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Abstract: To overcome challenges
associated with crop species identification
in unmanned aerial vehicle (UAYV)
imagery—specifically missed detections of
small-sized targets, disturbances caused by
intricate environmental elements, and
suboptimal computational efficiency of
detection models—this study introduces a
streamlined detection framework that
integrates ' YOLOvV9 with Convolutional
Block Attention Module (CBAM) and
Spatial Channel Reconstruction
Convolution (SCConv). Initial
modifications involve embedding CBAM
within the YOLOV9 backbone architecture.
This enhancement exploits the
collaborative functioning of channel-wise
and spatial attention mechanisms to
amplify the model's sensitivity toward
critical localized crop characteristics, such
as panicle morphological structures and
foliar texture patterns, while concurrently
mitigating noise interference from soil
surfaces and weed vegetation. Subsequent

improvements involve substituting
conventional convolutional layers with
Spatial Channel Reconstruction

Convolution. This substitution capitalizes
on the module's adaptive feature
reorganization capabilities to achieve
parameter reduction without
compromising feature representation
capacity, thereby substantially enhancing
operational efficiency during edge device
deployment. Empirical evaluations
conducted on a proprietary dataset
comprising 1,000 UAV-captured images
representing seven distinct crop types
demonstrate that the optimized model
attains a mean Average Precision (mAP) of
94.5% when applying a 50% Intersection
over Union threshold—a performance gain
of 2.2 percentage points compared to the
baseline YOLOV9 architecture. These
results confirm the system's capability to
meet real-time recognition demands within
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complex agricultural landscapes. The
proposed methodology presents a cost-
effective, high-accuracy monitoring
solution for  UAV-based  precision
agriculture applications, holding significant
practical value for advancing intelligent
management systems in modern
agricultural practices.
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1. Introduction

1.1 Research Background and Significance
With the rapid development of precision
agriculture and smart agriculture, drone remote
sensing technology has become an important tool
in crop monitoring due to its flexibility, efficiency,
and low cost[1]. High-resolution images obtained
by drones enable agricultural practitioners to
perform key tasks such as monitoring crop
growth, pest and disease warnings, and yield
estimation. However, in complex farmland
scenarios, different crop varieties (such as wheat
and com) exhibit high inter-species
morphological ~ similarity, = dense  spatial
distribution, and are easily affected by light
changes and obstructions, leading to low
efficiency in traditional manual identification
methods. Meanwhile, automated recognition
technologies based on deep learning still face
challenges such as missed detection of small
targets, feature redundancy, and complex
background interference.

In recent years, convolutional neural network
(CNN) [2]-based object detection models (such
as the YOLO series) have shown potential in the
agricultural field [3], but their performance in
fine-grained crop variety recognition remains
insufficient: First, traditional models have limited
perception capabilities for local crop features
(such as ear morphology and leaf texture) [4];
Second, background noise in drone images (such
as soil and weeds) is highly mixed with target
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areas, reducing model robustness; Additionally,
the computational complexity of existing models
is high, making it difficult to deploy in real-time
on drone edge devices. Therefore, designing a
high-precision, lightweight, and adaptable crop
variety recognition model for complex farmland
environments has become a critical need for
advancing intelligent agricultural management.

1.2 Existing Problems and Challenges

At present, the research on crop variety
identification based on UAV image has the
following limitations:

1. Insufficient feature extraction: Traditional
target detection models (such as
YOLOvV5/YOLOVS) have limited receptive field
[5] in dense crop areas, and it is difficult to
distinguish ~ varieties with high inter-class
similarity.

2. Background interference sensitivity: The
complexity of light change, occlusion and soil
background in farmland scenes leads to the
increase of model false detection rate.

3. Bottleneck of computing efficiency: The
existing model has a large number of parameters
and high computing cost, which is difficult to
meet the real-time processing requirements of
UAV.

Despite existing research attempts to optimize
model [7] through attention mechanisms like [6]
or lightweight convolutions (such as
MobileNetV3), these methods still fall short in
adapting to agricultural scenarios: attention
mechanisms often focus solely on channel
dimensions, overlooking the importance of
spatial features [8]; lightweight strategies may
excessively compress model capacity, leading to
a significant drop in accuracy. Therefore, there is
an urgent need for a solution that enhances multi-
dimensional features and optimizes efficient
computation simultaneously.

