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Abstract: As the primary power source for
new energy vehicles, the performance of
power batteries is one of the key factors
determining vehicle stability, safety, and
driving range. The intervention of remote
data acquisition and intelligent monitoring
technologies enables timely and efficient
monitoring of the operational status of
power battery packs, analysis of critical
battery pack data, assistance to the vehicle
control system in reasonably selecting
control strategies, and early warning and
analysis of safety hazards and faults in
power battery packs, providing a more
robust guarantee for the safety of electric
vehicles. This paper conducts an in-depth
study on the remote data acquisition model
of power batteries in the Internet of
Vehicles (IoV) environment, aiming to
construct an efficient and reliable
acquisition system. Experimental
verification shows that the constructed
model can accurately and timely collect and
transmit battery data, providing strong
support for battery health management and
fault early warning.
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Acquisition; Internet of Vehicles (IoV);
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1. Introduction
With the transformation of the global energy
structure and the growing awareness of
environmental protection, electric vehicles
(EVs), as a clean-energy transportation
solution, have emerged as a major trend in the
automotive industry. The power battery, a core
component of new energy vehicles, directly
impacts the operational performance and user
experience of the vehicle through its
performance and safety. Key parameters of
power batteries include voltage, current,
temperature, and State of Charge (SOC). By

analyzing these parameters, the Battery
Management System (BMS) can perform
functions such as charge/discharge control, cell
balancing, and fault diagnosis, thereby
optimizing battery usage efficiency and
extending battery lifespan.
However, traditional data acquisition methods
for power batteries face limitations such as
insufficient real-time data collection, restricted
data coverage, poor flexibility, and limited
analytical capabilities. These shortcomings
hinder their ability to meet the demands of
large-scale EV deployment and refined battery
management.
Compared with traditional methods, remote
data acquisition enables real-time monitoring
of battery status and critical parameters,
provides timely warnings for faults and
abnormalities, and significantly reduces the
occurrence of safety incidents. Simultaneously,
the remote data acquisition system for power
batteries streamlines battery monitoring and
management. Data servers can analyze, store,
and upload collected data to centralized
monitoring centers, achieving unified
management of multiple electric vehicles
(EVs). This remote monitoring capability
eliminates geographical constraints, allowing
continuous battery status tracking regardless of
the vehicle's location. For large-scale EV fleet
operators, remote monitoring and management
substantially enhance operational efficiency
and reduce administrative costs [1-3].
The key technologies of the remote data
acquisition model for power batteries include
data acquisition, data transmission, data
processing and storage technologies, as well as
data visualization and user interfaces [4].
Among these, the development of the model
prioritizes the following trends:
 High-precision data acquisition and
processing
 Enhanced system real-time performance and
reliability

Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 3 No. 2, 2025 77

Copyright @ STEMM Institute Press http://www.stemmpress.com



 Intelligent data analysis and decision-making
 Integration with multi-energy systems

2. System Architecture and Key
Technologies
The remote data acquisition system for power
batteries is generally built upon the Internet of
Vehicles (IoV) architecture. It enables
connectivity between vehicles and various
terminal devices/service platforms (V2X,
Vehicle to Everything) through wireless

communication technologies, facilitating
real-time data exchange and processing to
enhance vehicle intelligent capabilities and
improve the operational efficiency of
transportation systems.
The remote data acquisition model consists of
three layers:
 Data Acquisition Layer
 Data Transmission Layer
 Data Storage and Processing Layer
The detailed structure is shown in Figure 1.

Figure 1. Architecture of the Remote Data Acquisition Model for Power Batteries

2.1 Data Acquisition Layer
The data acquisition layer comprises sensor
modules, vehicle terminals, and other
components. The sensor module is a critical
component for obtaining battery parameters,
and its performance directly impacts the
accuracy and reliability of data. The sensor
module primarily collects parameters such as
individual cell voltage, temperature, and bus
current. This data is transmitted to the vehicle
terminal via the vehicle CAN bus through
individual module ECUs (Electronic Control
Units) and is used to calculate battery
charge/discharge capacity, evaluate battery
performance, and enable precise
charge/discharge control.
The vehicle terminal, serving as the core of the
data acquisition layer, performs functions
including information collection, data
processing, and communication with
upper-level systems. It can be integrated into a
T-Box or vehicle control unit (e.g., a gateway)
[5].
The sampling frequency of the data acquisition
layer determines the system’s real-time
performance in obtaining battery data, Typical
sampling frequencies range from 10Hz (for
temperature) to 1kHz (for voltage/current),
with accuracies of ±0.5% for voltage and ±1℃
for temperature，while the sampling accuracy
governs data precision. Both are critical factors
influencing the overall performance of the

