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Abstract: In the context of "New
Engineering" construction and the digital
transformation of education, this study
focuses on the theoretical framework and
practical pathways for reforming physical
chemistry teaching modes empowered by
artificial intelligence (AI). It aims to overcome
bottlenecks in traditional teaching, such as
insufficient personalized guidance and a lack
of data-driven decision-making. The research
integrates educational technology theories,
learning science principles, and intelligent
algorithm tools to construct a three-
dimensional empowerment model of "AI +
Physical Chemistry Teaching," encompassing
intelligent teaching environment development,
adaptive learning support, and teaching
process optimization mechanisms. By
analyzing relevant studies domestically and
internationally, and considering the
knowledge system characteristics of physical
chemistry, a reform plan was designed,
including intelligent learning diagnostics,
dynamic resource allocation, virtual
simulation experiments, intelligent Q&A
systems, and formative assessment,
implemented across multiple universities in
comparative experiments. The findings reveal
that AI-integrated teaching modes
significantly enhance students' knowledge
mastery, problem-solving skills, and learning
autonomy, particularly in complex topics such
as molecular simulation experiments and
thermodynamic data modeling, with AI
interventions improving learning efficiency by
32%. Additionally, the study identifies key
factors for the deep integration of AI
technology with course content, including
accuracy in knowledge graph construction,
design of human-machine collaborative
teaching strategies, and alignment with
teachers' digital literacy. The conclusions
provide a replicable theoretical model and
practical paradigm for intelligent teaching
reform in foundational courses in higher

education.
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1. Introduction

1.1 Research Background and Problem
Statement
In the context of the global digital
transformation of higher education, artificial
intelligence (AI) technology is emerging as a
core driver of changes in curriculum and
teaching methods. The "China Education
Modernization 2035" initiative explicitly
identifies the construction of an "intelligent
educational support environment" as a key
strategic task, emphasizing systematic
restructuring of educational content, methods,
and management systems through technological
empowerment. As a foundational course for
disciplines such as chemistry, chemical
engineering, materials science, and
environmental science, the quality of physical
chemistry education directly impacts students'
professional competencies and scientific
research abilities. This course, centered on
thermodynamics, kinetics, and structural
chemistry, spans knowledge from quantum
mechanical descriptions at the molecular level to
mathematical modeling of macroscopic chemical
processes, characterized by high abstraction,
logic, and interdisciplinary integration. However,
traditional teaching modes, dominated by
teacher-led lectures, fixed-frequency
experimental teaching, and standardized
assessments, struggle to meet the individualized
needs of students during complex knowledge
construction, particularly in cognitive challenges
such as molecular structure visualization,
reaction mechanism dynamic reasoning, and
thermodynamic data modeling, often leading to
misunderstandings and application bottlenecks.

Journal of Natural Science Education (ISSN: 3005-5792) Vol. 2 No. 3, 2025 31

Copyright @ STEMM Institute Press http://www.stemmpress.com



With the maturation of technologies like deep
learning and natural language processing, the
application of AI in education is continuously
expanding. Recent surveys indicate that 76% of
universities have deployed intelligent teaching
systems in foundational courses, yet significant
lag persists in the intelligent reform of
specialized foundational courses such as
physical chemistry. This gap manifests in several
ways: the mismatch between cross-scale
representation of course knowledge and the
semantic processing capabilities of intelligent
systems, the underdeveloped integration of
virtual simulation technology with practical skill
training in experimental teaching, and the
technological bottlenecks in developing dynamic
academic diagnosis and precision intervention
strategies during teaching processes. Given the
pressing need for cultivating engineering
practice skills under the "New Engineering"
initiative, designing an intelligent teaching
model tailored to the knowledge characteristics
and cognitive patterns of physical chemistry—
capable of overcoming traditional teaching
limitations in terms of time-space constraints,
academic diagnosis, and resource provision—
has become a key challenge in higher education
reform.

1.2 Review of Domestic and International
Research Status
Research on the integration of AI and physical
chemistry education began earlier abroad,
initially focusing on the development and
application of Intelligent Tutoring Systems (ITS).
For example, a diagnostic system based on
Bayesian networks can accurately identify
students' conceptual understanding gaps by
analyzing their reasoning paths in solving
thermodynamic equilibrium problems, providing
customized feedback. With advances in
reinforcement learning algorithms, adaptive
learning platforms have started to integrate
molecular simulation data, achieving an organic
combination of microscopic structure
visualization and dynamic process reasoning.
The EU's "AI4STEM" research program focuses
on constructing interdisciplinary intelligent
teaching frameworks, particularly exploring the
intersection of quantum computing and machine
learning in physical chemistry, proposing the use
of knowledge graph technology for structured
representation and intelligent navigation of
course content. However, existing research often

emphasizes the independent development of
technological tools, lacking systematic
exploration of the deep coupling mechanisms
between course knowledge systems and
intelligent algorithms, particularly regarding
how AI can facilitate students' cognitive
transitions from macroscopic phenomena to
microscopic essence.
Domestic research primarily revolves around
technology applications driven by educational
policies, with typical practices including the
construction of MOOC-based physical chemistry
courses and virtual experimental teaching
centers. For instance, a 985 university has
developed an intelligent teaching system for
physical chemistry that integrates molecular
dynamics simulation software and learning
analytics technology to achieve interactive
visualization of thermodynamic function
derivation. However, overall, domestic research
exhibits two major shortcomings: first,
insufficient depth in exploring the adaptability of
cognitive patterns unique to physical chemistry
(e.g., the conversion between macroscopic,
microscopic, and symbolic representations) and
AI empowerment mechanisms; second, in
teaching practices, the application of intelligent
systems often remains at the level of resource
digitization, failing to effectively address deep
cognitive support issues in complex knowledge
construction. Additionally, existing research has
not yet formed a systematic training framework
for the role transformation and competency
requirements of teachers in intelligent teaching
environments, leading to a collaborative gap
between technological applications and teaching
needs.

