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Abstract: This paper studies the
coordinated optimization control strategy of
multi-energy storage system (MESS),
especially improving the energy utilization
efficiency and economic benefits of the
system through model predictive control
(MPC) and intelligent algorithm
optimization methods. With the rapid
development of renewable energy and smart
grids, how to efficiently dispatch various
energy storage devices has become a key
issue. The paper analyzes the advantages
and disadvantages of centralized and
distributed control strategies, and proposes
to optimize the collaborative scheduling of
energy storage equipment through the
multi-agent system (MAS). The simulation
results show that distributed control
performs better than centralized control in
terms of energy loss, economic benefits and
system stability. The distributed control
strategy can significantly reduce the total
energy loss and improve economic benefits.
Finally, the research points out that in the
future, the control strategy should be
further optimized to enhance the robustness
and adaptability of the system in order to
cope with the challenges in complex
dynamic environments.
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1. Introduction
Multi-energy storage system (MESS) is
increasingly widely applied in modern power
systems, especially against the backdrop of
large-scale access to renewable energy, the
popularization of smart grids and electric
vehicles. MESS achieve system optimization,
improve energy utilization efficiency and
reduce costs by coordinating different types of
energy storage devices (such as battery energy

storage, supercapacitors, flywheel energy
storage, etc.). However, due to the diversity
and complexity of energy storage technologies,
their coordinated optimization control
strategies have become one of the current
research hotspots.
The coordinated optimization problem of
multiple energy storage systems involves the
application of various control methods. Zhao et
al. [1] proposed a coordinated optimization
method based on Model Predictive Control
(MPC) by constructing a dynamic optimization
model of MESS, aiming to minimize system
costs and losses by real-time prediction and
adjustment of the charging and discharging
strategies of each energy storage device. Wang
et al. [2] studied the optimization-based control
strategy, combining the Particle Swarm
Optimization Algorithm (PSO) and Support
Vector Machine (SVM), and proposed a multi-
objective optimization energy storage
scheduling method to improve the efficiency
of MESS. With the development of intelligent
technology, more and more studies have
applied machine learning methods to the
optimal control of MESS. Li et al. [3]
proposed an energy storage optimization
control method based on deep learning. By
training a neural network model to predict load
demand and optimize the charging and
discharging strategies of energy storage
equipment, the accuracy of energy
management and system efficiency can be
improved. This method can respond quickly in
a dynamic environment and effectively solve
the limitations of traditional methods when
dealing with nonlinear and uncertain problems.
In the coordinated control of MESS, the
handling of constraint conditions has always
been an important issue. Zhang et al. [4]
conducted a detailed modeling of the MESS,
considering multiple constraints such as the
charging and discharging efficiency, capacity
limit, and response time of the energy storage
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equipment, and proposed a control strategy
based on constraint optimization. This strategy
can effectively balance the scheduling and
coordination among different energy storage
devices and optimize the global energy
efficiency. Khan et al.[5] proposed an
optimization method based on cooperative
game theory for the coordinated control
problem in distributed energy storage systems.
This method achieves the optimal coordination
of the entire system by constructing a game
model, enabling each energy storage device to
make decisions based on its own needs and
goals. This method avoids the computational
bottleneck in the traditional centralized control
method and improves the response speed of the
system. In addition, considering the dynamic
characteristics of MESS, researchers have also
made many contributions to the stability and
robustness of the systems. Chen et al. [6]
adopted the robust control method to study the
stability problem of MESS under uncertain
conditions such as grid load fluctuations and
energy storage equipment failures. Xu et al. [7]
proposed a method based on Life Cycle
Analysis (LCA), combined with environmental
costs and economic benefits, to optimize the
scheduling of MESS, aiming to reduce the
carbon emissions and environmental impact of
the systems. This method not only takes into
account the economy of the system, but also
takes into account the sustainable development
goals, providing a new idea for the
optimization of future MESS.
To sum up, although a large number of studies
have proposed coordinated optimization
control methods for MESS, there are still many
challenges in aspects such as the complexity of
system modeling, the computational
requirements of real-time control, and the
coordination strategies of different energy
storage devices. Therefore, future research
should continue to explore how to combine
intelligence, distributed control and
optimization algorithms to enhance the
performance and reliability of MESS in
practical applications.

