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Abstract: The underground environment of
coal mines is complex, causing issues such as
insufficient lighting, low contrast, and high
noise in the images collected by underground
monitoring equipment. These problems
severely affect subsequent image analysis and
intelligent decision-making. This paper
introduces a low-illumination image
enhancement algorithm for underground coal
mines, grounded in Retinex theory. Firstly,
the projection module is utilized to process
the original image, reducing the interference
of noise on Retinex decomposition. Secondly,
a decomposition network integrated with the
U-Net structure is employed to accurately
separate the illumination and reflection
components. Finally, a self-calibration
illumination network is introduced. Through
multi-stage residual learning and self-
calibration mapping, it can automatically
adjust the illumination component.
Experiments demonstrate that on the self-
built underground image dataset, the
proposed algorithm outperforms mainstream
methods in terms of PSNR and SSIM metrics.
The algorithm presented in this paper
outperforms comparative algorithms in
subjective human vision analysis,
demonstrating its effectiveness in enhancing
the visual quality of low-illumination images
in underground coal mines.
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1. Introduction
In the process of coal mine intelligentization, the
underground video surveillance system[1] is of
great significance for safe production and
efficient operation. It can provide data for tasks
such as personnel positioning and behavior

recognition, enabling surface personnel to
monitor the underground situation in real time
and make decisions. However, the underground
environment is harsh, with insufficient and
unevenly distributed artificial lighting, as well as
a large amount of dust and fog. This results in
inadequate illumination and detail loss in
collected images, diminishing image quality and
hindering computer vision tasks like object
detection and image recognition, as well as
manual observation and intelligent decision-
making. Therefore, studying the low-illumination
image enhancement technology for coal mines
can promote the intelligent development of coal
mines, ensure personnel safety, and improve
production efficiency, etc.
Recent advancements in image processing
technology have led to significant progress in
enhancing low-illumination images in coal mines,
utilizing both traditional and deep-learning
methods. However, many challenges still remain.
Traditional image enhancement techniques, such
as grayscale transformation-based histogram
modification[2], enhance image brightness and
contrast by redistributing the pixel histogram.
However, this approach often leads to issues like
color distortion and local over-enhancement. The
Retinex theory-based algorithm[3] enhances
images by focusing on the reflection components
of objects; however, it frequently produces halo
effects and artifacts when applied to images with
shadow transitions or artificial light sources. In
addition, some methods based on physical
models and prior knowledge may be effective
under specific conditions, but in complex
underground scenarios, they often lose details
and suffer from color distortion.
Retinex-Net[4] combines Retinex theory with
convolutional neural networks to enhance image
brightness via decomposition and enhancement
networks, but it faces challenges like color
distortion and detail loss. The KinD[5] algorithm,
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introduced by Zhang et al., is prone to
inconsistencies between the reflection and
illumination components during network
decomposition, leading to the emergence of
artifacts. Guo et al.[6] devised the Zero-DCE
network, which achieves brightness enhancement
through curve iteration. However, it falls short in
adequately enhancing brightness for darker, low-
light underground images and suffers from
overexposure. The Enlighten GAN network,
proposed by Jiang et al.[7], employs generative
adversarial networks to establish a mapping
between unpaired images, yielding results in
color restoration and enhancement, yet it still
contends with shadowed areas. IAT[8] presents
an illumination-adaptive Transformer structure
aimed at exposure correction and image
enhancement. Nonetheless, its frequent use of
convolutional layers and lack of focus on the
recovery of edge detail information diminish the
quality of its restoration algorithm. SCI[9]
presents a self-calibrating illumination
framework utilizing a weight-sharing cascaded
structure to learn the illumination enhancement
process; however, it has limited ability to
maintain the detailed features of low-light images.
Currently, despite the existence of numerous
low-light enhancement algorithms, challenges
persist in enhancing images from underground
coal mines due to the complex environment,
inadequate roadway lighting, limited image
acquisition devices, and interference from dust
and background. These challenges result in
issues such as low contrast, weak edge
information, and high image noise. This paper
introduces a low-light image enhancement
algorithm for underground coal mines, grounded
in Retinex theory. The primary contributions
include:
1) A projection module is introduced to remove
inappropriate noise, ensuring that the
decomposition network can stably and accurately
decompose the image.
2) A channel-splicing U-Net-based low-
illumination image decomposition network is
developed to process the original image by
extracting and analyzing the interrelationships
between the illumination and reflection
components at various levels, ultimately
decomposing the image into these two
components.
3) A self-calibration module is introduced to
construct a progressive illumination optimization
process, increasing the overall illumination of the