1.3 Research Objectives and Innovative Value
This study aims to construct a theoretical
framework and practical system for AI-
empowered physical chemistry education, with
specific objectives that include: (1) analyzing the
adaptability mechanism between the knowledge
structure of physical chemistry courses and AI
technologies, establishing a three-dimensional
theoretical model of "technology empowerment-
cognitive development-capability cultivation";
(2) designing a teaching mode reform plan that
includes intelligent academic diagnosis, dynamic
resource pushing, virtual simulations, intelligent
Q&A systems, and formative assessment,
thereby breaking the standardized limitations of
traditional teaching; (3) validating the
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effectiveness of the AI-empowered teaching
model through empirical research, revealing the
intrinsic patterns of teacher role transformation,
student learning behavior changes, and system
function optimization during the application of
technology.
The main innovations of this research lie in three
aspects: firstly, proposing a knowledge graph-
based course content representation method to
address the structural modeling of cross-scale
knowledge in physical chemistry, providing
theoretical support for precise interventions by
intelligent systems; secondly, constructing a
human-machine collaborative teaching decision-
making model that integrates teachers' subject-
specific knowledge with the data analysis
capabilities of intelligent systems, achieving
dynamic optimization of the teaching process;
thirdly, establishing a technology application
framework that includes educational ethics and
data security to provide practical guidance for
the standardized application of AI in
foundational professional courses. These
outcomes not only enrich the theoretical
application of intelligent education in science
courses but also provide replicable
implementation paths for the intelligent reform
of similar courses, holding significant theoretical
and practical value.

2. Theoretical Foundations and Core Concept
Definitions

2.1 Theoretical System of AI in Education
Applications
The application of AI in education relies on a
multidisciplinary theoretical foundation, forming
a unique theoretical system. From the
perspective of learning science, constructivist
theory emphasizes learners' active knowledge
construction through interactions with their
environment, and AI creates personalized
learning environments that provide diverse
forms of knowledge representation and
interaction, aligning with the core tenets of
constructivism. Recent developments in the zone
of proximal development theory suggest that
effective teaching should provide "scaffolding"
support tailored to students' potential
development levels. Intelligent systems can
accurately identify students' proximal
development zones through real-time academic
diagnosis, dynamically balancing "teaching" and
"learning."

In the field of educational technology, the media
richness theory indicates that different media
possess varying information transmission
capabilities. AI technology integrates multiple
media forms—including text, images,
animations, and virtual simulations—to
significantly enhance the representation efficacy
of complex knowledge (such as molecular
orbital theory and chemical kinetics equations in
physical chemistry). From a computer science
perspective, knowledge graph technology
supports the understanding of the hierarchical
structure and logical connections of physical
chemistry knowledge by constructing a network
of course concepts and semantic relationships;
machine learning algorithms can analyze student
learning data to predict cognitive development
trends and optimize teaching strategies. The
intersection of these theories and technologies
lays a solid theoretical foundation for AI
empowerment in physical chemistry education.

2.2 Analysis of Physical Chemistry Course
Teaching Characteristics
The teaching characteristics of physical
chemistry can be analyzed from three
dimensions: knowledge structure, capability
cultivation, and cognitive patterns. In terms of
knowledge structure, the course encompasses
three levels: macroscopic thermodynamics (e.g.,
entropy change calculations, phase equilibrium
analysis), microscopic structures (e.g., molecular
energy level distributions, crystal structure
determinations), and symbolic representations
(e.g., thermodynamic function relationships,
kinetic rate equations). These layers of
knowledge are tightly interconnected through
mathematical modeling and logical reasoning,
forming a cognitive chain of "phenomenon-
essence-law," which places high demands on
students' abstract thinking and logical reasoning
abilities.
Regarding capability cultivation, the course aims
to develop three core competencies in students:
first, scientific thinking skills, including the
ability to establish idealized models (e.g., ideal
gases, reversible processes) and utilize
mathematical tools for quantitative analysis;
second, experimental inquiry skills, covering
thermodynamic data measurement, kinetic curve
fitting, and molecular structure characterization;
and third, engineering application skills,
requiring students to apply knowledge of phase
diagram analysis and reaction rate theory to real-
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world scenarios such as chemical process
optimization and materials synthesis design.
From the perspective of cognitive patterns,
students' mastery of physical chemistry
knowledge follows a pathway of "observing
macroscopic phenomena-deducing microscopic
mechanisms-constructing symbolic models-
applying to real-world problems." For example,
to understand "the effect of temperature on
chemical reaction rates," one must start with
macroscopic experimental data (e.g., Arrhenius
curves), combine it with microscopic activation
molecular theory, and quantitatively describe it
through mathematical models (rate equations),
ultimately applying this to temperature control in
industrial reactors. This process involves
multiple representation transformations,
imposing special demands on knowledge
visualization and logical deduction abilities in
teaching.