1.3 Innovation and Contribution of this Paper
In view of the above problems, this paper
proposes a lightweight crop variety recognition
model based on improved YOLOV9. By
integrating convolution block attention module
(CBAM) and spatial and channel reconstruction
convolution (SCConv), the balance between
accuracy and efficiency is achieved. The specific
contributions are as follows:

1. Feature enhancement guided by multi-
dimensional attention: CBAM module [9] is
embedded in the YOLOV9 backbone network,
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and the synergistic effect of channel attention and
spatial attention is used to enhance the model's
ability to locate key areas of crops (such as ears
and leaf edges) and suppress background noise
interference.

2. Lightweight design of dynamic feature
reconstruction: SCConv is used to replace part of
the standard convolution layer [10], and the
cascade structure of spatial reconstruction unit
(SRU) and channel reconstruction unit (CRU) is
adopted to adaptively reduce feature redundancy,
so as to reduce the calculation amount while
maintaining the representation ability of the
model.

3. Optimization of agricultural scene adaptability:
According to the characteristics of UAV images
(such as the density of small targets in low-
altitude shooting), data enhancement and targeted
data collection are carried out to some extent, so
as to improve the robustness of the model to scale
change and occlusion [11].

2. Related Work

Target detection technology has gained
widespread attention in agricultural scenarios in
recent years, especially in the field of drone
remote sensing. Researchers have proposed
various solutions for tasks such as crop
recognition and pest monitoring [12]. This
section reviews relevant research progress from
three dimensions: the evolution of target
detection algorithms, challenges in drone
agriculture applications, and data augmentation
strategies, and summarizes the technical
improvements for this study.

2.1 Development of Target Detection
Algorithm

Deep learning-based object detection models are
primarily divided into two-stage detectors (such
as Faster R-CNN and Mask R-CNN) and single-
stage detectors (such as YOLO series and SSD).
In agricultural scenarios, single-stage detectors
are favored due to their real-time advantages. For
example, Gong Xulian et al. proposed a
lightweight detection method for small target
diseases in apple leaves using YOLOVSs, called
[13], to address the complexity of detecting leaf
diseases in natural environments, the high
difficulty of detecting small target diseases, and
the large model parameters that make
deployment on mobile devices and embedded
systems challenging. Jia Xueying et al.
introduced an improved YOLOvV7 algorithm,
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incorporating a CA module into the backbone
network of the YOLOV7 model and adding a
contextual transformer module at the network
head, [14]. This module achieves online
monitoring of citrus surface defects with an
average precision of 91.1%, demonstrating
excellent detection performance. However,
existing models still suffer from missed
detections and false positives in scenarios
involving dense small targets in farmland and
similar morphological patterns between classes.

2.2 Challenges of Uav Agriculture
Application

Low-altitude = UAV  images have the
characteristics of high resolution and multi-scale
coexistence of targets, but they also face the
following challenges:

Small target detection: crop seedlings or key parts
(such as rice panicles) occupy only a very small
pixel area (<50x50 pixels) in the image, and
traditional detectors are easily affected by
background interference;

Complex light and noise: uneven illumination in
farmland environment, leaf reflection and sensor
noise (such as Gaussian noise) will reduce the
robustness of the model;

Inter-class similarity: Some crops (such as comn
and sorghum) are highly similar in morphology,
so texture or local features are needed to
distinguish them.

In view of the above problems, researchers have
proposed multi-scale feature fusion, attention
mechanism (such as CBAM, SE-Net) and
synthetic data enhancement, but few works
systematically combine image characteristics
with the need for lightweight models.

2.3 Data Enhancement Strategy

In order to improve the adaptability of the model
to complex farmland environment, the following
enhancement methods are adopted:

1. Image scaling: Keep the aspect ratio and scale
the image to the specified size, or only shrink the
image when the image size exceeds the target
size, while adjusting the position and size of the
corresponding boundary box (bounding boxes).

2. Flip: Randomly flip the image horizontally or
vertically, and adjust the position of the boundary
box accordingly, so as to ensure that the labeling
after flipping is still accurate.

3. Center cropping: The center part of the image
is cropped into a square, and the boundary boxes
within the new image range are screened and
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adjusted to remove the targets outside the
cropping range.

4. Color transformation: including random
changes in brightness, contrast and saturation, as
well as the addition of Gaussian noise, salt noise
(white pixels) and pepper noise (black pixels), to
simulate images under different lighting and
noise conditions.