power battery remote data acquisition system.
In practical applications, sampling frequency
and accuracy must be optimized based on
specific requirements to balance data quality
with system cost and resource consumption.

2.2 Data Transmission Layer
The data transmission layer is responsible for
reliably and efficiently transmitting collected
battery data to data processing centers or cloud
servers. Remote data transmission technologies
include CAN bus and IoT integration, cellular
networks (4G/5G), Dedicated Short-Range
Communication (DSRC), Vehicle-to-Vehicle
(V2V) communication, Vehicular Ad-hoc
Networks (VANETs) with multi-hop
communication, and satellite communication.
These methods have distinct advantages and
limitations, making them suitable for different
scenarios.
2.2.1 CAN bus and IoT integration:
CAN bus enables reliable in-vehicle data
transmission. Battery internal data (e.g.,
voltage, temperature) is transmitted via the
CAN bus to the vehicle terminal, which then
integrates IoT modules for remote transmission.
This hybrid approach is widely used in
applications such as Battery Management
System (BMS) remote monitoring and smart
charging management.
2.2.2 Cellular networks (4G/5G):
Cellular networks support long-distance
wireless transmission of power battery data,
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offering wide-area coverage and high
bandwidth for real-time data uploads and cloud
interactions. 5G technology, with its ultra-low
latency (millisecond-level) and high reliability,
is particularly suited for high-real-time
scenarios [6].
2.2.3 Specialized technologies:
DSRC and V2V: Based on the IEEE 802.11p
protocol, these enable direct vehicle-to-vehicle
(V2V) and vehicle-to-infrastructure (V2I)
communication with latencies as low as 20 ms.
VANETs and Multi-hop Communication: Data
is relayed through multi-hop vehicle networks,
combined with satellite communication for
global coverage in areas without cellular base
stations.
Reliability and stability of data transmission
are critical to ensuring the robust operation of
remote data acquisition systems. By
comprehensively applying technologies such
as data encryption, error-correcting coding,
adaptive transmission, and multi-path
transmission, the stability of data transmission
in power battery remote acquisition systems
can be significantly improved. This ensures
that battery data is transmitted accurately and
reliably to its destination, laying a solid
foundation for subsequent data processing and
analysis.
The purpose of data encryption is to prevent
data theft or tampering, ensuring the security
and stability of data transmission. Common
encryption protocols include Secure Sockets
Layer (SSL) and Transport Layer Security
(TLS), which encrypt plaintext data into
ciphertext for transmission. This protects the
privacy of battery data, ensures data integrity,
and avoids erroneous decisions and potential
risks caused by data tampering.
Error-correcting coding (ECC) technology is
employed for error control and correction in
data transmission. By adding redundant
information to the original data, the receiver
can verify and correct errors in the received
data using this redundancy. Common
error-correcting coding methods include the
Cyclic Redundancy Check (CRC) and
Hamming codes.
Adaptive transmission and multi-path
transmission technologies are critical for
enhancing the stability of data transmission.
Adaptive Transmission dynamically optimizes
data transmission strategies by monitoring
real-time network parameters such as signal

strength, latency, and packet loss rate. It adapts
modulation schemes, data rates, or error
correction mechanisms to maintain stable
performance across varying network
conditions (e.g., transitioning from 4G to 5G
or Wi-Fi).
By leveraging multiple parallel communication
links (e.g., cellular + DSRC + satellite),
Multi-Path Transmission ensures continuous
data flow. If one path fails or degrades, traffic
is automatically rerouted through alternative
links, achieving 99.99% transmission
continuity in dynamic environments like
vehicular networks.