2.3 Theoretical Framework of "AI +
Teaching" Empowerment Mechanisms
Based on the characteristics of physical
chemistry courses and the advantages of AI
technology, this research constructs a three-
dimensional empowerment mechanism
theoretical framework for "AI + Teaching,"
encompassing the construction of intelligent
teaching environments, adaptive learning
support, and teaching process optimization.
In the dimension of intelligent teaching
environment construction, knowledge graph
technology is used to structurally represent
course content, establishing a knowledge
network that includes conceptual nodes, logical
relationships, and cognitive paths, providing the
foundation for intelligent systems to understand
the course knowledge structure. Additionally, a
virtual simulation experimental platform is
developed, utilizing molecular dynamics
simulation and Monte Carlo computation
technologies to achieve visual presentation and
interactive operations of microscopic reaction
processes (e.g., adsorption mechanisms on
catalyst surfaces), compensating for traditional
experimental teaching's time, space, and safety
limitations.
In the dimension of adaptive learning support,
based on students' learning behavior data within
intelligent systems (e.g., response times, error
types, resource access trajectories), machine
learning algorithms construct academic
diagnosis models to assess students' knowledge

mastery and cognitive style differences in real-
time. Based on these diagnostic results, the
system dynamically adjusts resource pushing
strategies to provide personalized learning
pathways for students at different levels, such as
reinforcing basic thermodynamic concepts with
animated demonstrations for weaker students
and pushing cutting-edge molecular simulation
cases for advanced learners.
In the dimension of teaching process
optimization, a formative evaluation system
based on learning analytics is established to
comprehensively assess students' learning
progress through multi-dimensional data (e.g.,
classroom interaction data, assignment
completion quality, experimental report logic).
This allows for timely identification of cognitive
gaps and triggers intervention mechanisms.
Simultaneously, a human-machine collaborative
teaching decision-making model is designed to
integrate teachers' subject knowledge with the
data analysis results of intelligent systems,
achieving complementary advantages in areas
such as course content arrangement, difficulty
explanation strategies, and experimental design,
thereby enhancing the scientificity and
specificity of teaching decisions.

3. Challenges of Traditional Physical
Chemistry Teaching Models and
Transformation Needs

3.1 Complexity Challenges of Course
Knowledge Structure
The knowledge system of physical chemistry
presents multi-dimensional and cross-scale
complexities, creating unique challenges for
students' cognitive construction. In terms of
representation forms, course content
encompasses macroscopic phenomenon
descriptions (e.g., calorimetry of chemical
reaction heat effects), microscopic mechanism
explanations (e.g., the impact of intermolecular
forces on phase changes), and symbolic
theoretical modeling (e.g., derivation and
application of thermodynamic differential
equations), with all three interconnected through
mathematical logic and scientific hypotheses.
For example, understanding the concept of
"entropy" requires starting from the macroscopic
thermodynamic definition established by the
Clausius inequality, linking it to the microscopic
statistical explanation of the Boltzmann entropy
formula, and ultimately applying it to the
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engineering scenarios of Gibbs free energy
equations. This process demands frequent
transitions among different representation
dimensions, placing high demands on students'
abstract thinking and cross-dimensional
associative abilities.
The hierarchical and logical nature of the
knowledge structure further exacerbates learning
difficulties. The course centers on core modules
of chemical thermodynamics, chemical kinetics,
and structural chemistry, each of which has
rigorous theoretical deduction chains. For
instance, the establishment of the second law of
thermodynamics relies on the mathematical
derivation of the Carnot cycle, while subsequent
analyses of phase equilibrium and chemical
equilibrium are based on this law. This
interconnected knowledge architecture can lead
to chain reaction barriers in students' knowledge
construction if there are misconceptions at early
conceptual stages (e.g., reversible processes,
standard states). Educational measurement data
reveal that students' accuracy is only 41.2% on
problems involving the comprehensive
application of multiple knowledge points (e.g.,
calculating the equilibrium composition of
complex reaction systems), significantly lower
than the accuracy of single-knowledge-point
questions (78.3%), reflecting traditional
teaching's inadequacy in guiding cognitive paths
and complex knowledge associations.

3.2 Efficiency Bottlenecks of Traditional
Teaching Models
Traditional physical chemistry teaching
primarily adopts a teacher-centered lecture
format, encountering dual bottlenecks in
knowledge transmission efficiency and
personalized support. In large class settings,
teachers find it challenging to adjust the teaching
pace to accommodate individual student
differences, leading to weaker students
developing anxiety due to inadequate conceptual
understanding, while advanced students may
lose motivation due to insufficient content
expansion. A continuous three-year teaching
satisfaction survey at a university indicated that
the student satisfaction rate for the physical
chemistry course was only 62.7%, significantly
lower than the university average of 78.5%, with
major feedback issues including "lack of
targeted content" and "insufficient detail in
explaining difficult points."
The limitations of experimental teaching are

even more pronounced. Physical chemistry
experiments involve high-precision instrument
operations (e.g., differential thermal analyzers,
electrochemical workstations) and long-term
data collection (e.g., kinetic curves requiring
hours of continuous monitoring). Due to
constraints of laboratory equipment availability,
scheduling, and safety regulations, students often
struggle to fully engage in the entire process of
experimental design, execution, and data
analysis. In traditional experimental teaching,
students' grasp of experimental principles tends
to remain at a verification level, with significant
deficiencies in skills such as independently
designing experimental plans and analyzing
anomalous data. Survey results show that only
23.6% of students believe traditional
experimental teaching effectively enhances their
scientific inquiry abilities, with 68.4%
expressing a desire for increased virtual
simulation experiments to overcome time-space
limitations.
The singularity of the evaluation system
exacerbates the challenges in teaching
effectiveness. Traditional assessments primarily
focus on final exams, emphasizing memory of
knowledge points and application of formulas,
lacking effective evaluation of students'
scientific thinking processes (e.g., rationality
analysis of model establishment), practical
abilities (e.g., error handling in experimental
data), and innovation qualities (e.g., proposing
improvements to reaction conditions). In joint
examination data from universities in a province,
the correlation coefficient between theoretical
scores and experimental performance scores in
the physical chemistry course was only 0.37,
indicating that an evaluation orientation
prioritizing "theory over practice" and "results
over processes" failed to comprehensively
address teaching objectives.

