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Abstract: To address the challenges of
target recognition difficulty, complex path
planning, and low operational efficiency in
strawberry picking, this paper designs and
implements an intelligent strawberry
picking robot that integrates YOLO V11
object detection and adaptive path planning
technologies. The robot system consists
mainly of a visual recognition module,
motion control module, robotic arm picking
module, and LiDAR module. The visual
system is based on the YOLO V11 deep
learning model, which incorporates the CA
attention mechanism to achieve high-
precision recognition and 3D localization of
strawberry fruits. By integrating a depth
camera with sensor fusion algorithms, the
system effectively identifies strawberries
under various stages of ripeness and
occlusion. The navigation system adopts an
adaptive path planning strategy based on
ROS, combining global path planning with
local obstacle avoidance algorithms to
improve the robot's mobility efficiency and
stability in the complex path conditions of
greenhouse environments. The robotic arm
and end-effector use coordinate
transformation and posture planning to
achieve flexible strawberry picking. This
research provides a feasible solution for the
automation and intelligence of strawberry
picking operations.
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1. Introduction
In recent years, with the rapid advancement
of artificial intelligence, automatic control,
and robotics, agricultural intelligence has
become an important means of enhancing
productivity and reducing labor costs in
agricultural production [1]. In particular,

within the domain of fruit and vegetable
harvesting, where labor shortages and high
labor intensity are common challenges, the
development and application of intelligent
picking robots have attracted increasing
attention [2]. Among these, strawberries
pose especially stringent requirements for
robotic systems due to their delicate texture,
dense distribution, frequent occlusion, and
non-uniform ripening [3]. Traditional
manual strawberry picking is not only
inefficient and costly but also fails to meet
the modern agricultural demand for high-
efficiency and precisely controlled
operations. Therefore, the development of
an intelligent strawberry picking robot that
integrates high-precision perception,
adaptive path planning, and flexible end-
effector operation holds substantial
practical significance and application value
[4].
At present, considerable progress has been
made both domestically and internationally
in the research of fruit and vegetable
picking robots. Early studies abroad,
particularly in countries such as Japan and
the United States, have resulted in the
development of robotic systems for
harvesting oranges, cucumbers, pineapples,
and other crops. These systems have
achieved notable success in aspects such as
object detection accuracy and motion
coordination. For example, robotic arms
equipped with visual sensors have been
employed in greenhouse environments to
identify and harvest fruit [5,6]. However,
many of these systems rely on fixed
structures or track-based mobility, making
them less adaptable to the irregular planting
layouts and dynamic obstacles commonly
found in real agricultural settings.
In China, related research has primarily
focused on the automated picking of
tomatoes, apples, and citrus fruits. Some of
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these studies have demonstrated promising
results in fruit detection using deep learning
and robotic arm control. For instance, a
tomato picking robot developed by Xie
Xiaoxuan and colleagues from the
University of Science and Technology of
China adopts a ROS-based modular control
architecture [7], achieving automated
operation through coordinated image
recognition, path planning, and execution
control. Similarly, scholars such as Wang Li
from Guangdong Polytechnic Institute have
introduced dual-arm structures [8] and
multi-sensor fusion strategies to improve
picking efficiency and recognition accuracy.
Nevertheless, most existing systems still
suffer from limited detection robustness,
weak adaptability to dynamic paths, and
low operational success rates. In particular,
a universally reliable solution for the
complex task of strawberry harvesting has
yet to be established.
In recent years, real-time object detection
networks—especially the YOLO (You Only
Look Once) series—have demonstrated
outstanding performance in agricultural
visual recognition tasks. YOLO V11, the
latest iteration of the series [9], integrates
attention mechanisms within its architecture
[10], significantly enhancing its ability to
detect small objects and maintain
robustness under occlusion conditions
[11,12]. Meanwhile, traditional path
planning algorithms such as Dijkstra and
A*, although effective in generating
feasible paths, still exhibit limitations in
dynamic obstacle avoidance and local path
optimization. Integrating visual perception
with real-time environmental feedback for
adaptive path adjustment has become a key
strategy to improve the autonomy and
efficiency of robotic operations.
Based on the above, this study proposes the
development of an intelligent strawberry
picking robot that integrates YOLO V11-
based visual recognition with adaptive path
planning. The robot system incorporates
advanced object detection algorithms, a
ROS-based task scheduling and path control
framework, and a flexible end-effector
design, enabling accurate fruit localization,
dynamic path adjustment, and low-damage
picking under complex environmental
conditions.

