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Abstract: In complex object detection tasks,
especially those involving irregular and multi-
scale visual patterns, conventional recognition
algorithms often fall short due to their
reliance on low-level features. To address this
limitation, this study proposes an enhanced
detection framework based on the You Only
Look Once version 5 (YOLOv5) model. Two
key components are integrated: The Adaptive
Spatial Feature Fusion (ASFF) module and
the Similarity Attention Module (SimAM).
The ASFF module improves the consistency
and semantic alignment of feature maps
across multiple scales, while the SimAM
module enhances the model’s ability to focus
on salient information by suppressing
background noise through a parameter-free
attention mechanism. We evaluate the
proposed model using the NEU-DET dataset
for steel surface defect detection,
demonstrating significant improvements in
mean Average Precision (mAP), accuracy,
and robustness compared to the baseline
YOLOv5. Despite slight increases in
computational cost, the model retains its real-
time inference capabilities, making it suitable
for applications such as automated
infrastructure inspection and road surface
monitoring. These results highlight the
effectiveness of combining multi-scale feature
fusion with lightweight attention strategies to
improve detection performance in visually
complex environments.
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1. Introduction
The detection and recognition of complex and
variable organizational structures is a
fundamental and ongoing challenge in the field
of computer vision. These structures often
appear in real-world scenarios with intricate
geometries, non-uniform textures, and diverse

environmental conditions, making them
difficult to identify accurately through
conventional visual analysis techniques. The
task aims to precisely locate and categorize
target entities within digital imagery, thereby
enabling downstream applications that rely
on automated visual understanding. This
capability holds substantial value for both
scientific research and industrial practice,
particularly in domains such as geological
exploration, where the identification of
subsurface patterns is essential; aerospace
science, where the monitoring of mechanical
structures is critical for safety; and natural
disaster monitoring, which requires timely
detection of damage patterns to guide
emergency responses.
Despite the progress in image classification
and pattern recognition, traditional
algorithms remain limited when faced with
such visual complexity. These methods
typically depend on low-level features such
as shape contours, color distributions, or
edge orientations. While effective in
controlled environments with simple targets,
they often struggle under real-world
conditions characterized by occlusion,
varying illumination, or cluttered
backgrounds. As a result, their performance
degrades substantially in scenarios that
demand high precision and adaptability. This
is particularly evident in tasks where objects
lack consistent appearance or exhibit high
intra-class variability.
To address these limitations, the present
study adopts pothole detection and
recognition as a representative and
practically significant application scenario
[1]. Potholes are irregular surface defects in
roadways that not only vary greatly in size,
depth, and shape, but also appear in diverse
background contexts such as asphalt textures,
shadows, debris, or water stains. These visual
variations present a valuable challenge for
evaluating the robustness and flexibility of
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detection algorithms in uncontrolled
environments.
In response to this challenge, we propose a
series of architectural enhancements to the
YOLOv5 object detection framework-an
advanced, real-time model known for its speed
and accuracy [2]. Specifically, we incorporate
the Adaptive Spatial Feature Fusion (ASFF)
module [3] into the Path Aggregation Network
(PAN) component of the YOLOv5 detection
head. The ASFF module is designed to resolve
inconsistencies and semantic misalignments
within the feature pyramid by adaptively
integrating multi-scale features. This allows the
network to generate more coherent and context-
aware feature representations across different
spatial resolutions.
Furthermore, we introduce the SimAM [4], a
parameter-free attention mechanism that
simulates human visual focus by emphasizing
relevant feature regions and suppressing
interference from irrelevant or noisy background
elements. SimAM operates efficiently by
computing similarity-based attention weights,
thus enhancing the network’s ability to
concentrate on salient information without
introducing additional computational burdens.
Together, these two modules complement each
other: ASFF ensures consistent multi-scale
feature fusion, while SimAM refines feature
saliency. Their integration into the YOLOv5
framework addresses key deficiencies in
robustness, adaptability, and semantic clarity. As
a result, the improved model demonstrates
significantly enhanced feature extraction
capacity and greater generalization to the
complex and variable visual patterns typically
found in pothole imagery and similar real-world
detection tasks.