3.3 Appropriateness Analysis of AI
Empowerment
The development of AI technology offers
suitable solutions to address the challenges in
physical chemistry education, with its
empowerment potential reflected in three aspects:
First, in response to the complexity of
knowledge structures, natural language
processing and knowledge graph technologies
can transform discrete course content into
structured concept networks, clearly presenting
the logical associations and cognitive pathways
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among knowledge points. For instance, by
constructing a physical chemistry knowledge
graph encompassing 527 core concepts and
3,892 logical relationships, intelligent systems
can accurately identify students' knowledge gaps
and generate personalized concept association
maps to help students establish cross-
dimensional cognitive connections.
Second, to meet personalized teaching needs,
machine learning algorithms can dynamically
construct learning situation models and predict
cognitive development trends by analyzing
students' learning behavior data (e.g., video
viewing durations, problem-solving trajectories,
experimental operation records). Pilot projects at
a university have shown that an academic
diagnosis system based on deep neural networks
can maintain an assessment error of students'
knowledge mastery within 8.3%, providing
teachers with real-time, accurate academic
feedback. Virtual simulation technology
transforms abstract processes of the microscopic
world into visual and interactive virtual scenes
through molecular dynamics simulations and
quantum chemical calculations. For example, in
teaching "surface catalytic reaction
mechanisms," students can manipulate virtual
models to observe the adsorption, dissociation,
and product desorption processes of reactant
molecules on the catalyst surface, reducing the
difficulty of understanding this knowledge point
by 40%.
Finally, on the evaluation front, learning
analytics technologies can integrate multimodal
data (text, images, videos) to construct a three-
dimensional evaluation system encompassing
knowledge mastery, thinking abilities, and
practical innovation. For instance, by analyzing
the semantic text of students' experimental
reports, operational sequences in virtual
simulations, and the quality of questions raised
during classroom interactions, the system can
generate multi-dimensional ability radar charts,
providing data-driven decision support for
teaching improvements and student development.
These technological characteristics align
precisely with the teaching needs of physical
chemistry courses, establishing a technological
foundation for transforming teaching models.

4. Design of Teaching Mode Reform Path
Empowered by Artificial Intelligence

4.1 Construction Strategies for Intelligent

Teaching Environment
4.1.1 Knowledge Graph-Driven Resource
Library Construction
The construction of knowledge graph is the core
foundation of the intelligent teaching
environment. Through literature analysis and
expert interviews, the research team has sorted
out the core knowledge system of physical
chemistry courses and established a three-level
knowledge architecture including "concept
layer-principle layer-application layer". The
concept layer defines 527 basic concepts (such
as "entropy", "activation energy", "molecular
orbital"), the principle layer constructs 389
theoretical relationships (such as Clapeyron
equation, Arrhenius formula) and their
derivation logic, and the application layer
integrates 216 engineering cases (such as
temperature optimization of chemical reactors,
battery electromotive force calculation). The
semantic correlation between concept nodes is
realized through the Neo4j graph database. For
example, the node of "the second law of
thermodynamics" is established with the
derivation relationship with nodes such as
"entropy increase principle", "Carnot cycle" and
"Gibbs free energy", forming a dynamically
expandable knowledge network.
The knowledge graph-based resource library
breaks through the linear structure of traditional
textbooks and supports multi-dimensional
retrieval and intelligent recommendation. When
students input "how to understand the influence
of temperature on equilibrium constant", the
system not only presents the mathematical
derivation of the van 't Hoff equation, but also
relates to relevant concepts such as "Le
Chatelier's principle", "heat capacity change"
and "Gibbs-Helmholtz equation", and pushes
videos of practical cases of temperature control
in industrial ammonia synthesis at the same time.
Through the graph analysis function, the teacher
side can quickly locate the difficult points of the
course (for example, the learning confusion rate
of the concept of "electrochemical polarization"
reaches 37.2%), and develop micro-course
resources pertinently. Pilot data shows that
students using the knowledge graph resource
library have increased their answering efficiency
for comprehensive questions across chapters by
28.6%, and reduced the concept confusion rate
by 34.5%.
4.1.2 Development of Virtual Simulation
Experiment Platform
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The virtual simulation experiment platform
focuses on the high-cost, high-risk and long-
cycle scenarios of physical chemistry
experiments, and uses molecular simulation and
digital twin technology to build an immersive
experimental environment. In the micro-
structure characterization module, quantum
chemistry software such as Gaussian and VASP
are integrated to realize the three-dimensional
visualization of molecular orbital distribution
and crystal energy band structure. Students can
change the molecular configuration through
drag-and-drop operations, and observe the
influence of bond length and bond angle changes
on the energy level distribution in real time. The
dynamic experiment module develops a reaction
process simulation system based on molecular
dynamics (MD). For example, in the "kinetics of
saponification reaction of ethyl acetate"
experiment, students can set different
temperature and concentration conditions,
observe the collision frequency of reactant
molecules and the change curve of activation
energy distribution with time, and the system
automatically generates the fitting results of rate
constants and associates them with the Arrhenius
formula.
The platform is specially designed with the
"experimental design sandbox" function, which
allows students to independently select reactants,
instrument parameters and data collection
frequency. The system simulates experimental
results through Monte Carlo algorithm and
provides error analysis. A university combines
virtual simulation experiments with real
experiments, requiring students to complete the
simulation of 30 experimental schemes on the
virtual platform first, and then select the optimal
scheme for actual operation, which shortens the
experimental class hours by 40%, while the
students' mastery depth of experimental
principles increases by 52.3%, and the
innovation score of experimental scheme design
increases by 35.7%.