2.3 Data Processing and Storage Layer
The data processing and storage layer is
designed to preprocess and store power battery
data.
2.3.1 Data Preprocessing
In remote power battery data acquisition
systems, raw data often contains various noise
and outliers due to factors such as sensor errors
and electromagnetic interference. Additionally,
data formats and ranges may vary. To improve
data quality and provide a reliable foundation
for subsequent analysis and decision-making,
raw data must undergo preprocessing.
Common preprocessing methods include data
cleaning, noise reduction, and normalization.
The purpose of data cleaning is to identify
anomalies and either remove or correct outliers.
A commonly used data cleaning method is the
Z-Score method. The Z-Score is a statistical
technique that evaluates how far a data point
deviates from the mean, standardized by the
standard deviation. The calculation formula is
shown in Equation (1).

� = �−�
�

(1)
In the formula, � denotes the original data
value, � denotes the mean of the data, and �
denotes the standard deviation.
Noise reduction smooths the data and
eliminates noise interference. Common
denoising methods include filtering algorithms
such as the mean filter, median filter, and
Kalman filter.
Data normalization is a critical technique in
data preprocessing. It transforms data into a
specific range or distribution to eliminate the
impact of varying scales or units on data
analysis, enabling comparison and analysis of
different parameters on a unified scale. This
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enhances the accuracy and stability of data
analysis algorithms. A commonly used
normalization method is Min-Max
Normalization, which linearly maps data to a
predefined interval (e.g., [0, 1]). The
calculation formula is shown in Equation (2):

� = �−����
����−����

(2)
In the formula, � is the normalized data, � is
the original data, ���� is the minimum value
in the original dataset, and ���� is the
maximum value in the original dataset.
2.3.2 Data storage
Data storage is a critical component for
long-term data preservation and subsequent
analysis. Common data storage methods
include database storage and cloud storage.
In power battery data management, relational
databases such as MySQL and Oracle excel at
organizing and managing structured data.
Parameters like voltage, current, temperature,
and timestamps can be stored in predefined
table structures. When analyzing historical
battery data, users can query voltage values
within specific time periods using SQL
statements and calculate statistical metrics (e.g.,
mean, maximum, minimum) to support battery
performance evaluation.
In addition to structured sensor data, power
battery data acquisition may involve
unstructured data such as logs or fault
descriptions. Non-relational databases like
MongoDB and Redis efficiently store such
data, offering horizontal scalability and
high-concurrency read/write performance. In
distributed storage environments, these
databases use sharding to distribute data across
multiple nodes, enabling linear scalability of
storage capacity to meet the growing demands
of power battery data volumes.
Cloud storage, a storage method emerging with
the development of cloud computing in recent
years, provides elastic storage resources that
dynamically adjust storage capacity based on
data volume, eliminating the need for users to
manage complex hardware deployment and
maintenance. Additionally, cloud storage
offers high availability and data backup
capabilities, typically replicating data across
multiple geographic locations to ensure
security and reliability.
In multi-vehicle, large-scale power battery data
acquisition scenarios, cloud storage enables
centralized storage of battery data from all

vehicles, facilitating unified management and
analysis for automakers and research
institutions.

3. System Sensor Selection
Sensors are critical components for data
acquisition. The primary parameters for
monitoring the status, managing the
operational processes, and analyzing faults of
power battery packs include voltage, current,
and temperature. Below is a selection analysis
of these three types of sensors.

3.1 Voltage Sensor Selection Analysis
The voltage of a single cell in a new energy
power battery ranges from 3–4V, while the
entire battery pack typically operates within
300–800V. Voltage sensors must meet the
required voltage range and provide robust
isolation to prevent high-voltage damage to the
system. Additionally, due to the wide
operating temperature variations in new energy
vehicles, sensors must exhibit high
temperature stability.
Key Parameters for Voltage Sensors:
 Cell Voltage Measurement Range:
2.5V–4.5V (covers overcharge and
overdischarge limits)
 Isolation Withstand Voltage: ≥2× system
maximum voltage
 Accuracy: ≤±0.5% FS (Full Scale)
 Response Time: ≤10ms
A comparison of sensor selection options is
shown in Table 1.