2. Background and Related Work
Object detection has seen rapid advancement in
recent years, transitioning from traditional
handcrafted feature methods to deep learning-
based frameworks. Classical approaches, such as
Histogram of Oriented Gradients (HOG) [5] and
Deformable Part Models (DPM) [6], relied
heavily on feature engineering and often
suffered from limited generalization across
diverse environments. In contrast, the rise of
deep convolutional neural networks (CNNs) has
revolutionized the field by enabling end-to-end
learning and automated feature extraction,
drastically improving detection performance in

terms of both accuracy and robustness.
Among the most influential models is the
YOLO series, which has evolved
significantly since its initial release. YOLO's
core contribution lies in reformulating object
detection as a single regression problem,
enabling real-time inference by predicting
bounding boxes and class probabilities
directly from image pixels. YOLOv3 [7]
introduced a multi-scale detection head and
residual networks to enhance accuracy while
maintaining speed, enabling more reliable
detection of small and large objects across
varying contexts. YOLOv4 [8] further
optimized performance through the inclusion
of CSPDarkNet as the backbone, use of Mish
activation for better gradient flow, and
enhancements such as Mosaic data
augmentation and Complete Intersection over
Union (CIoU) loss for improved bounding
box regression. These refinements
collectively made YOLOv4 one of the most
competitive real-time detectors at the time of
its release.
YOLOv5, while not officially released by the
original authors, gained widespread adoption
due to its PyTorch-based implementation,
modular and highly customizable
architecture, and continual community-
driven improvements. Its popularity in both
research and industry is partly attributed to
its ease of deployment and extensibility,
allowing rapid experimentation with new
modules and techniques.
In addition to the YOLO series, alternative
object detection frameworks such as Faster
R-CNN, RetinaNet, and FCOS [9] have also
contributed significantly to the evolution of
the field. Faster R-CNN utilizes a two-stage
approach, employing region proposal
networks (RPNs) to first identify potential
object regions, followed by a classification
and refinement stage. While this results in
high accuracy, it comes at the cost of
inference speed. RetinaNet, a one-stage
detector, introduced focal loss to mitigate the
issue of class imbalance, which often
hampers the training of dense detectors. This
innovation significantly improved the
performance of one-stage detectors, making
them viable for a wider range of applications.
FCOS, a fully convolutional one-stage
detector, eliminated the need for anchor
boxes entirely, offering a more elegant and
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efficient approach to object localization by
directly regressing object centers, dimensions,
and classification scores.
Furthermore, attention mechanisms have played
a crucial role in boosting model performance,
especially in scenarios involving cluttered
backgrounds or small object sizes. Modules such
as Squeeze-and-Excitation (SE) blocks [10]
enhance channel-wise feature recalibration by
explicitly modeling interdependencies between
channels. The Convolutional Block Attention
Module (CBAM) [11] extends this idea by
incorporating both spatial and channel attention,
allowing the network to focus more precisely on
informative regions. More recently, SimAM, a
parameter-free attention mechanism, has
emerged as a lightweight yet effective technique
for enhancing feature maps without adding
computational overhead.
Our work builds upon these innovations by
combining the architectural efficiency of
YOLOv5 with the adaptive fusion capabilities of
ASFF (Adaptive Spatial Feature Fusion) and the
attention-driven refinement of SimAM. This
integrated approach is designed to yield a highly
robust detection system, particularly suited for
detecting complex surface anomalies like
potholes, where visual noise and irregular
patterns can challenge traditional models.

3. Method

3.1 Overview of YOLOv5 Architecture
YOLOv5 is an end-to-end object detection
framework comprising three main components:
the Backbone, the Neck, and the Head. Its
overall architecture and module connections are
illustrated in Figure 1, which provides a visual
reference for the structure discussed below.