2. Structural Composition and Working
Principle of the Strawberry Picking Robot
Strawberry is a typical low-growing crop,
with plant heights generally ranging from
15 to 30 cm. Its fruits are scattered and
grow close to the ground. Upon ripening,
the fruit color gradually changes from pale
green to bright red. However, in natural
environments, the fruits are often occluded
by stems and leaves. Additionally,
strawberries have short pedicels, dense
spatial distribution, varying sizes, and are
highly susceptible to mechanical damage.

2.1 Structural Composition of the
Strawberry Picking Robot
The growth characteristics of strawberries
necessitate that the design of a strawberry
picking robot possess low-position
operational capability to accommodate
fruits distributed close to the ground; high-
precision visual recognition and localization
capabilities to detect fruits that are partially
occluded by foliage or presented in varying
orientations; and a flexible manipulation
mechanism to minimize fruit damage during
the picking process. Therefore, the
structural design of the picking robot must
fully consider spatial parameters such as
row spacing, plant height, and fruit hanging
positions to ensure adequate
maneuverability and adaptability of the
system during operation. The strawberry
picking robot designed in this study is
shown in Figure 1.

Figure 1. Physical Diagram of the
Strawberry Picking Robot

To meet the increasing demand for integrated
functions such as "non-destructive grasping
and stable post-harvest placement" in practical
applications of strawberry picking robots, this
study introduces a structural innovation in the
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design of the end-effector. The proposed end-
effector adopts a flexible, adaptive three-finger
gripper, model FAE20886, which exhibits
excellent compliance and grasp adaptability.
This design effectively reduces the risk of
compression and mechanical damage to
strawberry fruits during the picking process.
As shown in Figure 2, the gripper primarily
consists of silicone fingers, a linkage
mechanism, a push-rod drive assembly, a
clamping device, and a servo actuation unit.

Figure 2. Flexible Adaptive Three-Finger
Gripper

The three-finger structure can adaptively adjust
its gripping angle and contact surface
according to the shape of the fruit, enabling
flexible grasping of strawberries with varying
sizes and orientations when combined with a
force control strategy. The introduction of this
end-effector significantly enhances the
system’s flexibility in controlling surface
pressure on the fruit, effectively addressing
issues commonly associated with traditional
rigid grippers—such as surface indentation and
peduncle tearing when handling delicate fruits
like strawberries. This, in turn, ensures better
post-harvest fruit integrity and preserves the
commercial value of the produce.

2.2 Working Principle of the Robot
The strawberry picking robot developed in this
study features a highly integrated mechanical
structure, offering strong field maneuverability
and operational stability. The control system is
functionally divided into three major modules:
the mobile chassis system, the sensing and
recognition system, and the robotic arm
execution system. Together, these modules
form a complete intelligent picking workflow
through coordinated operation.
The mobile chassis system adopts a dual-track
drive structure, providing excellent obstacle-
crossing capability and ground adhesion,

making it suitable for uneven terrain in
protected agricultural environments. Equipped
with an embedded encoder and an inertial
measurement unit (IMU), the system achieves
real-time posture estimation and trajectory
control. Utilizing the Robot Operating System
(ROS) navigation framework, the chassis
performs autonomous path planning,
localization, and obstacle avoidance, ensuring
stable navigation to designated operational
areas.
The sensor fusion and recognition system
integrates a binocular RGB camera, laser
rangefinders, and depth perception units. By
fusing image and depth information, the
system enables 3D environmental modeling,
localization, and real-time detection of target
strawberry fruits. During operation, the YOLO
V11 model is deployed on a Jetson Nano
platform to perform front-end object detection.
The relative position of the fruit is calculated
through depth data analysis.
The robotic arm execution system consists of a
multi-degree-of-freedom robotic arm and a
flexible end-effector gripper. The robotic arm
achieves high-precision spatial positioning
through motor-driven actuation and feedback
control. An integrated lifting mechanism and
rotating platform extend the arm’s picking
coverage area. The end-effector is responsible
for gripping, picking, and placing the
strawberry fruit. The system employs an eye-
in-hand configuration, with the lifting guide
rail, rotating components, and visual sensing
unit mounted on the robotic arm, allowing
flexible adjustment of operational postures in
3D space.
Once the picking operation begins, the robot
autonomously navigates to the predefined
working area using its path planning module.
Upon arrival, the sensing and recognition
system is activated to capture images and
perform intelligent crop target identification. If
a target is successfully identified, the system
calculates its coordinates and transmits them to
the robotic arm control module. The robotic
arm then performs path planning and inverse
kinematics computations to drive the end-
effector for fruit picking. If detection fails or
the target is beyond the reachable range, the
system commands the chassis to make fine
position adjustments or adjusts the vertical
height via the lifting platform, initiating a new
round of detection until the picking task is
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completed.
After each picking cycle, the system
automatically proceeds to the next recognition
and execution task, forming a continuous and
efficient closed-loop workflow. This system
architecture not only enhances the level of
automation in strawberry harvesting but also
significantly improves adaptability to complex
cultivation environments. Figure 3 illustrates
the overall workflow of the robot.