2. Design of Control Strategies
In the coordinated optimization control
problem of multi-energy storage systems, the
core objective is to achieve the optimization of
system performance through reasonable
control strategies. This includes but is not

limited to maximizing energy utilization
efficiency, reducing operating costs, and
enhancing the stability and reliability of the
system. With the rapid development of
renewable energy, especially the volatility and
uncertainty of solar and wind energy, how to
efficiently schedule multiple energy storage
devices to cope with load changes and the
uncertainty of energy supply has become an
urgent problem to be solved. multi-energy
storage systems typically incorporate various
types of energy storage devices (such as
batteries, supercapacitors, flywheels, etc.),
each with distinct charging and discharging
characteristics, response speeds, and
efficiencies [8]. Therefore, how to coordinate
the working states of these devices to ensure
the high efficiency and stability of the overall
system operation is one of the core issues in
this field of research. In addition, multi-energy
storage systems need to maintain high
operational reliability under various operating
scenarios (such as grid failures, load
fluctuations, or malfunctions of energy storage
devices), avoiding risks like over-discharge or
overcharging, and ensuring the safety and
long-term stable operation of the system [9-11].
The coordinated and optimized control strategy
of multiple energy storage systems is the key
to ensuring their efficient operation. Due to the
differences among various types of energy
storage devices in terms of performance,
response time, energy conversion efficiency,
etc., how to design an appropriate coordinated
and optimized control strategy to enable each
energy storage device to work collaboratively
at the entire system level is an important topic
in current research. The design of control
strategies must take into account the
complexity of multi-energy storage systems,
including the dynamic characteristics of the
system, the coordination among various
devices, system constraints, and changes in the
external environment, etc. This section will
introduce three main control strategies: model-
based optimization control strategy, intelligent
algorithm-based optimization control strategy,
and distributed control-based coordination
strategy. Each strategy will be combined with
actual models and algorithms to analyze its
application in multi-energy storage systems.

2.1 Model-based Optimization Control
Strategy

28 Journal of Engineering System (ISSN: 2959-0604) Vol. 3 No. 2, 2025

http://www.stemmpress.com Copyright @ STEMM Institute Press



The model-based optimization control strategy
is to conduct system scheduling and
optimization through dynamic modeling of
multi-energy storage systems, combined with
real-time data and system models. The most
common models include linear models,
nonlinear models and optimization-based
scheduling models. MPC is one of the most
widely used strategies in this type of method.
The basic idea of MPC is to predict future
behaviors through the dynamic model of the
system and solve for the optimal control input
within each control cycle. The MPC control
strategy is usually divided into three main
steps:
2.1.1 System modeling
Establishing a mathematical model based on
the physical characteristics of the system, such
as the charging and discharging characteristics
of energy storage devices and energy
conversion efficiency. Assuming that the
charging and discharging processes of energy
storage devices conform to certain dynamic
equations, the state space model is usually
adopted for representation:

Bu(k)Ax(k))x(k 1 (1)
Among them, x(k) represents the system status,
such as the battery level of energy storage
devices, charging and discharging power, etc.
u(k) represents the control input, that is, the
charging and discharging power of the energy
storage device.
2.1.2 Optimization objectives and constraints

Setting the optimization objective function,
such as minimizing the total energy loss of the
system, maximizing economic benefits or
improving system stability. The common
objective functions are:

 


N

k
k)))penalty(u(λ))t(x(k),u(k(J

0
cos (2)

Constraint conditions include capacity
limitations of energy storage devices, charging
and discharging rate limitations, energy
conversion efficiency, etc. Formally, they are:

yMaxCapacitx(k)Capacity  (3)
ingPowerMaxChu(k)ingPowerMin/MaxCh argarg  (4)

