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Abstract: This study selects closing prices
of Chinese and US stock market indices as
research subjects and constructs a bivariate
Gumbel Copula model to investigate the
return relation between this two markets.
This paper reveals that the closing prices of
Chinese and US stock market indices do not
follow a normal distribution. By plotting
bivariate frequency distribution histograms,
the study identifies asymmetric tail risks
between the two markets, with sample data
primarily concentrated in the upper tail.
The bivariate Gumbel Copula model
demonstrates superior performance in
capturing upper-tail correlations compared
to the bivariate normal Copula model.
Parameter estimations from the Gumbel
Copula model consistently indicate robust
positive correlations, whether analyzing the
correlation between CSI 300 and S&P 500
indices or the CSI 300 and NASDAQ
indices. Tail risk measurements across two
sample groups show no significant
differences in tail correlation coefficients.
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1. Introduction
As the main and important economies in this
world, the United States and China have stock
markets that hold significant positions
globally and offer investors a wide range of
financial products. Against this backdrop,
international investors often allocate funds
among global stock markets to optimize their
asset portfolios. There are certain differences
between the US and Chinese financial markets
in terms of product design, trading systems,
and regulatory frameworks. These differences
provide investors with a rich array of financial
risk management methods. Investors can
conduct various operations across different

markets to mitigate risks associated with
single-market investments, such as country
and policy risks. This cross-market investment
approach is of great strategic significance to
investors.
Based on the above background, the
interlinkage effect between the Chinese and
US financial markets has always been a focal
point in the global financial system. This
interlinkage effect reflects, to a certain extent,
the depth and breadth of global economic
integration. Therefore, in-depth research and
understanding of this interlinkage effect are of
great significance for investors in formulating
investment strategies, financial institutions in
managing risks, and regulatory authorities in
maintaining financial market stability.
Domestic and international scholars have
achieved certain research results on the
relation between the Chinese and US finance
markets, providing plenty of theoretical bases
for subsequent empirical studies.
Gong and Huang [1] used a time-varying
t-Copula model to enquire the effect of the
subprime crisis on China's stock market. The
results showed that the strong fluctuations in
the US stock market triggered by the subprime
crisis would be transmitted to the stock market
through the other stock market, with phased
changes. Zhang et al.[2] estimated the Copula
model function using the rank correlation
coefficient between the SCI and the S&P 500
Index to explore the correlation between the
Chinese and US stock markets during the
financial crisis. The results indicated that the
tail correlation between the two markets was
close to symmetric independence. Cao and Lei
[3] analyzed whether the tail risk contagion
effect in reference to the Chinese and US
stock markets had changed against the
backdrop of the Sino-US trade war using a
time-varying twisted mixed Copula model.
The study found that the likelihood of risk
contagion between the two countries' stock
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markets increased because of the Sino-US
trade war. Zheng et al. [4] used a block-mixed
Copula model to analyze the daily closing
prices of the Shanghai Composite Index and
the S&P 500 Index from 2001 to 2020,
identifying the correlation structure and the
direction of risk contagion between the US
and Chinese stock markets. The research
found that the two markets exhibited
asymmetry under extreme market conditions.
He et al. [5] combined traditional models with
Copula theory models to explore the risk
dependency structure between the US and
Chinese bond markets and stock markets. The
results showed that the US and Chinese bond
markets had a certain negative impact on the
stock markets and revealed the dependency of
risks. Between the US and Chinese stock
markets, Chen and Zhou [6] looked into the
dynamic interdependency structure and risk
spillover effects in accordance with the R-vine
Copula complex network analysis method.
The study found that the interdependence
structure of the two markets varied across
different sectors, and the market fluctuations
of the US and Chinese stock markets were
positively correlated.
In addition to using Copula models, scholars
have also attempted to use other models to
examine the correlation between the two
markets. Based on the time-varying parameter
generalized autoregressive conditional
heteroskedasticity model (TVP-GARCH-M),
He and Dong [7] analyzed the risk preferences
of investors using the stock markets trading
data of US and Chinese and employed the
Granger causality test in order to understand
the relationship between the risk preferences
of investors in the two noteworthy markets.
The study found that changes in the risk
preferences of US stock market investors
would lead to changes in the risk preferences
of Chinese stock market investors, thereby
affecting the return changes in the US and
Chinese stock markets to a certain extent.
Wang and Zhou [8] used wavelet coherence
spectrum and GARCH-Copula methods to
study the time-varying correlation mechanism
of stock market volatility between the US and
China. The study found that there were
extreme co-upward movements in the US and
Chinese stock indices. Du et al. [9] used an
ARJI-GARCH model to investigate the risk
contagion particular attribute between the US