Figure 3. Robot Workflow Diagram

3. Design and Implementation of
Autonomous Navigation
During the operation of the strawberry picking
robot, the performance of the navigation
system directly determines its mobility and
operational efficiency in complex cultivation
environments. To enable efficient autonomous
movement within semi-structured
environments such as greenhouses or plant
factories and to accurately reach designated
picking areas, this study designs an adaptive
path planning navigation system that integrates
visual perception, LiDAR, inertial
measurement units (IMU), and deep learning-
assisted localization. This system dynamically
adjusts the travel path in response to
environmental feedback, thereby improving
navigation accuracy and obstacle avoidance

capabilities.
The system is modularly integrated based on
the Robot Operating System (ROS) platform,
and a navigation subsystem with adaptive path
adjustment capabilities is developed for the
strawberry picking robot. By seamlessly
combining multi-source environmental
perception, map construction, path planning,
and motion control, the navigation subsystem
achieves efficient autonomous navigation in
complex agricultural environments. It
primarily relies on a fusion of sensors—
including LiDAR, IMU, wheel odometry, and
an RGB-D camera—to build an environmental
perception module that continuously collects
spatial structure and obstacle distribution data
in real time.
The system employs Google’s open-source
Cartographer algorithm to construct a high-
resolution 2D occupancy grid map and utilizes
the Adaptive Monte Carlo Localization
(AMCL) algorithm to achieve precise, real-
time localization of the robot within the map.
For path planning, a hybrid strategy combining
global and local planning is adopted. The
Dijkstra algorithm is used to generate optimal
paths on the global map, while the Dynamic
Window Approach (DWA) algorithm is
applied to perform local path adjustments and
real-time obstacle avoidance.
Motion control is managed by an STM32-
based embedded controller, which receives
velocity commands from the ROS planning
module and dynamically adjusts wheel speeds
to ensure accurate path tracking and pose
correction. Under the coordinated operation of
sensor fusion and a closed-loop control
mechanism, the system demonstrates strong
environmental adaptability and path self-
adjustment capabilities. It effectively addresses
challenges such as dense obstacles and
dynamic path changes in plant factories or
greenhouse environments, thereby ensuring the
continuity and efficiency of the picking
operation.
To ensure precise navigation within planting
areas, the first step involves constructing a
high-quality 2D occupancy grid map. In this
study, the open-source Cartographer algorithm
is employed for map construction, and the
process is illustrated in Figure 4.
During the initial operation, the robot utilizes
LiDAR to scan the surrounding environment,
acquiring point cloud data and generating an
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initial sub-map. Subsequently, a point cloud
matching algorithm is employed to estimate
the robot’s relative pose, which is continuously

integrated with previously generated sub-maps,
thereby completing the mapping of the entire
operational area.

Figure 4. Framework of the Robot Modeling and Navigation System
Given the relatively structured environment
and sparse visual features within plant factory
cultivation zones, LiDAR-based mapping may
suffer from point cloud mismatches, leading to
mapping errors. To enhance map accuracy, the
system incorporates an Inertial Measurement
Unit (IMU) and wheel odometry as auxiliary
sensors. These sensors provide additional
constraints on the pose estimation process
within the Cartographer algorithm, effectively
mitigating drift.
In experimental validation, the robot
maintained a constant speed of 0.3 m/s and
successfully completed high-precision
mapping along one aisle of the plant factory.
As shown in Figure 5, the resulting map
clearly depicts the layout of the planting racks
and the width of the passageways.