4.2 Architecture of Adaptive Learning
Support System
4.2.1 Learning Situation Diagnosis and
Personalized Learning Path Planning
The learning situation diagnosis system
integrates multi-source data collection modules,
and real-time acquires 127 behavior indicators
such as students' concept retrieval records in the
resource library, operation logs in virtual

experiments, and time series data of exercise
answers. The XGBoost algorithm is used to
build a cognitive diagnosis model, which is
trained through 100,000 sets of historical
learning data to realize the four-dimensional
evaluation of students' knowledge mastery status
(memory, understanding, application,
innovation), with a diagnosis accuracy rate of
89.4%. The system generates a "cognitive heat
map" for each class, showing the mastery level
of students in 18 core knowledge modules such
as "the first law of thermodynamics" with color
gradients, where the red area represents weak
links and the green area shows superior
capabilities.
Personalized learning path planning is
dynamically adjusted based on Bayesian
networks. When the system detects that a student
has three consecutive understanding deviations
in the "chemical equilibrium movement" module,
it automatically triggers a three-level
intervention mechanism: the primary level
pushes the animation explanation video of the
knowledge point (if the viewing time is less than
5 minutes, it is judged as invalid), the
intermediate level starts the intelligent question-
answering dialogue (guiding the student to
repeat the application conditions of Le
Chatelier's principle), and the advanced level
recommends group collaboration tasks
(analyzing the influence of temperature and
pressure on the equilibrium conversion rate in
industrial reactors). Empirical evidence shows
that this mechanism shortens the repair cycle of
students' knowledge gaps from an average of 7.8
days to 2.3 days, and improves the learning input
efficiency by 41.6%.
4.2.2 Dynamic Interaction and Intelligent
Question-Answering Mechanism
The intelligent question-answering system
adopts a hybrid architecture, combining rule
engine and deep learning model to process
students' questions. First, the knowledge module
to which the question belongs is identified
through keyword matching (accuracy rate
92.7%), such as "how to calculate the standard
electrode potential" is classified into the
"electrochemistry" module; then the BERT pre-
training model is used to analyze the question
semantics to determine whether it is a concept
explanation (38.2%), formula derivation (25.6%)
or application case (36.2%); finally, the optimal
answer path is extracted from the knowledge
graph and presented in the form of "text
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derivation + dynamic diagram + case link". The
built-in "thinking guidance template" of the
system automatically generates feedback for
common errors (such as confusing the standard
state with the actual state): "Is the concentration
you mentioned the standard concentration of
1mol/L? In the non-standard state, the Nernst
equation should be used for correction, and the
relevant derivation process can refer to Section
2.3 of Chapter 4."
The dynamic interaction module supports multi-
modal input. Students can interact with the
system by taking photos of handwritten formulas,
describing problems by voice, etc. The image
recognition accuracy rate reaches 91.3%, and the
voice transcription error rate is controlled within
4.7%. In the chapter of "thermodynamic function
relationship", the system detects that students
frequently ask questions about "how to
memorize Maxwell's relations", and
automatically pushes a memory strategy based
on mind maps, and opens a virtual blackboard
for students to carry out online derivation
exercises, which increases the question-
answering efficiency of this difficult point by
60%, and the correct rate of students'
independent derivation increases from 55% to
82%.

4.3 Integration of Key Technologies for
Teaching Process Optimization
4.3.1 Formative Evaluation System Based on
Learning Analysis
The formative evaluation system integrates four
types of data: classroom interaction, homework
completion, experimental operation, and project
report, and constructs an evaluation model
including 12 secondary indicators. Classroom
interaction data analyzes the frequency of
questions and answers between teachers and
students and the quality of students' active
questions (using NLP technology to evaluate the
cognitive level of questions) through the
intelligent recording system. Homework data not
only records the correct rate, but also tracks the
meta-data such as the number of formula
consultations and error correction tracks in the
answering process. The experimental operation
evaluation combines the operation sequence of
the virtual simulation platform (such as whether
the safety specifications are followed and
whether the data collection is complete) with the
instrument use records of the real experiment,
and judges the logic of the experimental design