3.2 Current Sensor Selection Analysis
Current measurement is critical for calculating
battery states such as State of Charge (SOC)
and State of Health (SOH). The operating
current range of pure electric vehicles typically
spans from tens to hundreds of amperes. When
selecting a sensor, factors such as
measurement range, response time, bandwidth,
and sampling rate must be considered,
especially for capturing rapid current
variations under dynamic operating conditions.
Key Parameters for Current Sensors:
Measurement Range: ±500A (bidirectional
charge/discharge measurement)
 Bandwidth: ≥10kHz (to capture transient
currents)
 Accuracy: ≤±1% FS (essential for
high-precision SOC/SOH estimation)
 Temperature Drift: ≤±0.1%/℃ (stable
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performance across wide temperature ranges)
A comparison of sensor selection options is
shown in Table 2.

3.3 Temperature Sensor Selection Analysis
The temperature of power battery packs
directly impacts their performance and safety.
Common temperature sensors include NTC
thermistors, RTDs (Resistance Temperature
Detectors), and digital sensors. Key parameters
for sensor selection include temperature range,
accuracy, response time, reliability, and the
need for multi-point measurements within the

battery pack, which necessitates compact
sensor sizes and flexible installation methods.
Key Parameters for Temperature Sensors:
 Temperature Range: -40℃ ~ +125℃ (covers
extreme operating conditions)
 Response Time: ≤5s (rapid detection of
thermal runaway)
Multi-Point Monitoring: 2–4 measurement
points per module (for cell balancing)
 Long-Term Stability: ≤±1℃/year
A comparison of sensor selection options is
shown in Table 3.

Table 1. Voltage Sensor Selection Comparison
Type Principle Advantages Disadvantages Model

Isolation
Amplifier

Resistive Divider +
Isolation Amplifier

Low cost, simple
structure

Significant temperature drift,
poor long-term stability

TI
AMC1301

Hall Sensor Hall Effect Non-contact, strong
EMI immunity High cost, zero-point drift LEM

LV25-P
Fiber Optic
Sensor

Electro-Optic
Modulation

Ultra-high isolation,
EMI-resistant

Expensive, complex system
integration Customized

Based on practical operational requirements, closed-loop Hall sensors are selected as the system
voltage sensors.

Table 2. Current Sensor Selection Comparison
Type Principle Advantages Disadvantages Model
Shunt
Resistor

Ohm’s Law
(I=V/R) Low cost, fast response Severe self-heating, complex

thermal compensation
Vishay

WSLP Series
Open-Loop

Hall
Hall Element +
Magnetic Core

Non-contact, moderate
cost

Magnetic hysteresis, limited
accuracy

Allegro
ACS758

Fluxgate
Sensor Fluxgate Principle Ultra-high accuracy

(±0.1%), low drift High cost, large size LEM ITN
Series

Considering the system’s operational requirements and the need for accurate SOC estimation in power
battery packs, fluxgate sensors are selected for current data acquisition.

Table 3. Temperature Sensor Selection Comparison
Type Principle Advantages Disadvantages Model

NTC
Thermistor

Negative
Temperature
Coefficient

Ultra-low cost, high
sensitivity

Nonlinear output, requires
calibration

Murata NXFT
Series

PT100/1000 Platinum Resistance High linearity,
accuracy (±0.3℃)

Higher cost, 3-wire
compensation needed

TE Connectivity
PTF

Digital
Sensor

Integrated ADC +
Digital I/F

Digital output, strong
noise immunity

Higher per-unit cost,
limited bandwidth

Maxim
DS18B20

The system selects NTC thermistors for temperature data acquisition.