Figure 5. Mapping and Navigation Diagram
After completing the construction of the
environmental map, the system utilizes the
generated 2D occupancy grid map as the
Global Costmap for navigation path planning
and optimization. During actual operations, the
robot first determines its global initial pose
within the map using the Adaptive Monte
Carlo Localization (AMCL) algorithm. This

algorithm, based on particle filtering,
integrates data from LiDAR, IMU, and the pre-
built map to achieve robust pose estimation,
enabling the robot to accurately localize itself
even under conditions of high uncertainty.
Once localization is complete, the system
assigns a target coordinate and activates the
path planning module, which is managed and
scheduled by the move_base package within
the Robot Operating System (ROS). For path
planning, a combined global and local
planning strategy is employed. The global
planner uses the Dijkstra algorithm to compute
the optimal path from the current position to
the target based on the Global Costmap. The
Dijkstra algorithm offers strong path-search
capabilities in complex grid topologies,
effectively avoiding static obstacles and
ensuring global reachability.
To address dynamic environments or
unexpected obstacles, the system employs the
Dynamic Window Approach (DWA) as the
local path planner. DWA generates a series of
feasible trajectories in the velocity space by
considering the robot’s current motion state,
target direction, and nearby obstacle
information. A cost function is then used to
evaluate these trajectories, selecting the
optimal one and outputting the corresponding
linear and angular velocity commands. During
this process, the robot continuously updates the
environmental model using real-time sensor
data and dynamically adjusts the Local
Costmap according to predefined inflation
parameters, thereby enhancing obstacle
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perception redundancy and improving the
responsiveness of obstacle avoidance, ensuring
dynamic path adjustment and stable execution.
Traditional path planning systems that rely
solely on LiDAR and IMU data may exhibit
delayed responses and suboptimal path
selection when confronted with complex
agricultural scenarios such as occluded
strawberries or tilted plant growth within
passageways. To address this limitation, this
study integrates a front-mounted RGB-D
vision module into the path planning
framework, enabling visual perception to
inform adaptive navigation decisions. As the
robot approaches the target area, the system
activates the YOLO V11 model to analyze the
number and spatial density of ripe strawberries
ahead. If a high concentration of targets is
detected, the robot decelerates and adjusts its
navigation direction toward the cluster. Using
the forward-facing camera, the system assesses
plant tilt and passage occlusion. If the
occlusion area exceeds a defined threshold, the
robot autonomously modifies its posture or
selects an alternative path. Visual perception
results are projected onto the Local Costmap,
marking obstacle regions and triggering
recalculation of the local path, thereby
equipping the navigation strategy with
predictive capabilities and decision-making
functionality.
Finally, the target velocity commands
generated by the path planning module are
transmitted via serial communication in ROS
to the STM32 embedded controller. Based on a
differential drive model, the controller
computes the actual speeds for the left and
right wheels and employs a PID control
algorithm to adjust wheel velocities, enabling
the robot to smoothly follow the planned
trajectory and achieve autonomous navigation.

4. Visual Recognition Design
In the strawberry-picking robot system, the
accuracy of the visual perception module and
the precision of target localization are critical
to the overall operational efficiency and
system stability. The strawberry cultivation
environment is highly complex, with densely
distributed fruits that vary in ripeness, are
often partially occluded, and may grow in
overlapping clusters. Traditional image
recognition methods based solely on color or
shape features are insufficient to meet the

demands of such dynamic field conditions. To
address this challenge, this study proposes a
visual recognition system based on the YOLO
V11 deep learning model, enhanced with a
Coordinate Attention (CA) mechanism. By
integrating a depth camera and multi-sensor
fusion technology, the system achieves high-
precision detection and three-dimensional
spatial localization of strawberry fruits,
thereby providing reliable data support for
subsequent path planning and end-effector
manipulation.
YOLO (You Only Look Once) represents a
class of efficient one-stage object detection
networks known for their rapid detection speed,
lightweight architecture, and suitability for
embedded deployment. Building upon the
YOLO V11 model, this study introduces
further enhancements by incorporating the
Coordinate Attention (CA) mechanism. Unlike
traditional channel attention mechanisms, the
CA module incorporates spatial positional
information into the computation of channel
weights, thereby improving the model's ability
to represent target regions in complex
backgrounds.
Structurally, YOLO V11 employs multi-scale
feature fusion and an improved neck module,
which facilitates the capture of image features
of strawberry fruits across varying scales and
orientations. The integration of the CA module
significantly enhances the model’s capacity to
perceive occlusions and densely clustered
targets. The updated architecture incorporating
the CA attention mechanism is illustrated in
Figure 6.