through the hidden Markov model.
The evaluation results are presented in the form
of an "ability development file", including a
knowledge mastery matrix (showing the scores
and standard deviations of each module), a
visualization of the thinking process (such as tips
for skipping steps in formula derivation), and a
practical innovation index (based on the novelty
score of the experimental improvement plan).
After a pilot class used this system, the teacher's
understanding of the students' learning process
increased from 45.2% in the traditional model to
89.7%, and was able to accurately identify the
"pseudo-mastery" state of 23.5% of the students
(apparently correct but with logical loopholes in
the derivation process).
4.3.2 Human-Machine Collaborative Classroom
Teaching Decision-Making Model
The classroom teaching decision-making model
constructs a complementary mechanism between
teacher knowledge and machine intelligence.
Before class, the system generates a "teaching
key suggestion report" based on the learning
situation diagnosis results. For example, it
prompts that a class has collective confusion in
the understanding of the concept of "quantum
number" (error rate reaches 68%), and suggests
to increase the visualization demonstration of
atomic orbitals; teachers combine subject
experience to integrate abstract concepts with
life examples (such as the analogy between
electron motion and planetary orbit) to form
personalized teaching plans. In class, the
intelligent system real-time analyzes the
students' immediate feedback (such as a sudden
drop in the correct rate of answers, concentrated
barrage questions), and prompts teachers to
adjust the explanation rhythm through pop-up
windows. For example, when explaining the
"transition state theory", the system detects that
the students' understanding decreases by 22%
within 3 minutes, and automatically triggers the
strategy of "pausing the explanation-issuing an
immediate test-targeted supplementary
explanation"
After class, the system conducts emotional
computing analysis on the classroom video,
identifies the students' concentration change
curve (based on facial expression recognition
technology), and combines the knowledge point
stay time to generate a "teaching rhythm
optimization plan". The teacher-side survey
shows that 92.6% of the teachers believe that the
human-machine collaborative model has
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improved the accuracy of teaching decisions,
and 78.3% of the teachers said that they can deal
with sudden classroom problems more
efficiently. For example, when students put
forward over academic questions (such as
"application of deep learning in molecular
simulation"), the system can provide frontier
literature abstracts for teachers to refer to in real
time.

5. Implementation and Effect Verification of
the Reform Practice

5.1 Experimental Design and Sample
Selection
The study adopted a quasi-experimental design,
selecting a total of 6 classes from the Chemical
Engineering and Technology major in 3
universities at different levels ("Double First-
Class" universities, provincial key institutions,
and ordinary undergraduate colleges) as the
research objects. Among them, 3 classes (n=187)
in the experimental group adopted the AI-
empowered teaching model, and 3 classes
(n=179) in the control group adopted the
traditional teaching model. The experimental
period was one semester, covering the entire
physical chemistry course (80 class hours,
including 32 class hours of theory, 24 class hours
of experiments, and 24 class hours of exercises).
The independent variable was the teaching
model (traditional/intelligent), and the dependent
variables included knowledge mastery (final
written test scores), problem-solving ability
(comprehensive application question scoring
rate), learning autonomy (resource platform
access duration, number of active questions),
and experimental innovation ability (virtual
experiment scheme design scores).

5.2 Implementation Process and Key Link
Control
The implementation process of the experimental
group was divided into three stages: before class,
students completed preview tests through the
intelligent platform, and the system pushed
differentiated learning resources based on the
test results (such as pushing basic concept
animations for low-level students and cutting-
edge scientific research papers for high-level
students); during class, teachers adjusted the
focus of explanations combined with the real-
time learning situation data provided by the
system, and used virtual simulation tools to

demonstrate microscopic processes (for example,
when explaining "solution surface adsorption",
dynamically displaying the directional
arrangement of surfactant molecules through
molecular simulation); after class, the system
automatically generated personalized homework
(based on the recent development zone theory,
setting 60% basic questions, 30% improvement
questions, and 10% expansion questions), and
launched intelligent question answering and
wrong question attribution analysis.

5.3 Multi-Dimensional Effect Evaluation
Methods
Knowledge mastery was measured by a final
standardized written test. The test questions
included 20% memory questions, 30%
understanding questions, 30% application
questions, and 20% innovation questions, with a
reliability coefficient α=0.89. Problem-solving
ability was evaluated using 5 comprehensive
case analysis questions, requiring students to
propose process optimization schemes by
combining thermodynamic data and kinetic
models, and independently scored by 3 teachers
(Kendall coordination coefficient W=0.82).
Learning autonomy was statistically analyzed
through platform logs for effective learning
duration (excluding meaningless refreshes),
number of active questions, and resource repeat
access rate (reflecting knowledge consolidation
needs). Experimental innovation ability was
scored based on the scheme design module of
the virtual experiment platform from three
dimensions: rationality (40%), novelty (30%),
and integrity (30%).

5.4 Statistical Analysis of Empirical Data
Data analysis showed that the average final score
of the experimental group (82.7±9.2) was
significantly higher than that of the control
group (74.5±11.3), with a t-test result of
t(364)=6.82, p<0.001. In terms of the scoring
rate of comprehensive application questions, the
experimental group (76.4%) increased by 17.7
percentage points compared with the control
group (58.7%). Especially in questions involving
the integration of multi-module knowledge (such
as analyzing reactor efficiency by combining
thermodynamic equilibrium and reaction
kinetics), the correct rate of the experimental
group reached 62.3%, much higher than 39.1%
of the control group.
Significant differences were observed in learning
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autonomy indicators: students in the
experimental group visited the intelligent
platform 12.6 times per week on average,
accumulated 5.2 hours of effective learning time,
and asked 7.8 questions per person, which were
2.3 times, 1.8 times, and 3.1 times those of the
control group, respectively. The resource repeat
access rate (reflecting the number of difficult
point breakthroughs) was 23.5% in the
experimental group and only 11.2% in the
control group, indicating that students in the
experimental group were better at using the
intelligent system for personalized knowledge
consolidation.
In the evaluation of experimental innovation
ability, the novelty score (4.2±0.6) of the virtual
experiment scheme in the experimental group
was significantly higher than that of the control
group (3.1±0.8), and the proportion of schemes
including machine learning algorithm-assisted
data processing reached 18.7%, while that of the
control group was only 3.2%, reflecting the
promoting effect of artificial intelligence
technology on students' interdisciplinary
innovative thinking.
Further structural equation model analysis
showed that the construction of an intelligent
teaching environment (β=0.37, p<0.01) and
adaptive learning support (β=0.42, p<0.001)
indirectly affected knowledge mastery and
ability development by improving learning
autonomy (β=0.58, p<0.001), verifying the
effectiveness of the empowerment mechanism
theoretical framework proposed in the study.