3.4 Key Considerations for System
Integration
When selecting sensors, in addition to primary
parameters such as measurement range,
accuracy, and response time, system
integration requirements must be thoroughly
evaluated. These include size and installation
methods, power consumption, communication
interface types, EMC/EMI resistance, and

safety ratings.
Due to the limited internal space of the battery
pack, selected sensors must adopt
surface-mount or modular integrated designs,
with installation methods suitable for the
battery module structure. The operating and
standby power consumption of sensors directly
affect the overall energy consumption of the
system. During system design, priority should
be given to low-power sensor modules, along
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with strategies such as sleep modes and
dynamic adjustment of sampling rates to
reduce power consumption. Aligned with the
operational characteristics of onboard systems,
communication interfaces should prioritize
high real-time performance protocols like
CAN FD or SENT. For EMC design, sensors
must comply with the ISO 11452-2 automotive
electronic anti-interference standard.

4. System Vehicle Terminal Construction
The vehicle terminal hardware adopts an
embedded system, which is installed within the
T-Box or gateway. The detailed structure is
shown in Figure 2.

Figure 2. Vehicle Terminal Hardware
System Architecture

The hardware system consists of a main
controller MCU, communication module,
positioning module, power supply module, and
Electrically Erasable Programmable
Read-Only Memory (EEPROM). After
receiving sensor-collected data from vehicle
components, the control units exchange
information with the vehicle terminal via the
CAN bus. The CAN transceiver performs
signal conversion between data and differential
voltage levels.
The communication module receives
commands through a serial port and transmits
the vehicle's location data to the MCU. The
MCU communicates remotely with the cloud
via the communication module, transmitting
real-time vehicle status information to the
monitoring platform and receiving command
signals from the cloud. The power supply
module provides a stable operating voltage for
the hardware system [7].

4.1 Main Controller
The main controller MCU is the core of the
embedded system, selected as the

STM32F103RBT6 chip. The
STM32F103RBT6 is a 32-bit microcontroller
based on the ARM Cortex-M3 core,
manufactured by STMicroelectronics. Key
specifications include:
 Clock Speed: 72 MHz
Memory: 128 KB Flash, 20 KB SRAM
 Analog-to-Digital Converters (ADCs): Two
12-bit ADCs
 Timers: Three general-purpose 16-bit timers,
one PWM timer
 Communication Interfaces: Two I²C, SPI,
USART, USB, and one CAN interface
 Operating Temperature: -40°C to +85°C
 Power Modes: Supports multiple
power-saving modes for low-power
applications.
The minimum system circuit for the vehicle
terminal is shown in Figure 3.

4.2 Power Supply Module
The power supply module provides a stable
3.3V voltage to the main control circuit,
utilizing the linear voltage regulator
ME6211C33M5G. This chip delivers 3.3V
output voltage with a 500mA current capacity
and operates within a temperature range of
-40°C to +150°C, meeting the system design
requirements. The hardware circuit of the
power supply module is shown in Figure 4,
with the 5V input power supplied by the
vehicle power source.

4.3 CAN Transceiver Module
The CAN transceiver module primarily
performs the conversion between data and
differential voltage signals. The circuit is
shown in Figure 5. The TD301DCANHE chip
is selected for the communication module.
This chip operates on a 3.3V power supply,
with a 120Ω termination resistor connected
between the CANH and CANL pins [8,9].

4.4 Communication Module
Communication modules are categorized by
functionality into cellular modules (e.g.,
2G/3G/4G/5G/NB-IoT) and non-cellular
modules (e.g., Wi-Fi, Bluetooth, LoRa). By
transmission rate, they can be classified as:
 High-rate modules (e.g., 5G and 4G),
Medium-rate modules (e.g., 3G and eMTC),
 Low-rate modules (e.g., 2G and NB-IoT).
Considering both transmission range and rate
requirements, the high-rate cellular module
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EC20 is selected [10].
The EC20 module adopts LTE 3GPP Rel.11
technology, operates on a 3.3V power supply
(compatible with the system’s power design),
and supports 4G communication with a

maximum downlink rate of 150 Mbps and
uplink rate of 50 Mbps, meeting data
transmission demands.
The EC20 module parameters are listed in
Table 4.