and Chinese security market during the
COVID-19 pandemic. The results showed that
the dependency between the two countries'
stock markets increased during the pandemic,
with a certain degree of risk contagion. Chen
et al. [10] used the MF-DCCA model to clarify
the multiple fractal characteristics of the CSI
300 Index and the S&P 500 Index, revealing
that there were different correlations at
different stages, further indicating the diverse
correlations between the US and Chinese
security trading markets.
Some scholars have used certain factors in the
market to study the disturbance of these
factors on external markets. Li and Fang [11]

explored the correlation between the US and
Chinese stock markets from the perspective of
investor sentiment in the market. Through
empirical research, they found that US
investor sentiment did have an impact on
Chinese stock returns. This sentiment first had
a negative impact on Chinese stock returns
and then turned to a positive impact,
indicating to a certain extent that there was a
return correlation between the US and Chinese
stock markets. Wang et al. [12] studied the
impact of US tariff policies on the volatility of
China's stock market in the context of the
Sino-US trade war. The results showed that
the volatility of stocks of products subject to
tariffs would significantly increase.
Based on the above background, this paper
selects the daily closing prices of the CSI 300
Index from China's stock market and the S&P
500 Index and the NASDAQ Index from the
US stock market as representatives of the two
markets. Using the theory of bivariate Copula
functions as a framework, this paper
constructs a bivariate Gumbel Copula function
model to study the return correlation between
the US and Chinese stock markets.
The article has certain research significance
both in theory and practice. At the theoretical
level, traditional methods for depicting stock
market correlation are mostly linear, and linear
models struggle to capture the true non-linear
relationships between different assets. There
are differences in tail risks between different
assets, especially under extreme risk
conditions, where traditional models exhibit
measurement biases. By taking the correlation
between the US and Chinese stock markets as
the research object, and using the bivariate
frequency distribution as the basis to select the
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bivariate Gumbel Copula model, this study
characterizes the asymmetric risks of the left
and right tails. This not only supplements the
existing financial market theories but also
provides a new perspective for the study of
correlations between different markets. At the
practical level, understanding the tail
asymmetric correlation of returns between the
US and Chinese stock markets can help
investors more accurately assess the risk and
return characteristics of assets across different
markets, thereby effectively hedging risks. It
also offers new ideas for regulatory authorities
to effectively predict and guard against
systemic financial risks.
The structure of the article is as follows:
Chapter 1, Introduction. Chapter 2, Related
Theoretical Introduction. Chapter 3, Empirical
Research. Chapter 4, Conclusions.

2. Related Theories

2.1 Bivariate Copula Model
As a "linking function", the Copula function
connects the joint distribution attribute of

random variables with their marginal
distributions characteristics. Suppose there
exists a bivariate joint distribution function
H(x, y) with marginal distributions F(x) and
G(y). Let u = F(x) and v = G(y). Then we have
a Copula function formation C(u, v) which
satisfies

H x, y = C u, v (1)
In the empirical study of this paper, to clarify
the difference on the assumption of
distribution pattern, the bivariate Gumbel
Copula function and the bivariate normal
Copula function are used. The bivariate
Gumbel Copula function has upper tail
dependence and is mainly used for situations
where the correlation of data is concentrated in
the upper tail. It can analyze the upper tail
dependency relationship between random
variables.
The expressions for the cumulative
distribution function (CDF) of the bivariate
Gumbel Copula function is listed on formula
(2) and probability density function (PDF) is
followed on (3):
�� �, �; 1

�
= ��� − −��� � + −��� �

1
� (2)

�� �, �; 1
�

=
�� �,�;1� ���×��� �−1

�� −��� �+ −��� � 2−1
�

−��� � + −��� � −1
� + � − 1 (3)

In the bivariate Gumbel Copula function, the
parameter θ ranges from [1, +∞) and reflects
the strength of the correlation between random
variables. We could judge the strength of the
correlation between the variables according to
the final value of θ. When the parameter θ = 1,
the bivariate Gumbel Copula function
degenerates into an independent Copula
function, indicating no significant correlation
between the variables. As the value of θ

approaches positive infinity, the random
variables under study will show a completely
correlated relationship. If one variable
experiences an extreme event, the other
variable will also certainly experience a
similar extreme event.
The expression for the cumulative distribution
function (CDF) of the bivariate normal Copula
function is as follows:

CGa u, v; ρ = −∞
Φ−1 �

−∞
Φ−1 � 1

2� 1−�2�� exp { − �2−2���+�2

2 1−�2 }���� (4)

here, ρ is the correlation parameter of the
bivariate normal Copula function. The
bivariate normal Copula function has
symmetric tails with a tail dependence
coefficient of 0, making it suitable for
analyzing situations where there is no tail
dependence (either upper or lower) between
random variables. However, it is not capable
of capturing asymmetric tail dependence
relationships between random variables.

2.2 Squared Euclidean Distance and Tail
Dependence Coefficient
The squared Euclidean distance is a method

for measuring the difference between two
functions. In the context of Copula functions,
the calculation of the squared Euclidean
distance involves the empirical Copula. By
comparing the squared Euclidean distances
between different bivariate Copula functions
and the empirical Copula, we can select the
bivariate Copula function model that better fits
the sample data. The smaller the squared
Euclidean distance, the better the bivariate
Copula function model fits the data sample.
The expression for the squared Euclidean
distance between the bivariate Gumbel Copula
function and the empirical Copula function
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��� u, v is as follows:
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2
� (5)

The expression for the squared Euclidean
distance between the bivariate normal Copula
function and the empirical Copula function
��� u, v is as follows:

���
2 = �=1

� ��� ��, �� − ���� ��, ��
2

� (6)
Here, u� = �� �� , �� = �� �� � = 1,2, ⋯, � .
The squared Euclidean distance ��

2 reflects
the fit of the bivariate normal Copula function
to the sample data, while ���

2 reflects the fit
of the bivariate Gumbel Copula function to the
sample data.
The tail dependence coefficient is a deputy of
the correlation between two random variables
when extreme events occur in the tails (upper
or lower) of their distributions. When the tail
dependence coefficient is 0, it indicates that
there is no tail dependence between the two
random variables. When the tail dependence
coefficient is greater than 0, it indicates that
there is tail dependence between the two
random variables, and the closer the value is to
1, the stronger the tail dependence. The
bivariate Gumbel Copula function primarily
focuses on the correlation between random
variables in the upper tail, while there is no
correlation in the lower tail. Therefore, this
paper uses the tail dependence coefficient to
analyze the possibility of simultaneous surges
in the US and Chinese stock markets. The
larger the tail dependence coefficient, the
higher the possibility of simultaneous surges.
The upper tail dependence coefficient is
denoted as ���, and the lower tail dependence
coefficient is denoted as ��� . The calculation
formula for the tail dependence coefficient of
the bivariate Gumbel Copula function is as
follows:

��� = 2 − 2
1

�, ��� = 0 (7)

3. Empirical Research

3.1 Data Processing and Descriptive
Statistics
Compared to returns, closing prices intuitively
reflect the impact of daily market information
on the fundamental value of stocks. Therefore,
this paper selects the daily closing prices of
the CSI 300 Index from China's stock market
and the S&P 500 and NASDAQ indices from
the US stock market as proxies for changes in
the market conditions of the Chinese and US
stock markets, respectively. The data are
sourced from the CSMAR. The sample period
is from January 2005 to June 2024.
The CSI 300 Index includes the 300 largest
market-capitalization and most liquid
companies listed on the Shanghai and
Shenzhen stock exchanges, providing a more
accurate reflection of China's economic
development. The S&P 500 Index comprises
500 representative US-listed companies, and
its trend reflects the overall performance of the
US economy. The NASDAQ Index mainly
covers high-tech and innovative companies
listed on the NASDAQ Stock Exchange,
representing the cutting-edge trends in global
technological development. For robustness
testing, this paper also conducted a correlation
study between the CSI 300 Index and the
NASDAQ Index.
Due to the differences in trading days and
trading hours between the Chinese and US
stock markets, after collecting the data for the
three indices, data from different trading days
were removed, retaining only data from the
same trading days. Ultimately, 4,577 valid
daily closing prices were retained for the three
indices between January 2005 and June 2024.