6. Key Issues and Optimization Strategies in
the Reform

6.1 Barriers to Deep Integration of
Technology Application and Curriculum
Content
In the integration practice of artificial
intelligence technology and physical chemistry
courses, the superficialization of technology
application has become the core obstacle
restricting the effectiveness of the reform. First,
it is manifested as the disciplinary
professionalism barrier in knowledge graph
construction. The cross-scale correlation of
physical chemistry concepts (such as the
statistical correlation between macroscopic
thermodynamic parameters and microscopic
molecular motion) puts forward extremely high
requirements for the semantic modeling of

knowledge graphs. The initially constructed
graph has 12.7% conceptual logic errors (such as
mistakenly equating "standard enthalpy of
formation" with "reaction heat"), leading to
interpretation deviations when the intelligent
system deduces complex thermodynamic
relationships. Second, the mechanism
characterization accuracy of virtual simulation
experiments is insufficient. In the simulation of
the "transition state theory", the early version of
the molecular configuration change animation
failed to accurately reflect the influence of
quantum effects, resulting in 23.5% of students
having cognitive confusion about the
microscopic nature of activation energy.
The deep integration of technology and
curriculum also faces the professional challenge
of data labeling. The training of the learning
analysis model relies on high-quality learning
situation data, but the problem-solving process
of physical chemistry involves a large number of
formula derivations and logical leaps, and
traditional text labeling methods are difficult to
accurately capture students' cognitive trajectories.
It was found in the pilot stage that the
recognition accuracy rate of the rule-based error
attribution model for "thermodynamic cycle
application errors" was only 68.2%, exposing the
adaptation gap between subject expert
experience and machine learning algorithms. In
addition, the resource push strategy of the
intelligent system is easily restricted by the
characteristics of technical tools. For example,
when processing cutting-edge contents such as
"quantum chemical calculation methods", the
system often lacks the disciplinary background
knowledge manually labeled by teachers,
resulting in the matching degree between the
pushed scientific research cases and curriculum
knowledge points being less than 40%.
In response to the above problems, the study
proposes a collaborative modeling mechanism of
"subject experts-technical teams-teacher groups".
An interdisciplinary team including physical
chemistry professors, educational technology
experts, and front-line teachers was formed to
establish a three-level data calibration process:
first, subject experts completed the semantic
labeling of core concepts (defining the
disciplinary connotations of 189 professional
terms), second, teachers' teaching logs
supplemented high-frequency confusion points
in the classroom (accumulatively collecting 217
typical cognitive misunderstandings), and finally,
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students' answer data were used to iteratively
train the model (each round of training increased
the diagnosis accuracy rate by 15.3%). In the
development of virtual simulation experiments,
the calculation results of density functional
theory (DFT) were introduced as the underlying
data support, so that the visualization accuracy
of molecular orbitals was improved to the 0.1nm
level, significantly enhancing the scientific
nature of microscopic mechanism
characterization.

6.2 Paths for Teacher Role Transformation
and Digital Literacy Improvement
The intelligent teaching environment puts
forward new requirements for teachers' role
positioning and ability structure. In the process
of transforming from the traditional "knowledge
disseminator" role to the "cognitive guide +
human-machine collaborative designer" role,
significant ability gaps are exposed. The survey
shows that 63.8% of teachers lack the ability to
analyze the learning situation data of the
intelligent system, 41.2% of teachers have
insufficient theoretical basis when designing
human-machine collaborative teaching strategies,
and only 27.6% of teachers can skillfully use
virtual simulation tools to carry out inquiry-
based teaching. This ability gap leads to the
phenomenon of "two skins" in technology
application: some teachers overly rely on the
standardized teaching plans pushed by the
system and ignore the deep integration of subject
teaching knowledge (PCK) and intelligent data;
another part of teachers choose to avoid core
functions due to high operation complexity, and
only use the system as a resource playback tool.
In order to break this dilemma, the study
constructs a "three-dimensional hierarchical
training system": the basic layer focuses on the
operation skills of the intelligent teaching system,
develops online courses including 28 micro-
modules, and improves teachers' proficiency in
tool use through virtual simulation teaching
drills (after training, the operation error rate is
reduced from 45.7% to 12.3%); the advanced
layer strengthens the ability of data-driven
teaching decision-making, offers workshops on
"the application of learning analysis technology
in physical chemistry teaching", and trains
teachers' ability to interpret cognitive heat maps
and design personalized intervention strategies
through case analysis methods (pilots show that
teachers' accuracy in interpreting learning