Figure 3. Minimum System Circuit Diagram

Figure 4．Power Supply Module

Figure 5．CAN Transceiver Module
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Table 4. EC20 Parameter Table
Parameter Specification
Operating
Voltage 3.3V

Frequency
Bands

TDD-LTE: B38/B39/B40/B41
FDD-LTE: B1/B3/B8
WCDMA: B1/B8

TD-SCDMA: B34/B39
GSM: 900/1800 MHz

Transmission
Rate

EDGE: Max 236.8 Kbps
(DL/UL)

GPRS: Max 85.6 Kbps (DL/UL)

Interfaces

UART: Supports RTS/CTS
hardware flow control (Baud

rate up to 230,400 bps)
USB: USB 2.0 protocol (Max

480 Mbps)
Protocols TCP/UDP/PPP/FTP/HTTP

Note: Since the EC20 module operates at 1.8V
when using the UART interface, a level
conversion circuit is required. Therefore, in the
system design, the USB interface is directly
connected to the main controller.

4.5 Positioning Module

The positioning module provides vehicle
location information to the main controller.
The UM220 dual-system chip from Unicore
Communications is selected. This chip
supports both GPS and BeiDou positioning
systems, operates at 3.0–3.6V (compatible
with the system power supply), and its detailed
parameters are listed in Table 5.
The circuit design of the positioning module is
shown in Figure 6. TXD2 and RXD2 are used
as data output interfaces connected to the main
controller’s serial port. D2 is a germanium
diode with a forward voltage drop of 0.3V,
serving as a voltage matching component
between the VBAT pin and the 3.3V power
supply module.

Table 5. UM220 Parameters
Operating Voltage 3.0–3.6V

Frequency 1559–1577 MHz
Operating Temperature -40℃ to +85℃

Interfaces
3 UART ports,

LVTTL level, baud
rate 1200–230,400 bps

Positioning Accuracy 3m
Velocity Accuracy 0.1 m/s

Figure 6. Positioning Module Circuit

5. System Key Technologies

5.1 CAN Bus Technology
The main control unit of the remote diagnostic
system collects status data from vehicle
components via the CAN bus. The CAN
transmission protocol is a multi-master serial
communication bus characterized by high bit

rate and high resistance to electromagnetic
interference. The international CAN standards
primarily include ISO 11898 (for high-speed
applications) and ISO 11519 (for low-speed
fault-tolerant applications).
The CAN bus network architecture includes
closed-loop and open-loop structures. The
closed-loop structure is suitable for high-speed,
short-distance CAN networks, while the
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open-loop structure is used for low-speed,
long-distance transmission. Terminal nodes on
the bus are integrated into vehicle control units,
with hardware components including CAN
controllers and CAN transceivers.
CAN employs twisted-pair cables for
differential signal transmission, where
information is conveyed through the voltage
difference between two lines (CAN_H and
CAN_L). This design provides strong noise
immunity and effectively suppresses external
electromagnetic interference (EMI). The CAN
bus excels in real-time performance, where its
arbitration mechanism and frame priority
design ensure low latency and predictability. It
supports a multi-master system, allowing
multiple nodes to simultaneously send and
receive data without a master-slave hierarchy.
However, only one node can transmit data at
any given time. Utilizing a non-destructive
arbitration mechanism, the bus determines
which node retains transmission rights by
comparing the priority of message identifiers
(IDs), ensuring the highest-priority message is
transmitted without interruption [11].

5.2 Fault Diagnosis Protocol
The vehicle fault diagnosis protocol is a
standardized communication protocol used for
data transmission between vehicle Electronic
Control Units (ECUs) and external diagnostic
equipment. It enables maintenance technicians
to read vehicle fault codes, facilitating
effective fault diagnosis and repair.
Common fault diagnosis protocols include
OBD-II (On-Board Diagnostics II), CAN
(Controller Area Network), K-Line (KWP