image and thus improving the image quality.

2. Low-Light Image Enhancement Algorithm
for Underground Coal Mines Based on the
Retinex Theory
Low-light images in underground coal mines
exhibit greater complexity than typical low-light
images. In addition to insufficient brightness,
there are interferences from dust and fog,
resulting in low contrast and blurred details.
Moreover, in the special working environment of
underground coal mines, the backgrounds of
areas such as the underground working faces are
generally dark, which further increases the
difficulty of separating the targets from the
backgrounds in low-light images. We introduce a
low-light image enhancement algorithm for
underground coal mines, grounded in Retinex
theory. Initially, the image is processed by a
projection module to eliminate unwanted noise,
facilitating stable and precise image
decomposition by the network. Subsequently, the
denoised image undergoes decomposition into
illumination and reflectance components via a
dedicated module. Subsequently, a network is
employed to estimate the illumination
component's brightness. By precisely analyzing
brightness, this network offers suitable
illumination adjustments to enhance the image's
visual quality. The illumination map is integrated
with the reflectance map using Retinex theory to
improve contrast and detail in underground mine
images. Figure 1. shows the overall network
structure of this paper.

2.1 Denoising Network
In the low-light image enhancement task, actual
low-light images are not noise-free images in an
ideal state. The accuracy of Retinex
decomposition is vulnerable to interference from
non-ideal features such as noise in the original
image, local overexposure, or high-frequency
disturbances. To address this issue, inspired by
Fu et al.[10], this paper introduces the projection
module P-Net. Its core objective is to generate a
projected image suitable for Retinex
decomposition through feature remapping. As
depicted in Figure 2., P-Net is composed of four
3x3 convolutional layers with ReLU activation,
followed by an additional 3x3 convolutional
layer. The last layer normalizes the output to the
interval [0, 1] through the Sigmoid function, and
the number of output channels is 3 to ensure
alignment with the color space of the original
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image. The role of P-Net can be explained from
the perspective of error redistribution. The
objective function optimized during image
decomposition by the network is expressed as:
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Figure 1. Overall Network Structure

Figure 2. P-Net Network Structure
Among them, represents the original low-light
image, represents the projected image, represents
the error in the original image caused by noise
factors, and and represent the decomposed
illumination component and reflectance
component, respectively. It can be seen from (1)
that the decomposition process will be affected
by errors that cannot be modeled by the Retinex
theory. The P-Net performs projection
preprocessing on the original image, transferring
the errors from the decomposition stage to the
projection stage. The method enhances the
Retinex decomposition task by preserving the
similarity between the projected and original
low-light images while effectively eliminating
unwanted noise.
The projection module's loss function is
formulated as:

2PL Y T  (2)

2.2 Decomposition Network
The decomposition network module consists of
two branches dedicated to extracting the
reflectance and illumination maps, respectively.
The reflectance map branch adopts the U-Net
structure. Two 3×3 convolutional layers and the
Leaky ReLU function are used to capture the
contextual features. A 2×2 max pooling layer
follows the convolutional block. The upsampling
process corresponds to the downsampling

process. Skip connections are used to perform
feature fusion on the feature maps at different
levels. In this way, not only the high-resolution
detail information contained in the high-level
feature maps is retained, but also the problem of
the loss of shallow features caused by the
increase in the depth of the model is avoided,
thus achieving a high-quality image output. The
structure used to extract the illumination map is
formed by concatenating with the upsampling
and downsampling structures of the upper branch,
followed by a Conv+Leaky ReLU layer and a
Conv layer, and finally a Sigmoid layer. This
concatenation provides additional guiding
information for the lower branch to estimate the
illumination component more accurately. Figure
1 illustrates the overall structure.
The decomposition module’s loss function is
formulated as:

d res r ref i ill m mcL L L L L      (3)
Where r , i , and m are the weight coefficients.
The reconstruction loss ensures the consistency
between the original input image and the product
of the decomposed reflectance and illumination
components. The reconstruction loss can be
expressed as:

1 1res l l l n n nL IR L R I L    (4)
Where nR , lR , nI , lI are respectively the
illumination component and reflectance
component after the decomposition of the input
image, and 1 is the L1-norm.
The reflectance component, indicative of an
object's intrinsic properties like texture and color,
should remain unaffected by illumination. The
reflectance component consistency loss aims to
constrain the reflectance maps of the same scene
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under low-light and normal-light conditions to be
consistent. The reflectance component
consistency loss can be expressed as:

1ref l nL R R  (5)
The illumination component smoothness loss
ensures that the illumination component is as
smooth as possible in texture details while
retaining the overall structural information by
constraining the spatial gradient change of the
illumination component. The formula is:

1 1max(| |, ) max(| |, )
l n

ill
l n

I I
L

I I 
 

 
 

(6)

Where  is a first order gradient operator, which
includes the horizontal and vertical directions.
 is a very small positive constant used to avoid
division by zero errors.
Inspired by KinD, the mutual consistency loss is
added to ensure the consistency of the
illumination component in smooth regions and
edge regions. The formula is as follows:

1exp( )mcL M c M    (7)
Where, | | | |l nM L L    .

2.3 Illumination Estimation Network
The illumination adjustment network aims to
optimize the brightness distribution of the
illumination map. To this end, this paper uses the
self-calibrating illumination network (SCI) to
process images. The self-calibrating illumination
network not only boosts image brightness but
also restores texture details effectively. The
structure of SCI is shown in Figure 3.

Figure 3. SCI Structure
SCI utilizes staged illumination learning based
on Retinex theory to model the relationship
between low-light observations and illumination
through residual learning. Its basic unit is

expressed as:
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Where tu and tX represent the residual term and
illumination at the t stage; H is the illumination
estimation network, which adopts a weight-
sharing mechanism to make each stage share the
same network structure and parameters. SCI
incorporates a self-calibration module into the
low-light observations to maintain result
consistency across each stage by correcting the
input. The self-calibration module is represented
by the following formula:
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Where tZ is the fusion result calculated from the
output tX of the current stage and the low-light
observation image y , tS is the self-calibration
map, which is generated by the parameterized
operator K , and tV is the calibrated input for the
next stage.
Therefore, the basic unit of the t-th stage lighting
optimization process can be reformulated as:

    t tF X F G X (10)

The algorithm enhances low-illumination image
quality and clarity in coal mines by integrating
illumination learning with a self-calibration
module during the learning process.

3. Experimental Results and Analysis

3.1 Datasets and Experimental Environment
Capturing paired low-light and normal-light
images in coal mines is challenging due to the
complex environment and limitations of shooting
equipment. To address this issue, images are
extracted from actual underground monitoring
footage and videos shot by intrinsically safe law
enforcement recorders in mines through frame
extraction. A set of 1000 images with normal
illumination was chosen, and low-light images
were created by modifying their contrast and
brightness to mimic actual low-light conditions
in coal mines. The dataset, combined with a
portion of the existing low-light dataset (LOL), is
utilized to train the network model.
The proposed low-illumination image
enhancement algorithm for coal mines, based on
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Retinex theory, is implemented in Python to
assess its effectiveness in complex coal mine
environments. The study utilizes a custom dataset
of underground coal mine scenes, with training
conducted on an NVIDIA GeForce RTX 3090
GPU. The parameter settings during training are
as follows: batch size = 8, epochs = 500, and the
input image size is 600×400.