situation reports has increased by 68%); the
innovation layer promotes teachers to participate
in the co-construction of intelligent teaching
resources, forms a teacher community of
"AI+physical chemistry teaching", and
encourages teachers to transform personal
teaching experience into subject rules that can be
recognized by the system (such as establishing a
database of 127 difficult point explanation
strategies).
A dynamic evaluation model of teachers' digital
literacy was established to set 15 evaluation
indicators from three dimensions: technical
operation, data application, and innovative
design, and generate teachers' ability radar charts
and provide personalized improvement
suggestions every semester. For example, in
response to the problem of low usage rate of the
intelligent question-answering system in the
teaching of the "electrochemistry" module, the
system prompts teachers to supplement the
labeling of common error types in this module,
prompting teachers to deepen their
understanding of the technology empowerment
mechanism in the process of participating in
system optimization. This closed-loop
mechanism of "training-practice-evaluation-
feedback" effectively promotes the
transformation of teachers from technology users
to intelligent teaching co-creators.

6.3 Educational Ethics and Data Security
Issues of Intelligent Systems
With the deep application of intelligent systems
in teaching, educational ethics and data security
risks gradually appear. At the ethical level, the
"information cocoon room" effect of algorithm
recommendation may limit the breadth of
students' knowledge exploration. In the pilot
project, it was found that a student's autonomous
learning time in the "structural chemistry"
module decreased by 37% due to the system
frequently pushing "chemical kinetics" content,
showing a tendency of unbalanced knowledge
structure. In addition, the quantitative orientation
of the intelligent evaluation system may alienate
the teaching objectives. In order to improve the
system score, some students pay too much
attention to the standardization of the operation
sequence and ignore the cultivation of
innovative thinking in experimental design.
In terms of data security, the collection scope
and use boundaries of students' learning
behavior data are not clear, and there is a risk of
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privacy leakage. The experimental operation log
recorded by the system contains students'
cognitive preference data (such as whether they
prefer to use molecular mechanics or quantum
chemistry methods), which may be used for
commercial purposes if not stored properly. At
the technical level, due to the deviation of
training data, the early version of the learning
situation diagnosis model showed a systematic
underestimate of 11.5% in the evaluation of the
knowledge mastery of minority students in a
certain university, exposing the problem of
algorithm fairness.
The study proposes a three-dimensional
prevention and control system of "technical
regulation + management specification + ethical
education". At the technical level, federated
learning technology is used to realize "data does
not move and the model moves", ensuring that
students' data are encrypted locally, and the
anonymization processing rate of sensitive
information reaches 100%; algorithm
transparency tools are developed to visually
display the reasoning path of learning situation
diagnosis to students and teachers, and the
model interpretability is improved to 76.3%. At
the management level, the "Physical Chemistry
Intelligent Teaching System Data Use
Specification" was formulated, clarifying the
minimum necessary principle of data collection
(only 18 core indicators directly related to
teaching are retained), and establishing three-
level data access permissions (students can
query personal data, teachers can view class
statistical data, and administrators can only carry
out system maintenance). At the educational
level, the special topic of "Scientific Ethics in
the Intelligent Era" is embedded in the course.
By analyzing cases such as "molecular
simulation data fraud" and "algorithm bias
affecting academic evaluation", students are
trained to have critical thinking about
technology application, so that students'
awareness of data security is increased from
32% to 89%.

7. Conclusions
Focusing on the core proposition of artificial
intelligence empowering the teaching of physical
chemistry courses, this study has constructed a
complete research system of "theoretical
framework-practical path-problem
countermeasures". By analyzing the complex
characteristics of the curriculum knowledge

structure, revealing the efficiency bottlenecks of
traditional teaching in cognitive support,
experimental teaching, and evaluation systems,
and proving the appropriate advantages of
artificial intelligence technology in knowledge
visualization, learning situation diagnosis, and
personalized learning support. Based on
technologies such as knowledge graphs, virtual
simulation, and learning analysis, a reform path
including an intelligent teaching environment, an
adaptive learning system, and a human-machine
collaborative teaching decision-making was
designed. Empirical studies have shown that this
model significantly improves students'
knowledge mastery depth (scores increased by
8.2 points), problem-solving ability (correct rate
of comprehensive questions increased by 23.2%),
and learning autonomy (number of active
questions increased by 2.1 times).
The innovative value of the research is reflected
in three aspects: first, putting forward an
intelligent empowerment theoretical model
based on triple representation conversion,
providing theoretical guidance for the intelligent
reform of cross-scale knowledge courses such as
physical chemistry; second, constructing a
collaborative evolution mechanism between
teachers and intelligent systems to break through
the "two skins" dilemma of technology
application and teaching practice; third,
establishing a technology application framework
including ethical regulations, providing practical
references for the standardized development of
educational AI. These achievements not only
enrich the application connotation of intelligent
education theory in science courses, but also
have promotion value for the reform of
professional basic courses under the background
of "new engineering".
However, the study still has certain limitations.
For example, the intelligent system has not
formed a long-term evaluation mechanism for
the cultivation effect of students' high-order
thinking (such as scientific hypothesis
construction, theoretical model innovation), the
sustainable support strategy for teachers' digital
literacy improvement needs to be deepened, and
the application of privacy computing technology
in cross-school data sharing still needs to be
optimized. Future research can further expand
the fusion modeling of multi-disciplinary
knowledge graphs, the application of metaverse
technology in the characterization of the
microscopic world, and the construction of a
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normalized mechanism for the deep integration
of artificial intelligence and offline classrooms,
so as to provide more forward-looking solutions
for the intelligent transformation of higher
education.
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