2.1.3 Optimization solution
The existing optimization algorithms (such as
linear programming, nonlinear programming
or dynamic programming) are utilized to solve
the optimal control input and applied to the
next time step. The key to this process lies in
how to solve optimization problems quickly
and accurately, especially in large-scale
systems.
The MPC method continuously adjusts the
dispatching strategy of energy storage devices
by updating the system status and optimization
objectives in real time (as shown in Figure 1).
In order to improve the computational
efficiency, heuristic optimization algorithms
(such as particle swarm optimization and
genetic algorithm) are often adopted to
accelerate the optimization process. These
algorithms can search for the global optimal
solution more efficiently and avoid the trouble
of local optimal solutions.

Figure 1. MPC Scheduling Flowchart
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2.2 Optimization Control Strategy Based on
Genetic Algorithm
Intelligent algorithms provide efficient tools
for handling complex problems by simulating
the evolutionary process in nature or swarm
intelligence. Compared with traditional
optimization algorithms, intelligent algorithms
have a stronger global search ability and can
effectively avoid getting trapped in local
optimal solutions. Therefore, they are widely
used in the optimal scheduling of multi-energy
storage systems. Genetic algorithms search for
the optimal solution by simulating the
evolutionary processes of organisms (selection,
crossover, mutation, etc.). In the scheduling
problem of multi-energy storage systems, the
main steps of the genetic algorithm are as
follows:
Encoding and initial population generation:
Firstly, encode each scheduling parameter of
the system (such as the charging and
discharging power, operating time, etc. of each
energy storage device) as chromosomes. The
initial population randomly generates several
sets of solutions as the starting point of the
search.
Selection operation: By calculating the fitness
of each chromosome (i.e., the objective
function value), individuals with higher fitness
are selected for reproduction.
Crossover and mutation: Perform crossover
and mutation operations on the selected
individuals to generate new populations. These
two operations simulate the recombination and
mutation of genes, enhancing the diversity of
the search space.
Termination condition: When the
predetermined maximum number of iterations
is reached or a certain convergence condition
is met, the algorithm stops and outputs the
optimal energy storage device scheduling
scheme.

2.3 Coordination Strategy Based on
Distributed Control
The distributed control strategy achieves the
optimization of the entire system by allocating
the control tasks in the system to each energy
storage device and utilizing local information
and self-decision-making capabilities.
Compared with centralized control, distributed
control has higher scalability and robustness,
and can effectively reduce communication