Figure 1. YOLO Structure
Input Processing: YOLOv5 utilizes Mosaic data
augmentation, which enhances sample diversity
by combining four images into one during
training. Adaptive anchor box computation

adjusts bounding boxes based on object
dimensions, and auto-scaling ensures images
are resized to optimal resolutions for
detection.
Backbone: The backbone features the Focus
module, which slices input into patches to
capture spatial information efficiently. The
CSP (Cross Stage Partial) structure enhances
gradient flow and feature reuse, leading to
improved computational efficiency and better
feature learning.
Neck: The Neck combines FPN (Feature
Pyramid Network) [12] and PAN (Path
Aggregation Network) structures. FPN
captures multi-scale features, while PAN
aggregates features bottom-up to enrich
contextual information.
Head: The detection Head outputs
predictions at three scales using anchors.
YOLOv5 employs Generalized Intersection
over Union (GIoU) loss for bounding box
regression, providing a more precise metric
for localization than traditional IoU.
These components enable YOLOv5 to
maintain a balance between speed and
accuracy, making it suitable for real-time
applications.

3.2 Adaptive Spatial Feature Fusion
ASFF is a solution specifically designed to
address inconsistencies within the feature
pyramid of first-order object detectors. In
object detection tasks, maintaining
consistency across the feature pyramid is
critical for accurate localization and
recognition of targets [13]. ASFF aims to
enhance intra-pyramid consistency by
adaptively fusing multi-scale features from
different levels of the network.
Specifically, ASFF enables the neural
network to learn spatial filtering strategies
across features at various scales, retaining
only the information that is most relevant for
the detection task. By aligning feature maps
to the same resolution and performing a
lightweight fusion, ASFF learns an optimal
way to combine features. At each spatial
location, features from different levels are
adaptively weighted and merged, suppressing
conflicting information while emphasizing
features that provide stronger discriminative
cues.
This adaptive fusion strategy significantly
enhances the network's ability to detect and
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recognize targets, thereby improving both the
accuracy and robustness of object detection
systems.
3.2.1 Application of ASFF in YOLOv3
In YOLOv3, ASFF is applied to FPN outputs by
first aligning channel dimensions using 1×1
convolutions. Weight vectors are then computed
for each scale and normalized via Softmax to
represent their relative importance. The final
fused feature map is obtained by weighted
summation across all scales.
3.2.2 Integration of ASFF in YOLOv5
To integrate ASFF into YOLOv5, all three
feature maps are first rescaled to the same
spatial resolution of C×H×W, where C is the
number of channels, H is the height, and W is
the width. Each rescaled feature map is then
passed through a 1×1×N convolution to produce
a spatial weight map of size N×H×W, where N
denotes the number of channels used for
encoding attention.
These spatial weight maps from the three scales
are concatenated along the channel axis to form
an attention tensor of size 3N×H×W. A
subsequent 1×1×3 convolution is applied to this
tensor, reducing it to a final set of weight maps
of size 3×H×W, corresponding to the three
original feature scales.
The weight maps are normalized using the
Softmax function along the scale dimension to
ensure that the weights at each spatial location
sum to one. These normalized weights are then
multiplied with their corresponding rescaled
feature maps via element-wise multiplication.
The resulting weighted maps are fused through
summation, followed by a final 3×3 convolution
to generate the integrated feature representation
with 256 channels for subsequent prediction
tasks.

3.3 Attention Mechanism
3.3.1 SimAM attention
The surface of steel materials often exhibits
complex and variable textures, making
conventional algorithms vulnerable to
interference from irrelevant background
elements, which degrades detection accuracy.
To address this, the proposed model incorporates
the SimAM, as illustrated in Figure 2. SimAM is
a lightweight attention mechanism known for its
strong capability in enhancing feature
representations while maintaining computational
efficiency.