Table 1. Descriptive Statistics of Daily Closing Prices of Indices
Var Mean Std Min 25% 50% 75% Max Skew Kurt N
HC 3235.20 1088.60 818.03 2498.10 3336.50 3908.20 5877.20 -0.25 2.78 4577
SC 2265.30 1167.00 676.53 1305.40 1958.00 2906.00 5487.00 0.87 2.62 4577
NC 5952.40 4268.10 1268.60 2465.60 4508.30 8015.50 17862.00 0.99 2.73 4577

Note: Table 1 presents the descriptive statistics of the daily trading data (closing prices) of the CSI
300 Index, S&P 500 Index, and NASDAQ Index (HC, SC, NC) over the sample period beginning
from January 2005 to June 2024. The variables are defined as follows: Mean represents the average
number, Std represents the standard deviation, Min represents the minimum value, 25% represents the
first quartile (25th percentile), 50% represents the median (50th percentile), 75% represents the
quarter quartile (75th percentile), Max represents the maximum value, Skew represents skewness,
Kurt represents kurtosis, and N represents the number of observations.
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Skewness and kurtosis are important
parameters for characterizing distribution
features. The skewness of the daily closing
price of the CSI 300 Index is -0.25, which is
less than 0, indicating a left-skewed
distribution. The kurtosis is 2.78 (less than 3),
indicating a relatively flat and light-tailed
distribution. This suggests that the data
distribution does not follow a normal
distribution but rather exhibits a left-skewed
and light-tailed characteristic. The skewness
of the daily closing price of the S&P 500
Index is 0.87, which is greater than 0,
indicating a right-skewed distribution. The
kurtosis is 2.61 (less than 3), indicating a
relatively flat and light-tailed distribution.
This suggests that the data distribution of the
daily closing price of the S&P 500 Index does
not follow a normal distribution. The
skewness of the daily closing price of the
NASDAQ Index is 0.99, which is greater than
0, indicating a right-skewed distribution. The
kurtosis is 2.73 (less than 3), indicating a
relatively flat and light-tailed distribution.
This suggests that the data distribution of the
daily closing price of the NASDAQ Index
does not follow a normal distribution but
rather exhibits a right-skewed, flat, and
light-tailed characteristic. Combining the
skewness and kurtosis indicators, we can
basically conclude that none of the three
indices follow a normal distribution.
In addition to these simple indicators such as
skewness and kurtosis, the JB test and Lillie
test are also used to examine the distribution
characteristics of the sample data, specifically
whether the sample data follows a normal
distribution. The results show that the P-values
are all less than 0.01. This indicates that at the
5% significance level, the null hypothesis that
the daily closing prices of the three indices
follow a normal distribution is rejected. In
other words, the data distributions of the daily
closing prices of the three indices do not
follow a normal distribution.
Figure 1 illustrates the bivariate frequency and
relative frequency histograms of the marginal
distributions of the daily closing prices of the
CSI 300 Index and the S&P 500 Index. The
sample data are primarily concentrated in the
upper-right region (upper tail), while the data
in the lower-left region (lower tail) are sparse.
This indicates that the sample data are more
sensitive to changes in the upper tail,

suggesting strong upper tail dependence.
Therefore, the bivariate Gumbel Copula
function, which captures upper tail
dependence, is selected for the analysis of the
sample data. For comparison purposes, the
bivariate normal Copula model is also
employed in the empirical analysis below.

Figure 1. Bivariate Frequency and Relative
Frequency Histograms of the Marginal

Distributions of Daily Closing Prices of the
CSI 300 Index and the S&P 500 Index

Figure 2. Density and Distribution
Functions of the Bivariate Gumbel Copula

Function

Journal of Statistics and Economics (ISSN: 3005-5733) Vol. 2 No. 3, 2025 5

Copyright @ STEMM Institute Press http://www.stemmpress.com



Figure 3. Density and Distribution
Functions of the Bivariate Normal Copula

Function
Figure 2 and Figure 3 describe the density and
distribution functions of the bivariate Gumbel
Copula and the bivariate normal Copula for
the daily closing prices of the CSI 300 Index
and the S&P 500 Index, with the sample
period from January 2005 to June 2024. The
higher the tail of the density function, the
thicker the tail, which better reflects the
strength of the correlation between the sample
data and indicates stronger dependence in the
tail (either upper or lower). The bivariate
frequency histograms and bivariate relative
frequency histograms drawn in Figure 2 show
that the sample data have the characteristic of
being higher in the upper tail and lower in the
lower tail, which is similar to the results
obtained from the bivariate frequency
(R-frequency) distribution histograms. Figure
3 assumes that the bivariate joint distribution
function follows a normal distribution. From
the perspective of the bivariate function
probability density diagram, the correlation in
the upper tail is slightly higher than that in the
lower tail. The assumption of the bivariate
Gumbel Copula is more in line with the actual
distribution characteristics indicated by the
bivariate (Relative) frequency histograms.
This paper uses the Euclidean distance to
make judgments and provides a robustness
test.
In the Copula function, the squared Euclidean