Through the above data enhancement methods, a
more complex and suitable detection dataset for
farmland environment is obtained to prepare for
subsequent experiments

3. SC-YOLOV9 model

This paper uses a self-made drone dataset for
crop photography, including seven common
types of crops: lettuce, scallions, corn, cabbage,
radishes, leeks, and Chinese cabbage. To achieve
more precise crop recognition, this paper employs
the YOLOV9 model and introduces the SCConv
convolution module along with the CBAM
attention mechanism to improve the model.

3.1 Scconv Module

Traditional convolution layers suffer from feature
redundancy when extracting features, especially
when processing crop areas with similar textures
in drone images (such as densely planted cormn
and leeks). Redundant computations significantly
increase model complexity. This study replaces
the YOLOV9 backbone part of the traditional 3x3
convolution layer with a SCConv convolution
module, achieving a balance between lightweight
and efficient feature representation through dual
spatial and channel reconstruction mechanisms.
The SCConv module consists of a spatial
reconfiguration unit (SRU) and a channel
reconfiguration unit (CRU). When in use, the
feature map first passes through the spatial
reconfiguration unit to reduce redundancy in the
spatial dimension, then the refined feature map is
fed into the channel reconfiguration unit to reduce
channel redundancy [15]. The structure of the
SCConv is shown in Figure 1.
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3.2 CBAM Module

CBAM is a lightweight attention module
primarily composed of channel attention (CAM)
and spatial attention modules (SAM). The
structure of CBAM is shown in Figure 2. After
the feature map enters the CBAM module, it first
goes through the channel attention module, which
compresses the spatial dimension while keeping
the channel dimension unchanged, extracting the
feature map information of interest. This
extracted information is then multiplied with the
original feature map to form a weighted feature
map. The weighted feature map serves as the
input for the spatial attention module, maintaining
the spatial dimension while compressing the
channel dimension, allowing the network to
better focus on the positions of the desired targets.
The output of the spatial feature map is then
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multiplied with the weighted feature map to
obtain the final feature map [16]. The structure of
the CBAM module is illustrated in Figure 2.
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Figure 2. CBAM Module

3.3 SC-YOLOV9 Model

The SC-YOLOV9 model is composed of the
YOLOV9 model, CBAM module and SCConv
module. The structure of the SC-YOLOvV9 model
is shown in Figure 3. Since the improvement
does not involve the auxiliary branch of the
YOLOV9 model, it is omitted.
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Figure 3. SC-YOLOvV9 Model

4. Experiment and Analysis

4.1 Experimental Environment

This experiment was conducted in the following
configuration: The hardware environment uses a
NVIDIA GeForce RTX 2080 Ti*2 GPU with
22GB of video memory, a nine-core Xeon (R)
Platinum 8255C CPU, and 48GB of RAM; The
software environment is as follows: The
operating system is Ubuntu 20.04, the deep
learning framework is PyTorch 2.0, CUDA
version is 11.8, and Python version is 3.9.0. All
experiments were completed in this environment
to ensure reproducibility and stability of the
results.

4.2 Data Set and Its Preprocessing
This paper uses a self-made drone dataset for

crop photography, which includes seven common
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types of crops: lettuce, scallions, corn, cabbage,
radish, leek, and Chinese cabbage, totaling 1,000
images. The image resolution is 2250*4000
pixels, capable of clearly capturing the detailed
features of the crops. Annotation method:
boundary box annotation, where each target
object is marked with a rectangular box to
indicate its position along with corresponding
category information. Preprocessing methods: (1)
Data augmentation: random cropping, flipping,
rotating, and color jitter are used to enhance data
diversity and improve the model's generalization
ability. (2) Size adjustment: all images are
uniformly resized to 640*640 pixels.

4.3 Evaluation Indicators

The following indicators are used to evaluate the
model:

Precision (Precision): the proportion of samples
predicted as positive by the model that are
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actually positive. The calculation formula is:

+

Among them, TP represents the true example
(predicted to be positive and actually positive),
and FP represents the false positive example
(predicted to be positive but actually negative).
Recall rate (Recall): the proportion of positive
samples predicted by the model in the actual
positive samples, the calculation formula is:

+
Among them, FN represents the false negative
(predicted as negative but actually positive).
mAP50: The mean average precision (mAP) of
the model in IoU, with a threshold of 0.5, is used
to measure the comprehensive performance of
the model on different categories.