Figure 2. SimAm Structure
To address the challenge of accurately
identifying complex and variable surface
textures, the proposed model incorporates the
SimAM, a lightweight and parameter-free
attention mechanism known for its ability to
enhance feature representations efficiently.
SimAM works by computing attention
weights based on feature similarity, allowing
the network to focus on salient regions while
suppressing irrelevant background noise. The
feature weighting mechanism of SimAM is
formulated as:

),(),,(),,( jiAcjiFcjiF A  (1)
where A(i,j,c) is the attention weight at
spatial location (i,j) for channel c, and F(i,j,c)
is the original feature map value at the same
location and channel. This operation involves
only element-wise multiplication, offering
higher efficiency compared to traditional
attention mechanisms.
The attention weights A(i,j) are normalized
by the following equation:




))),((exp(
)),(exp(),(
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Where S(i,j) is the similarity score at spatial
location (i,j). This normalization produces a
probability distribution indicating the
importance of each feature position.

4. Experiments and Results

4.1 Experiment Setup
Dataset: In this study, we utilize the NEU-
DET dataset, a well-established benchmark
dataset for steel surface defect detection. The
dataset consists of six distinct categories of
defects commonly encountered in industrial
steel production: Crazing, Inclusion, Patches,
Pitted Surface, Rolled-in Scale, and
Scratches. Each class contains 300 grayscale
images, each with a fixed resolution of 200 ×
200 pixels. To ensure a fair and consistent
training process, the dataset is split into three
subsets: 70% for training, 15% for validation,
and the remaining 15% for testing. This
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stratified partitioning ensures that each defect
class is adequately represented across the
different subsets.
Environment: The training and evaluation
procedures are conducted in a high-performance
computing environment equipped with an
NVIDIA RTX 3090 GPU and CUDA version
11.3. The batch size is set to 16, which strikes a
balance between computational efficiency and
convergence stability. The model is trained for
100 epochs using the Adam optimizer, which is
known for its robustness and fast convergence.
The initial learning rate is configured at 0.001
and is decayed progressively based on validation
performance to prevent overfitting and ensure
stable training.
Metrics: To comprehensively evaluate the
mode’s performance, a suite of widely adopted
evaluation metrics is employed. These include:
Accuracy (ACC): Overall correctness of the
model’s predictions.
Precision (PPV): The proportion of true positive
predictions among all positive predictions.

Recall (TPR): The proportion of actual
positives that were correctly identified by the
model.
Specificity (SPE): The proportion of actual
negatives correctly identified as such.
F1 Score: The harmonic mean of Precision
and Recall, providing a balanced metric for
imbalanced datasets.
Mean Average Precision (mAP): A standard
metric in object detection that evaluates the
model’s precision across all classes and
thresholds.

4.2 Experiments and Analysis of Results
The dataset used in this study, as mentioned
previously, is the NEU-DET steel surface
defect dataset from Northeastern University.
This dataset provides a representative
collection of steel surface images, enabling
the training and evaluation of defect
detection algorithms under real-world
conditions.

Figure 3. Partial Data Picture
Figure 3 showcases a subset of the NEU-DET
dataset, offering visual insight into the six defect
types. These sample images highlight the intra-
class variability and inter-class similarities,
which present a considerable challenge for
accurate classification and detection.
To assess the effectiveness of the proposed
improvements, a comparative analysis of
confusion matrices was performed.
Figure 4 presents the confusion matrix of the
enhanced model, which incorporates ASFF and
SimAM modules. The diagonal dominance in
the matrix indicates a high rate of correct
classification across all defect categories.
In contrast, Figure 5 illustrates the confusion
matrix of the baseline model without
enhancements. Compared to the improved

version, the baseline model displays
significantly higher misclassification rates,
especially among visually similar defect
categories.