costs and improve the flexibility of the system.
In distributed control, the coordination among
energy storage devices is often achieved
through multi-agent systems (MAS). multi-
energy storage systems typically consist of
multiple energy storage devices, each with
distinct performance characteristics such as
charging and discharging efficiency, maximum
charging and discharging power, and storage
capacity. How to coordinate various energy
storage devices to optimize the operation of the
entire system is an important issue in
distributed control. Under the framework of
MAS, the application of distributed control
strategies can achieve the following goals.
2.3.1 Optimizing the dispatching of energy
storage equipment
In a MESS, each energy storage device can be
regarded as an agent, responsible for making
decisions based on its own state, demands and
environment. Through the collaborative
mechanism of MAS, agents can exchange
information with each other, understand the
overall load of the system, equipment status
and other information in real time, and thereby
optimize the charging and discharging
strategies of each device. The goal of each
energy storage device is to maximize its own
benefits, for instance, by making the most of
the price difference in the electricity market to
achieve economic benefits, while ensuring that
it does not exceed the constraints such as the
maximum charging power and battery capacity
of the device.
For instance, suppose there are multiple energy
storage devices in the system. Each device can
choose to charge, discharge or be in standby
mode, and each device makes decisions based
on its own status and market demand. Through
the MAS model, each energy storage device
(agent) will execute a local optimal strategy
and collaborate with other agents by sharing
information, ultimately achieving global
optimal scheduling.
2.3.2 Load forecasting and demand response
The dispatching of multi-energy storage
systems not only depends on the characteristics
of the equipment itself, but also needs to take
into account the external load demand and
changes in the power market. Under the
framework of MAS, each agent can make
predictions based on historical load data and
formulate appropriate response strategies. For
instance, when it is predicted that the load
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demand will increase, the system can activate
more energy storage devices for charging, and
when the demand decreases, the system can
choose to discharge the energy storage devices
to balance the power supply and demand.
The advantage of MAS lies in that each agent
can make adaptive adjustments based on local
demand information instead of relying on a
central control system, thereby avoiding
bottlenecks in the information transmission
and decision-making process. Furthermore,
MAS can cope with changes in the external
environment (such as fluctuations in electricity
market prices, fluctuations in electricity
demand, etc.), respond quickly, and enhance
the flexibility and robustness of the system.
2.3.3 Coordination and game theory
In multi-energy storage systems, there may be
resource competition and target conflicts
among multiple energy storage devices. For
instance, multiple energy storage devices may
compete for the same charging resources or
profits in the electricity market. To coordinate
the behaviors of these devices, MAS can
introduce game theory models. Game theory
helps each agent optimize based on the
decisions of other agents by setting the strategy
space and payment function, and ultimately
reaches an equilibrium state. The application
of game theory can be divided into two
categories: cooperative games and non-
cooperative games. In cooperative games,
various agents reach a consensus strategy
through negotiation and information sharing,
thereby maximizing the overall benefits. In
non-cooperative games, each agent makes
decisions based on its own benefits. Eventually,
the Nash equilibrium state is reached through
the game, that is, each agent selects the
optimal strategy, and no agent can obtain
higher returns by unilaterally changing the
strategy.

3. Simulation and Verification
In the research and application of multi-energy
storage systems, simulation and verification
are important means to test the effectiveness of
control strategies. Through simulation tests,
the operation of the system can be simulated
based on actual data (such as load demand,
energy price fluctuations, etc.) to evaluate the
performance of different control strategies,
especially the advantages and disadvantages of
distributed control and centralized control. In

this study, we adopted simulation tools such as
Matlab/Simulink to implement the control
strategy of the MESS and conduct
performance verification.

3.1 Simulation Environment and Model
Establishment
The simulation environment is usually
established on the basis of a known system
dynamic model, including factors such as the
charging and discharging characteristics of
energy storage devices, load requirements,
energy prices, and control constraints. We
established the simulation environment
through the following steps:
3.1.1 Energy storage system model
The energy storage system is composed of
multiple different types of energy storage
devices (such as batteries, supercapacitors,
flywheels, etc.), each of which has different
parameters such as charging and discharging
power limits, maximum capacity, and charging
efficiency. The system model takes into
account the interactions among various devices
and uses the state space model for dynamic
description:

Bu(k)Ax(k))x(k 1 (5)
Among them, x(k) represents the state of the
energy storage system at time at time k , u(k)
is the control input, that is, the charging and
discharging power of each energy storage
device, and A and B are the state transition
matrix and control matrix of the system
respectively.
3.1.2 Load demand and energy price model
In order to be closer to practical applications,
load demand and energy price fluctuations are
factors that cannot be ignored in the system.
Load requirements are usually simulated based
on actual load data and are typically modeled
using time series prediction models. The
fluctuation of energy prices simulates the
pricing mechanism of the electricity market
and predicts the future trend of price changes
based on historical data of market prices.
In the simulation, the load demand and energy
price are passed into the control system as
input signals to test the performance of
different scheduling strategies in the face of
different market environments and load
fluctuations.
3.1.3 Control strategy model
We conducted simulation verification on two
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control strategies: centralized control and
distributed control (based on Multi-agent
System MAS). Centralized control usually
involves a single central controller making all
decisions, while distributed control makes
decisions through multiple agents (energy
storage devices). These agents exchange
information through communication to jointly
optimize the overall benefits of the system.