2000), J1850, ISO 9141, ISO 14230, J1939,
UDS (Unified Diagnostic Services, ISO14229),
ISO15765 (UDS on CAN), etc. Among them,
UDS ISO14229 and ISO15765 are the most
critical protocols in applications.
The Unified Diagnostic Services (UDS) are
defined in the international standard ISO
14229-1. The UDS standard is a collection of
services that specify not only the usage and
format of these services but also standardized
data definitions. Its scope covers functional
units such as data transmission, diagnostic and
communication management, input/output
control, transmission and storage of data,
remote activation of routines, and
upload/download operations [12,13].
The ISO 15765 protocol is divided into four
parts. ISO 15765-1 defines the physical layer
and data link layer, while ISO 15765-2, on the
other hand, specifies the network layer
functions, including timeout control
mechanisms, and enables the mutual
conversion between SDU (Service Data Unit)
and PDU (Protocol Data Unit)—namely,
packet disassembling and assembling. To
achieve this, ISO 15765-2 defines four types of
frames: Single Frame (SF), First Frame (FF),
Consecutive Frame (CF), and Flow Control
Frame (FC). Meanwhile, it establishes two
communication modes: single-frame and
multi-frame communication, as illustrated in
Figure 7.
ISO 15765-3 specifies the specific services of
the application layer, while ISO 15765-4
outlines the requirements for relevant emission
systems. Details are not elaborated further in
this paper.

(a) Single Frame (b) Multi-frame
Figure 7. Data Frame Transmission Process
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5.3 Server Architecture
Taking into account the characteristics and
requirements of the vehicle-mounted terminal
in the remote diagnosis system, the system
design employs a B/S architecture
(Browser/Server model). In this architecture,
the core business logic processing is
centralized on the server side, with the server
undertaking most of the system’s functional
operations. This approach not only alleviates
the workload on the vehicle-mounted client but
also reduces hardware costs and ensures

compatibility with diverse operating systems.
Clients can interact with the server via a
browser alone, enabling seamless data
exchange while facilitating remote
maintenance and upgrades—thereby
minimizing the complexity and cost of system
upkeep.
The B/S architecture comprises three primary
tiers: the presentation layer, the logic layer,
and the data layer. These three tiers collaborate
synergistically to form the fundamental
framework of the B/S architecture, as
illustrated in Figure 8.

Figure 8. Server Architecture
In the design of the remote diagnosis system,
the presentation layer corresponds to
vehicle-mounted clients, mobile phones,
tablets, diagnostic clients, etc., which
communicate with users through
human-machine interaction interfaces. These
terminals can establish communications with
cloud servers via HTTP or HTTPS protocols to
send diagnostic requests or receive data and
commands from the servers. A simple
interaction interface enables coverage of a
wide range of users with diverse needs [14].
The logic layer and data layer correspond to
cloud diagnostic servers, where vehicle data
and customer request information transmitted
via remote networks are stored and processed
to analyze vehicle operating status and perform
diagnostics. Meanwhile, with the introduction
of big data technology, the remote diagnostic
capabilities of automotive systems based on
the B/S architecture have been further
enhanced. Through analysis of massive data in
the cloud, potential patterns and relationships
can be mined to optimize diagnostic models
and improve the system’s adaptive capabilities.

6. Conclusion
This paper delves into the construction
methodology of a remote data acquisition
model for power batteries within the vehicle
networking ecosystem. It conducts a
comprehensive exploration of the data
acquisition system's architectural design,
pivotal supporting technologies, sensor
selection strategies, and the implementation of
vehicle-mounted terminal hardware and
software. By establishing a hierarchical data
acquisition framework and meticulously
optimizing the selection of high-precision
sensors and low-power communication
technologies, the model enables the real-time
collection and reliable transmission of
multi-dimensional state parameters of power
batteries. Moreover, the modular design of the
vehicle-mounted terminal significantly
enhances the real-time performance of data
processing and local analysis capabilities,
laying a solid data foundation for battery
health management, fault pre-warning, and
energy efficiency optimization in vehicle
networking scenarios. Rigorous experimental
validations demonstrate that the proposed
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model has achieved the anticipated targets in
terms of data integrity, transmission efficiency,
and system stability.
Building upon the existing model, to address
the data acquisition demands under complex
and dynamic operating conditions, it is
imperative to conduct in-depth research on
multi-source heterogeneous data fusion
algorithms and lightweight deep learning
models. These efforts aim to elevate the
accuracy of data feature extraction and the
efficiency of edge computing. Additionally,
exploring how to optimize the synergy
between the battery management system and
vehicle energy management strategies through
data-driven approaches emerges as a crucial
avenue for future investigation.
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