Figure 4. Improved Confusion Matrix
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Figure 5. The Confusion Matrix of the Model
has not been Improved

The contrast between the two confusion matrices
provides clear evidence of the proposed model’s
superiority. The improved architecture not only
enhances classification accuracy but also
achieves higher detection precision, particularly
in distinguishing between complex and subtle
defect types.
Table 1 summarizes the numerical comparison
between the improved and baseline models
across all key evaluation metrics:

Table 1. Performance Comparison
ACC PPV TPR SPE F1 mAP

new 0.928 0.724 0.829 0.969 0.796 0.983
old 0.693 0.184 0.593 0.921 0.273 0.711

The above results confirm that the enhanced
model significantly outperforms the baseline in
all aspects. Notably, the F1 Score and mAP
improvements suggest that the model is not only
more precise but also more consistent in its
predictions across various defect classes.
In summary, a thorough evaluation of all
quantitative metrics leads to the conclusion that
the proposed model demonstrates superior
performance in both classification and detection
tasks. This validates the effectiveness of the
enhancements made to the base YOLO
architecture.
Furthermore, the integration of ASFF and
SimAM proves beneficial in several ways. ASFF
facilitates effective utilization of multi-scale
features, enhancing the model’s ability to detect
defects of varying sizes and positions. SimAM,
on the other hand, improves spatial feature
selectivity, allowing the network to focus on the
most informative regions in an image, thereby
reducing noise and improving detection
robustness.
An evaluation of inference time revealed a slight
increase in computational cost due to the added

modules. However, this overhead remains
within acceptable limits for most real-time
applications. The model thus remains viable
for deployment in safety-critical
environments such as automated steel
inspection systems or road maintenance,
where timely and accurate defect detection is
crucial.
Looking ahead, potential future work could
include the integration of lightweight
backbone networks such as MobileNet to
further reduce computational demands, or the
incorporation of transformer-based modules
to improve contextual feature representation.
These directions could further enhance the
scalability and adaptability of the model in
more resource-constrained or complex
scenarios.

5. Conclusion
In this study, we proposed an enhanced
pothole detection framework based on the
YOLOv5 architecture, incorporating two key
modules: ASFF and SimAM. These
components were specifically introduced to
improve the model's ability to effectively
aggregate multi-scale features and focus on
spatially informative regions, thereby
addressing common challenges in road
surface defect detection such as background
noise, varying lighting conditions, and small
target sizes.
Through extensive experiments on the NEU-
DET dataset, the proposed model
demonstrated substantial performance gains
over the baseline YOLOv5 architecture. The
improvements were evident across multiple
evaluation metrics, including accuracy,
precision, recall, specificity, F1 score, and
mAP. The results clearly validate the
effectiveness of the integrated modules in
enhancing both the classification capability
and detection robustness of the network.
Moreover, the enhanced model maintained a
reasonable inference time despite the
additional computational complexity
introduced by ASFF and SimAM. This
makes it well-suited for deployment in real-
time applications, particularly in automated
road monitoring systems, where both high
detection accuracy and efficient execution
are critical.
The findings of this work underscore the
potential of combining attention mechanisms
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and feature fusion strategies to elevate the
performance of object detection models in
complex, real-world scenarios. Importantly, the
proposed improvements are modular and can be
generalized to other detection tasks beyond
pothole identification.
For future research, several promising directions
can be explored:
Integrating lightweight backbones such as
MobileNet or GhostNet to reduce model size
and computational cost, making the system more
adaptable for edge deployment;
Leveraging transformer-based architectures or
more advanced self-attention mechanisms to
further enhance the model’s global context
understanding;
Extending the dataset or adapting the model for
multi-modal input (e.g., infrared + RGB) to
improve performance in low-light or adverse
weather conditions;
Implementing continual learning mechanisms to
allow the model to evolve with new data without
retraining from scratch.
In conclusion, the modified YOLOv5
architecture presented in this work delivers a
balanced and effective solution for pothole
detection, offering both technical rigor and
practical feasibility. It sets a solid foundation for
the development of intelligent infrastructure
monitoring systems and contributes to advancing
the field of defect detection in computer vision.
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