distance is used to determine the fit between
the theoretical Copula model and the empirical
Copula. That is, the smaller the squared
Euclidean distance between a theoretical
Copula model and the empirical Copula, the
better the fit of the theoretical Copula model
to the sample data. D2 is the squared Euclidean
distance between the bivariate normal Copula
function model and the empirical Copula, and
d2 is the squared Euclidean distance between
the bivariate Gumbel Copula function model
and the empirical Copula. Since d2 (the value
is 3.08) is less than D2 (the value is 3.38), it
indicates that, compared to the bivariate
normal Copula model, the bivariate Gumbel
Copula function model can better fit the
correlation of the sample data of the daily
closing prices of the CSI 300 Index and the
S&P 500 Index.

3.2 Parameter Estimation
Bivariate frequency histograms and bivariate
relative frequency histograms can provide a
more intuitive visualization of the sample data
distribution, aiding in the selection of an
appropriate Copula model. Additionally, by
examining the distribution characteristics in
the tail regions of the bivariate histograms,
one can identify tail dependence (upper or
lower) and thus choose a suitable Copula
model. Both the bivariate Gumbel Copula
function and the bivariate Clayton Copula
function can describe asymmetric tail
dependence scenarios. The key difference lies
in their focus on upper tail dependence versus
lower tail dependence.
As a robustness test, this paper analyzes the
sample data of the daily closing prices of the
CSI 300 Index and the NASDAQ Index using
the bivariate Gumbel Copula function to
derive the parameter θ, and calculates the
correlation results of the joint distribution
between multiple indices of the Chinese and
US stock markets to verify whether there is a
strong association between the Chinese and
US stock markets and to test the stability of
this correlation.
From Table 2, the parameter θ value derived
from the analysis of the sample data of the
daily closing prices of the CSI 300 Index and
the NASDAQ Index using the bivariate
Gumbel Copula function model is 1.84, which
is close to the 1.72 of HC-SC. The similarity
in the values of the parameter θ for the two
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indicates a similar degree of positive
correlation during extreme events, meaning
that under the influence of some quantifiable
extreme factors, there is a strong right-tail risk
contagion between the two stock markets, and
the likelihood of both markets experiencing
extreme conditions simultaneously is
relatively high.

Table 2. Estimation of Parameter θ for
HC-SC and HC-NC
Index θ
HC-SC 1.72
HC-NC 1.84

Note: In Table 2, HC-SC represents the sample
of daily closing prices of the CSI 300 Index
and the S&P 500 Index, while HC-NC
represents the sample of daily closing prices of
the CSI 300 Index and the NASDAQ Index. θ
is the parameter of the bivariate Gumbel
Copula function.
The Kendall rank correlation coefficient is a
commonly used method for measuring the
correlation between two variables. It does not
require consideration of the distribution shape
of the data and is applicable to any type of
variable, making it quite flexible. Under
extreme risk conditions, the Kendall rank
correlation coefficient can still effectively
capture the correlation between assets, thus
holding significant importance in risk
management.
This section compares the Kendall rank
correlation coefficient, the Kendall rank
correlation coefficient of the bivariate normal
Copula model, and the Kendall rank
correlation coefficient of the bivariate
t-Copula model. In Table 3, HC-SC represents
the sample of daily closing prices of the CSI
300 Index and the S&P 500 Index. Kendall_N
is the Kendall rank correlation coefficient of
the bivariate normal Copula, Kendall_G is the
Kendall rank correlation coefficient of the
bivariate Gumbel Copula, and Kendall is the
Kendall rank correlation coefficient.
Table 3. Comparison of Rank Correlation