3.2 Simulation Results and Performance
Comparison
3.2.1 Simulation settings
To compare the advantages and disadvantages
of centralized and distributed control strategies,
we have designed the following simulation
Settings:
Simulation time: 24 hours (a complete power
load cycle)
Number of energy storage devices: 5 energy
storage devices (batteries, supercapacitors,
flywheels, etc.)
Load demand fluctuation: Simulate a typical
24-hour load demand curve, including morning
rush hour, evening rush hour and off-peak
hours.
Energy price fluctuations: Modeling based on
historical electricity market price data to
simulate price fluctuations.
3.2.2 Control strategy 1: centralized control
In centralized control, the scheduling of all
energy storage devices is determined by a
central controller. The central controller
monitors the global status in real time (i.e., the
status information and load demand of all
energy storage devices), and generates
dispatching instructions based on the
optimization objective function (such as
minimizing total energy loss or maximizing
economic benefits). Suppose the objective
function is:

 


N

k
total P(u(k)))λ)(x(k),u(k)(CJ

0
(6)

Among them, )(x(k),u(k)Ctotal is the total cost of
the system, and P(u(k)) is the penalty term for
controlling the input.
3.2.3 Control strategy 2: distributed control
(MAS)
In distributed control, energy storage devices
participate in the decision-making process as
agents. Each energy storage device selects its
own charging and discharging strategy based
on local information and communication with
other devices. The goal of each agent is to

maximize its own benefits and achieve the
optimization of the overall goal through
cooperation and competition with other agents.
The optimization model is:

(k))i(uiPλ(k)))i(k)，ki（xi(J(k)*
iu  minarg (7)

Among them, (k))i(k)，ki(xiJ are the local cost
functions of the energy storage device
i , (k))i(uiP is the penalty for the control input
that does not conform to the constraints.

3.3 Simulation Result Analysis
3.3.1 Comparison of total energy loss
The simulation results show that when the
distributed control strategy (MAS) is adopted,
the total energy loss of the system is reduced
by approximately 12% compared with the
centralized control strategy. The specific data
are shown in Table 1.
Table 1. Comparison of Total Energy Losses

of Two Control Strategies

Control strategies Total energy
loss (kWh)

Energy loss
saved (%)

Centralized control 45.6 -
Distributed control
strategy (MAS) 40.1 12%

As can be seen from Table 1, the distributed
control strategy can effectively reduce the total
energy loss. This is mainly attributed to the
coordination and optimization of each energy
storage device, enabling the energy storage
devices to allocate charging and discharging
tasks more reasonably during different load
demand periods.
3.3.2 Comparison of economic benefits
Considering the impact of energy price
fluctuations, distributed control strategies also
perform well in optimizing economic benefits.
When distributed control is adopted, the
system can charge when the electricity price is
low and discharge when the electricity price is
high, thereby maximizing economic benefits.
The specific data are shown in Table 2.
Table 2. Comparison of Economic Benefits

of Two Control Strategies

Control strategies
Total

economic
benefit (USD)

Enhanced
economic
benefits (%)

Centralized control 120 -
Distributed control
strategy (MAS) 138 15%

Table 2 shows that distributed control can not
only reduce energy loss but also improve the
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economic benefits of the system by 15%.

4. Conclusion
Simulation tests show that the distributed
control strategy (MAS) has significant
advantages over centralized control.
Distributed control can not only effectively
reduce energy loss and improve the economic
benefits of the system, but also maintain the
stability of the system when dealing with load
fluctuations and changes in market prices.
Through simulation and verification, we have
verified the effectiveness of the proposed
control strategy in multi-energy storage
systems, providing strong support for practical
applications. Future research can further
optimize the communication mechanism of
MAS, reduce the delay of information
transmission, and introduce more dynamic
factors (such as environmental changes,
equipment failures, etc.) at the same time,
making the control strategy more robust and
adaptive.
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