for
understanding the structural properties of binary
trees and their representations. Furthermore,
determining the length range for these
encodings provides practical guidelines for their
application in various computational scenarios,
ensuring that the encodings are both efficient
and effective. This dual analysis not only
enhances our theoretical understanding but also
offers valuable information for practical
implement-ations in fields such as data
structures, algorithms, and computational
theory.

3. Correction to the Original Text

First, an observation regarding the original
literature: The algorithm proposed in Hille's
paper [2] actually contains an error. We have
rewritten it in Lean4 language, namely,

def encode: Tree -> String

| .nodelr=>"1"++encode | ++ encode r
|_=>"0"

Now, denote this encode function as . A
simple example reveals that converting a binary
tree into its Hille encoding () is not

http://www.stemmpress.com

154 Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 3 No. 1, 2025

equivalent to a straightforward in-order
traversal () as shown in Figure 2.

R m(o\o) + m(Q)

el) =

— nqn —+ wqn ++ Q"

= 110" +~ 2."100"
Figure 2. Counterexample Calculation

It can be verified that starting from the
encoding 110100100, the original binary tree
structure cannot be directly recovered. The
correct Hille encoding should be 1101000100.
However, if we interpret the sequence
110100100 as stack push/pop operations (i.e.,
as a stack encoding), it correctly yields the
stack permutation 2314. This implies that for
binary trees with node count > 3, there exist
cases where a tree's stack encoding differs from
its Hille encoding.

Recalling the bijective relationship between
binary trees and stack permutations, this
suggests there must exist a constructive

procedure allowing conversion between the two.

Below, we will explicitly present this result (see
Proposition 3.1). Subsequently, through
Proposition 3.2, we explain why in-order
traversal frequently yields correct Hille
encodings for small values of .

Proposition 3.1. Stack Encoding and Hille
Encoding are equivalent.

proof. First, it is straightforward to verify
that in-order traversal always provides a
mapping from a binary tree to a stack
permutation . Conversely, for every
stack permutation , a unique binary
sequence i.e. the stack encoding —can
be derived. Ignoring trailing Os, when the
stack encoding matches the Hille en-
coding of the binary tree , applying
in-order traversal directly to will yield the
correct Hille encoding. We externally
illustrate the equivalence of the two
encodings and the specific methods of
mutual conversion by proving the
commutativity of the following diagram as

shown in Figure 3.
B—— S

||

H—C
Figure 3. Commutative Diagram
Let - be denoted as . According to

http://www.stemmpress.com

Section 2.1, is a bijection. Based on the
properties of binary trees, : - represents
in-order traversal, where the push order of stack
permutations is fixed as 123 , thereby
determining the level-order traversal of . Thus,

is also a bijection. Now consider : -
which is clearly a bijection as well. Finally, we
can recover the information of from

by treating the sequence as stack encoding
and ignoring pops from an empty stack, which
implies that - is a surjection. Then, using

- - -5 ,weobtain
The encoding algorithm used in Hille's original
work is precisely -, while the

intended correct implementation should be
hence the two differ by an isomorphism in their
results.

Proposition 3.2. Let the set of all Hille
encodings for -node binary trees be

denoted as , and the set of all stack
encodings for -node binary trees as . For
the size =] n |, we have the

following characterization (1):

=53 50000 o

Let = + 1. The proof of this equality can
be obtained by analyzing a Dyck path of semi-
length that does not contain the subsequence
UUDD. This also corresponds to the number of
lattice paths from (0,0) to (,) that do not
cross the diagonal and allow step sizes
(1,),(,1), 1. More simply, it is the
number of skew Motzkin paths of length [3].
This also means that we can use inversely to
provide a new representation for these special
combinatorial sequences.

proof. We only provide an outline of the proof,
transforming it into a problem that has already
been verified in combinatorics [3]. First, it
needs to be proven that satisfies the rec-
ursive relation 41 =) —, — , which can
be achieved through induction. Then, based on
a few initial values ()g 2 and the recursive
relation for Proposition 3.2, the expression is
inductioned again. The specific calculation
process is not suitable to be unfolded here.
Corollary 3.3. Let the Catalan number be
which is also the size of or . Naturally,
we may ask about the relation-ship between
the proportion | n | among all -node
binary trees and . Based on Proposition 3.2
and the asymptotic estimate of Catalan

numbers ﬁ [4], we know that

Copyright @ STEMM Institute Press

Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 3 No. 1, 2025 155

—=0. In fact, when the number of

nodes in binary trees exceeds 8, the
overlapping portion between and will

be less than half of the total.

4. Bounds on Effective Length
An interesting question to explore is, given
an -node binary tree, to determine the range
of effective lengths () for its Hille
encoding Here "effective" naturally
refers to removing trailing consecutive zeros
0. We will provide a precise answer to this
question.
Proposition 4.1. (Bounds on Effective Length)
For any -node binary tree, the effective length
of'its Hille encoding satisfies the inequality (2):
02 —13 —-4) (2
The verification of the lower bound is
straightforward, constructing an -node binary
tree requires at least 1s. For our discussion here,
we only need to verify that when 3, the
maximum effective length of Hille encoding is
3 —4.
proof. Note that to maximize the effective
length, the corresponding binary tree should
have as many right nodes and backtracking
operations as possible. Satisfying both
requirements implies: (i) there must be at least
one left node besides the root. Otherwise, the
binary tree would only take forms like
1010101 , with length 2 —1; (ii) the tree
must have at least one node to the right of the
root. Otherwise the length contribution from
backtracking wouldn't reach maximum. As
illustrated below Figure 4:

Figure 4. 11001
From this starting point, we add all remaining
— 3 nodes to the right of the tree's only left
node. That is Figure 5:

M =

Figure 5. 110101...00001

Now we just need to calculate () to obtain
the maximum value of . Let's directly write
out () asshown in Figure 6:

h(M) = "110101...00801"

nq + (n_g) Lngn
=+ (TL o 2) .ngn —+ ngqn
Figure 6. () Calculation

Copyright @ STEMM Institute Press

We can immediately see that () =2+
2(=3)+(—2)+2=3 —4.
Conversely, starting from tree , we can verify
that any operation maintaining the same
number of nodes won't increase its Hille
encoding's effective length. Furthermore, we
can assert that any such operation will strictly
decrease the effective length. To illustrate this
assertion, we only need to analyze the
construction of maximum encoding length.
The first three nodes come from Figure 2,
which represents the maximum encoding length
construction for a 3-node binary tree. The
remaining —3 nodes have only two
adjustment methods: either changing to a
leftward node or placing it to the right of the
root node. The former reduces the encoding
length by 1, and the latter reduces the encoding
length by 2 or 1, corresponding to moving left
or right, respectively. In other words, the binary
tree structure that achieves () =3 —4is
unique, namely

It is evident that from this proof process, we
can discover that by assigning appropriate
codes to binary trees, the verification of related
properties can be transformed into pure equality
and inequality issues. This implies that we can
apply these techniques to a wider range of
similar problems. It demonstrates that the
methods proposed in this paper have significant
versatility and potential for application. Please
note that the evaluation here does not merely
imply the shortest coding in the sense of
information theory, but also considers
requirements such as maintaining structural
correspondence between two structures after
data updates. For the binary tree coding
problem in pure information theory, Cover &
Thomas [5] have provided answers. Munro &
Raman [6] proposed a near-optimal coding for
binary trees, which uses only 2 + () bits,
close to the lower bound 2 — () given
by information theory. As potential future
research, exploring how to use Hille encoding
or stack permutation-binary tree isomorphism
to provide alternative interpretations of the
Blass-Lawvere theorem [7,8] i.e., "seven trees
in one" presents a promising direction [9-11].
This conclusion indicates that binary trees are
isomorphic to seven times themselves.

5. Summary and Outlook
This paper investigates the construction
problem of stack permutation-binary tree

http://www.stemmpress.com

156 Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 3 No. 1, 2025

isomorphism. By correcting the Hille encoding
algorithm, quantitatively analyzing encoding
differences, and determining effective length
bounds, we have strengthened the theoretical
foundation in this field. Specifically, we proved
the equivalence between stack encoding and
Hille encoding Proposition 3.1, and showed that
encoding differences begin to emerge when

>3 . A phenomenon further explained
through asymptotic analysis of intersection size
Corollary 3.3. Additionally, determining the
range of effective Hille encoding lengths
Proposition 4.1 provides concrete information
for evaluating related encodings. Finally, we
point out that the methods and techniques
presented in this paper may be applied to
understand the Blass-Lawvere theorem, which
provides new insights for research in related
fields.

References

[1] Knott, Gary D. “A Numbering System for
Binary Trees.” Communications of the
ACM, vol. 20, no. 2, ACM New York, NY,
USA, 1977, pp. 113—15.

[2] Hille, Reinhold Friedrich. “Stack
Permutations and an Order Relation for
Binary Trees.” Working Paper 82-8,
University of Wollongong, 1982.

[3] Flajolet, Philippe, and Robert Sedgewick.
Analytic Combinatorics. cambridge
University press, 2009.

[4] Knuth, Donald E. The Art of Computer
Programming, Volume 4A: Combinatorial
Algorithms, Part 1. Pearson Education

http://www.stemmpress.com

India, 2011.

[5] Amir Dembo, Thomas M Cover, and Joy A
Thoma. “Information Theoretic
Inequalities.” IEEE Transactions on

Information Theory, vol. 37, no. 6, IEEE,
1991, pp. 1501-18.

[6] Munro, J. Ian, and Venkatesh Raman.
“Succinct Representation of Balanced
Parentheses and Static Trees.” SIAM
Journal on Computing, vol. 31, no. 3,
SIAM, 2001, pp. 762-76.

[7] Blass, Andreas. “Seven Trees in One.”
Journal of Pure and Applied Algebra, vol.
103, no. 1, Elsevier, 1995, pp. 1-21.

[8] Fiore, Marcelo, and Tom Leinster. “Objects
of Categories as Complex Numbers.”
Advances in Mathematics, vol. 190, no. 2,
Elsevier, 2005, pp. 264-77.

[9] Kitaev, Sergey, and Philip B. Zhang. “Non-
Overlapping Descents and Ascents in
Stack-Sor Permutations.” Discrete
Applied Mathematics, vol. 344, Elsevier,
2024, pp. 112-19.

[10]Filip Sieczkowski, Sergei Stepanenko,
Jonathan Sterling, and Lars Birkedal. “The
Essence of Generalized Algebraic Data
Types.” Proceedings of the ACM on
Programming Languages, vol. 8, no. POPL,
ACM New York, NY, USA, 2024, pp.
695-723.

[11]Opler, Michal. “An Optimal Algorithm for
Sorting Pattern-Avoiding Sequences.” 2024
IEEE 65th Annual Symposium on
Foundations of Computer Science (FOCS),
IEEE, 2024, pp. 689-99.

Copyright @ STEMM Institute Press