Coefficients for Different Models
Index Kendall Kendall_G Kendall_N
HC-SC 0.48 0.42 0.41
Note: In Table 3, HC-SC represents the sample
of daily closing prices of the CSI 300 Index
and the S&P 500 Index. Kendall_N is the
Kendall rank correlation coefficient for the
bivariate normal Copula, Kendall_G is the
Kendall rank correlation coefficient for the

bivariate Gumbel Copula, and Kendall is the
Kendall rank correlation coefficient.
As can be seen from Table 3, the Kendall rank
relation coefficient, short for Kendall_N, for
the bivariate normal Copula function is 0.41,
the Kendall rank relation coefficient
Kendall_G for the bivariate Gumbel Copula
function is 0.42, and the Kendall rank relation
coefficient directly calculated from the raw
data of the daily closing prices of the CSI 300
Index and the S&P 500 Index is 0.48. The
bivariate Gumbel Copula model with a
Kendall rank relation coefficient of 0.42 can
better reflect the rank relation between the CSI
300 Index and the S&P 500 Index, which is
consistent with the results of the Euclidean
distance, indicating that the bivariate Gumbel
Copula model has a better fit.

3.3 Tail Dependence Coefficient
The tail dependence coefficient presents an
effective measure of the correlation between
two financial assets in the extreme value
regions (i.e., the tails of the distribution). It
indicates the likelihood that one asset will
experience extreme risk given that the other
asset has already experienced extreme risk.
The coefficient typically ranges from 0 to 1.
When the tail dependence coefficient is 0, the
extreme risks of the two assets are
independent and uncorrelated. When the
coefficient is 1, if one asset experiences an
extreme event, the other asset is also likely to
experience a corresponding extreme event,
indicating a perfectly correlated tail risk.
However, this scenario is relatively rare in real
life.
The bivariate Gumbel Copula function model
was used to analyze the tail dependence
coefficients for the sample data of the daily
closing prices of the CSI 300 Index and the
S&P 500 Index. The article also conducted a
tail dependence coefficient analysis for the
CSI 300 Index and the NASDAQ Index as a
robustness test. The tail dependence
coefficients derived from the analysis of the
daily closing prices of the CSI 300 Index and
the S&P 500 Index, and the CSI 300 Index and
the NASDAQ Index, using the bivariate
Gumbel Copula function model, were 0.50
and 0.54, respectively.
On the one hand, these results indicate that
there is a strong upper tail dependence
between the Chinese and US stock markets.
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This suggests that when the daily closing
prices of the Chinese stock market surge, the
US stock market is also likely to experience a
surge, and vice versa. In other words, there is
a positive co-movement in extreme high
values between the Chinese and US stock
markets, meaning that when one market
experiences a significant upsurge, the other is
likely to follow suit.

4. Conclusions
This paper employs bivariate frequency
histograms and selects the bivariate Gumbel
Copula function model, which characterizes
upper tail dependence, to study the correlation
of returns between the Chinese and US stock
markets. The daily closing prices of the CSI
300 Index from January 2005 to June 2024 are
used as a proxy for the Chinese stock market,
the S&P 500 Index as a proxy for the US stock
market, and the NASDAQ Index as an
alternative indicator for robustness testing.
The empirical analysis yields the following
results:
Firstly, the sample distribution is determined.
Descriptive statistics of the sample data reveal
that the marginal distributions do not conform
to a normal distribution. The shapes of the
bivariate frequency and relative frequency
histograms of the Chinese and US stock
markets show a clear asymmetry, with higher
correlation data concentrated in the upper tail.
In other words, there is a significant difference
in tail dependence between the Chinese and
US stock markets during extreme events
(strong upper tail dependence and weaker
lower tail dependence).
Secondly, an appropriate correlation model is
selected. Modeling with the sample data and
comparing bivariate Copula functions reveal
that the density function of the bivariate
Gumbel Copula has a higher upper tail than
that of the bivariate normal Copula, indicating
that the Gumbel Copula better captures upper
tail dependence in the sample data. Further
analysis through parameter estimation, rank
correlation coefficients, squared Euclidean
distance, and robustness tests confirms that the
bivariate Gumbel Copula function provides a
better fit for the upper tail dependence of the
sample data.
Finally, robustness analysis using the daily
closing prices of the CSI 300 Index and the
NASDAQ Index yields model parameters

and tail risk dependence results similar to
those obtained from the CSI 300–S&P 500
Index, indicating a robust upper tail
dependence between the Chinese and US
stock markets.
In summary, there is a correlation between the
Chinese and US stock markets, with
significant differences in tail dependence and
a stronger upper tail dependence. This
suggests that when one of the two stock
markets experiences a surge, the other is also
likely to surge; however, when one market
experiences a plunge, the likelihood of the
other market experiencing a similar plunge is
relatively low.
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