Figure 6. Algorithm Framework
Incorporating the Coordinate Attention

(CA) Mechanism
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To further enhance the intelligence of picking
decision-making, the system extends the
output structure of the YOLO model to enable
automatic assessment of strawberry fruit
ripeness. In the annotated dataset, ripeness
level labels are introduced (green/unripe,
partially ripe with red and green, and fully
red/ripe for picking). During training, the
model learns the color, texture, and
morphological features associated with
different ripeness levels. In the inference phase,
the model outputs not only bounding box
coordinates and confidence scores but also the
predicted ripeness category. This mechanism
enables the robot to accurately identify
harvestable targets even in scenarios involving
overlapping fruits or interference from unripe
specimens, thereby improving the precision
and efficiency of the picking actions.
Additionally, the system employs a joint
decision mechanism based on confidence and
ripeness thresholds to avoid false positives and
mispicks.
Relying solely on 2D image recognition cannot
satisfy the high-precision spatial requirements
of the end-effector. To enable 3D localization,
the system is equipped with a depth camera
(Intel RealSense D435i) in addition to the
RGB camera, allowing for real-time
acquisition of RGB images alongside
corresponding depth data. Through coordinate
mapping, the 2D bounding boxes identified by
the YOLO model are projected onto the depth
map to obtain the spatial depth of the target’s
center point. To further improve the accuracy
of 3D localization, the system integrates data
from the IMU and wheel odometry, employing
an Extended Kalman Filter (EKF) to achieve
visual-inertial fusion localization. This
enhances the robustness and temporal
consistency of the depth data.
Moreover, the system incorporates a viewpoint
selection mechanism: when a strawberry target
is detected at an oblique angle or with blurred
boundaries in the image, the system selects an
optimal viewpoint for re-detection to improve
localization accuracy. The final output of the
3D localization module is a spatial position
vector (X, Y, Z) of the target within the robot’s
coordinate frame, which serves as the input for
the robotic arm path planning module.
Experimental results demonstrate that within a
range of 1.2 meters, the localization error is
controlled within ±1.5 cm, meeting the

precision requirements for agricultural
harvesting.
Given that strawberry fruits are often partially
occluded by leaves or adjacent fruits during
growth, the system incorporates an occlusion
recognition and compensation strategy to
improve the comprehensiveness and reliability
of target detection. By introducing a visible
area evaluation module into the YOLO output
features, the system calculates a visibility score
for each detection box. If the target’s visibility
is below a specified threshold but exhibits
clear ripeness characteristics, it is marked as a
“partially visible target” and enters the
intelligent compensation process.
The compensation mechanism allows the robot
to adjust its posture or reposition itself to
observe the target from different angles,
enabling multi-view fusion detection to
reconstruct the complete contour. In parallel,
based on the edge morphology of the target
and the spatial distribution of nearby fruits, the
system employs a lightweight point cloud
completion network to reconstruct the spatial
shape of the target and assist in preliminary
pose estimation.
This mechanism significantly improves
detection and localization of partially occluded
fruits. Field tests show an occlusion
recognition accuracy of 92.6%, effectively
reducing target omission and maintaining
harvesting efficiency. The recognition results
are illustrated in Figure 7.

Figure 7. Strawberry Recognition Result
Diagram

Table 1 presents the experimental data for
visual recognition using the original YOLO
V11 algorithm and the enhanced YOLO V11
algorithm integrated with the compensation
mechanism and the Coordinate Attention (CA)
module.
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Table 1. Experimental Data Comparing the
Original YOLO V11 Algorithm and the
YOLO V11 Algorithm Enhanced with

Coordinate Attention (CA) Mechanism and
Compensation Strategy

Algorithm Recall Precision mAP%
YOLO v11 0.894 0.859 88.5

YOLO v11+CA 0.937 0.948 92.6
As shown in Table 1, the introduction of the
Coordinate Attention (CA) mechanism and the
compensation strategy significantly improved
the performance of the YOLO V11 algorithm.
The recall increased from 0.894 to 0.937, the
precision improved from 0.859 to 0.948, and
the mean Average Precision (mAP) rose from
88.5% to 92.6%. These results indicate that the
enhancements to the visual recognition system
effectively improve the robustness of the
picking process and enhance overall harvesting
efficiency.

5. Conclusion and Outlook
This study addresses the challenges
encountered in the strawberry-picking process
within protected agriculture, such as complex
target recognition, uncertain navigation paths,
and the fragility of the fruit. An intelligent
strawberry-picking robot was designed,
integrating the YOLO V11 object detection
algorithm with an adaptive path planning
mechanism. The developed robot demonstrated
strong performance in terms of fruit
recognition accuracy, navigation stability, and
flexible manipulation, thereby validating the
effectiveness and practicality of the multi-
module integrated design. This system offers
valuable technical support for real-world
agricultural harvesting applications.
Despite the promising experimental results,
challenges such as significant morphological
variability among strawberry plants and the
highly dynamic nature of operational paths
continue to pose uncertainties. Future research
will focus on rapid reconstruction of the
navigation system and the development of
cooperative mechanisms to further enhance the
system’s generalization capability and
practical value in agricultural environments.
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