-_=0

Where: N is the total number of categories . It
is the average accuracy (Average Precision) of
the i-th category, which is calculated by the

formula:
1

= )

0
Among them, the accuracy is when
() the confidence threshold is t.

mAP50-95: The mean average accuracy of the
model in loU, with thresholds ranging from 0.5 to
0.95 (step size of 0.05), is used to more
comprehensively evaluate the performance of the
model.

4.4 Ablation Test

This paper sets up four groups of experiments to
analyze the influence of SCConv module and
CBAM module on SC-YOLOvV9 model. The
experimental setup is as follows:

Experiment 1: The original YOLOV9 model,
without any improvement module, as the baseline
model.

Experiment 2: Replace part of the traditional 3x3
convolution layer with SCConv module in the
backbone of YOLOVY to verify the optimization
effect of SCConv module on feature extraction.
Experiment 3: Add CBAM module in YOLOV9's
backbone to verify the improvement effect of
CBAM module on feature attention mechanism.
Experiment 4: The SCConv module and CBAM
module are introduced simultaneously in the
backbone of YOLOVY9 to verify the
comprehensive improvement effect of the
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synergistic effect of the two modules on the
model performance.
Table 1. Results of Ablation Experiments

P R mAP50 | mAP50-95
Experiment 1| 0.896 | 0.862 | 0.923 0.828
Experiment 2| 0.906 | 0.852 | 0.918 0.722
Experiment 3| 0.868 | 0.914 | 0.933 0.840
Experiment 4| 0.890 | 0.927 | 0.945 0.872

4.5 Experimental Results Are Shown

The performance of Experiment 1 (the original
YOLOV9 model) is good, but there are some
misjudgment and missed detection when dealing
with crops with complex background and similar
texture.

The accuracy of experiment 2 (introducing
SCConv module) is improved, but the recall rate
is slightly decreased, which indicates that
SCConv module may not capture some edge
features sufficiently while reducing feature
redundancy.

The recall rate of experiment 3 (CBAM module
introduced) is significantly improved, but the
accuracy rate decreases, which indicates that
CBAM module can better focus on the target area,
but may introduce some misjudgment.
Experiment four (simultaneously introducing the
SCConv module and CBAM module) performed
best, with both mAP50 and mAP50-95 higher
than other experimental groups. This indicates
that the synergy between the SCConv module
and CBAM module can effectively enhance the
overall performance of the model, reducing
feature redundancy while increasing focus on
target regions. The results of the SC-YOLOV9

model experiment are shown in Figure 4.
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Figure 4. SC-YOLOV§ Model Identification
of Crop Results
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5. Conclusion

This study proposes a lightweight detection
framework based on improved YOLOV9 to
address the challenges of dense small target
detection in UAV agricultural scenarios.
Combined with dynamic data enhancement and
loss function optimization strategies, the detection
accuracy and real-time performance are
significantly improved. The main contributions
and conclusions are as follows:

Model  Performance  Improvement: By
introducing lightweight SCConv modules and
CBAM attention mechanisms, the model's ability
to extract multi-scale features is enhanced while
maintaining inference speed. Experiments show
that the improved model achieves an mAP50 of
94.5% in dense small object scenarios, which is
2.2% higher than the original YOLOV9.

Data Augmentation Strategy Optimization: The
proposed dynamic down-sampling and noise
blending injection method effectively alleviates
label misalignment issues caused by scale
diversity in drone imagery. It also enhances
model robustness by simulating complex lighting
and sensor noise. Ablation experiments show that
this strategy leads to better attention on small
targets and strengthens the focus on target areas.
Application value and limitations: The research
results can be applied to crop monitoring, pest
and disease early warning and yield estimation in
precision agriculture, provide technical support
for real-time inspection of drones, and help
agricultural automation and efficient utilization of
resources.

The current research still has the following
limitations: 1) The model is not adaptable to
extreme light conditions (such as strong
backlight); 2) The generalization ability across
crops needs further verification; 3) Data
enhancement depends on manual labeling, and
semi-automatic labeling methods can be explored
in the future.

Expand multi-modal data fusion (such as infrared
and visible light image combination) to improve
detection stability in complex environment;
Explore the deep adaptation of lightweight
models and edge computing devices to reduce
deployment costs;

A cross-regional and multi-crop agricultural
detection benchmark data set was constructed to
promote the research on algorithm generalization
ability.

This study provides an efficient solution for UAV
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agricultural target detection through algorithm
improvement and scenario-based strategy design,
which is both theoretically innovative and has
application potential, laying a technical
foundation for the large-scale implementation of
smart agriculture.
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