3.2Subjective Evaluation
The proposed algorithm's effectiveness is
assessed by selecting three underground coal
mine images from the dataset and conducting a
subjective comparative analysis of the
experimental results with different algorithms. In
this experiment, five methods, namely LIME,
Retinex-Net, KinD, Zero-DCE, and IAT, are
selected as comparative algorithms.

Figure 4. Comparison of Enhancement Results of Different Algorithm
Figure.4. illustrates the enhancement effects of
various methods on low-illumination images
from the mine. It is not difficult to see from the
figure that various methods have optimized the
visual performance of the mine images to a
certain extent, and the brightness, contrast, and
clarity of the images have all been improved.
However, after being enhanced by the LIME
method, there is an obvious overexposure
phenomenon at the point light sources in the
images have all been improved. However, after
being enhanced by the LIME method, there is an
obvious overexposure phenomenon at the point
light sources in the image, resulting in an image
with enhanced halos. The Retinex-Net method
results in color distortion and fails to reveal
certain details in dark areas. The KinD method
produces images that are somewhat dark, with
low contrast and slightly blurred details. The
image enhancement effect of the Zero-DCE
method is relatively excellent, and the image
fidelity is high. However, the illumination
distribution in individual areas is still not uniform
enough, resulting in an unbalanced color
situation. The IAT method will cause a large
amount of detail texture of the image to be lost,
the image smoothness is too high, and it is
difficult to observe the detail information in the
image. The algorithm introduced in this paper
effectively adjusts the majority of image areas to
optimal lighting conditions, surpassing the
methods previously discussed. It not only makes
the enhanced image have sufficient brightness

and avoids over-enhancement, but also enables
the information in the dark areas to be displayed
normally. The overall brightness and local
texture details closely resemble those of an image
under normal illumination, resulting in a more
ideal visual effect.

3.3 Objective Evaluation
To objectively assess the proposed algorithm's
effectiveness, we employ two image quality
metrics: Peak Signal-to-Noise Ratio (PSNR) and
Structural SIMilarity (SSIM), acknowledging
that subjective visual comparisons can differ
among individuals. PSNR quantifies image
distortion by computing the mean squared error
between the output and the reference image. The
larger the value, the smaller the distortion of the
enhanced image, and the better the image quality.
SSIM measures the similarity of images. A
higher value indicates less image distortion and
greater structural similarity between the
enhanced and original images. Refer to Table 1
for detailed results.

Table 1. Objective Evaluation Results of
Differ-ent Models

Methods PSNR SSIM
LIME[3] 16.37 0.532

Retinex-Net[4] 19.62 0.604
KinD[5] 20.49 0.784

Zero-DCE[6] 17.21 0.718
IAT[8] 21.58 0.789
Ours 22.86 0.793

Table 1 demonstrates that the proposed algorithm
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enhances images, resulting in higher PSNR
values compared to other algorithms when
evaluating the dataset. An elevated PSNR value
signifies that the enhanced image closely
resembles the normal illumination image in pixel
content. The elevated SSIM parameter value
indicates that the algorithm presented in this
paper enhances images to more closely resemble
normal illumination images in terms of structural
characteristics compared to other algorithms. In
conclusion, whether it is the evaluation of
subjective visual effects or objective indicators,
the proposed algorithm has significantly
improved in terms of brightness, contrast, clarity,
and image detail information. It effectively
enhances low-illumination images and offers
distinct advantages.

4. Conclusions
The proposed algorithm initially eliminates
unsuitable noise using the projection module.
Secondly, integrating the decomposition network
utilizing the residual U-Net structure enhances
the accuracy of separating the illumination and
reflection components. Utilizing multi-stage
residual learning and self-calibration mapping,
the method effectively balances global brightness
enhancement with local detail preservation,
significantly improving the visual quality of low-
light images. Future research will investigate the
connection between low-light image
enhancement and advanced visual tasks like
object detection and image recognition, aiming to
further optimize the model and its performance.
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