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Abstract: In order to improve the accuracy of
food ingredient recognition and the synergy
of feeding control in stir-frying automation
equipment, a machine vision-based intelligent
stir-frying system is designed to construct a
hierarchical architecture consisting of visual
recognition, control decision-making, and
multi-axis actuator units. A high-resolution
industrial camera combined with
MobileNetV2 network is used for image
feature extraction and classification, and
control labels and scale parameters are
output for the execution system to schedule
the feeding path. The path planning and
closed-loop control is realized by integrating
the STM32F407 master chip and PD control
strategy. Experiments show that the system
has a recognition accuracy of 93.6% under
the conditions of multiple types of ingredients,
an average feeding path error of ±1.8 mm,
and the response delay is controlled within
842 ms, which verifies the validity and
practicability of the synergistic mechanism of
visual recognition and automatic control.
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1. Introduction
With the advancement of smart manufacturing
and kitchen automation, intelligent cooking
systems are emerging as a key trend in modern
food processing equipment. Among them,
accurate ingredient recognition and responsive
feeding mechanisms are critical to achieving
stable, repeatable dish quality. Traditional
cooking robots often suffer from poor
adaptability in complex kitchen environments,
where diverse ingredient shapes and lighting
variations present significant challenges to
real-time visual analysis. Recent studies have

highlighted the effectiveness of integrating
machine vision with embedded control systems
to enhance perception and actuation synergy. For
example, Bao and Luo [1] designed a fully
automatic cooking robot incorporating
multi-sensor feedback and execution
coordination. Zhang et al. [2] applied
STM32F407 chips in a cooking system to ensure
low-latency control, while Cui et al. [3]
proposed a modular design for frying automation
that combines visual classification and feeding
path optimization. These works lay the
groundwork for further improving automation
intelligence in cooking scenarios. Building upon
these foundations, this paper presents a machine
vision-based stir-frying robot that achieves
high-accuracy ingredient classification and
efficient automatic feeding under multi-task
coordination.

2. Intelligent Frying Machine System Design
Scheme

2.1 System Overall Architecture Design
To ensure accurate ingredient recognition and
responsive feeding control, the system adopts a
layered, modular architecture integrating
machine vision with automation, as shown in
Figure 1. It consists of a perception layer , a
decision-making laye, and an execution layer.
The perception layer integrates CMOS industrial
cameras and load cells for multi-dimensional
data collection, connected to the edge computing
unit via USB3.0. The decision layer uses an
embedded AI module (e.g., NVIDIA Jetson
Xavier NX) running a lightweight CNN to
classify images and send control commands to
the STM32F407 chip [1]. The execution layer
features a three-axis stepper drive and a
multi-bin sorting mechanism to perform
quantitative feeding based on path planning. A
hybrid UART + I ² C communication protocol
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ensures low-latency coordination across modules.
All components use a unified data interface,
minimizing signal bottlenecks and ensuring
smooth interaction between recognition and
control modules.

Figure 1. Overall Architecture of Intelligent
Stir-Fry Machine System

2.2 Design of Ingredient Visual Recognition
Module
Positioned between the perception and
decision-making layers, the visual recognition
module identifies multi-category ingredients and
provides classification labels and feature
parameters for control. To address challenges
such as complex lighting, occlusion, and
ingredient diversity, the module follows a
three-stage design: multi-channel perception,
lightweight feature extraction, and integrated
classification. A 12MP CMOS industrial camera
is paired with a high-CRI LED ring light to
maintain gray balance and edge clarity [2].
During preprocessing, histogram equalization
and YUV color space conversion reduce
background complexity. Features are then
extracted using an optimized MobileNetV2 CNN,
which incorporates a linear bottleneck and
depthwise separable convolutions to lower
computational cost.The model output layer
accesses a softmax classifier whose multiclass
output Pi represents the predicted probability of
the ith class of ingredients, satisfying:
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Where zi is the neuron output corresponding to
the ith class, n is the total number of ingredient
classes, and Pi is used for the design of the
feeding mapping logic in the decision layer. Key
parameters, such as lens focal length, sensor
sensitivity, and processing speed, are detailed in
Table 1. The module outputs two data channels:

one for ingredient type labels (e.g., "Ginger",
"Garlic") and another for size estimation,
enabling precise control of multi-bin dispensing
units.
Table 1. Parameters of Key Components of

the Ingredient Recognition Module
Module
Components Parameter item Value/

Specification
Industrial
Camera Resolution 12MP (4032 ×

3024)

Lens Focal length 8mm fixed focal
length

Fill light
system

Color
temperature 5500K

AI Processing
Module

Algorithmic
Platform

Jetson Xavier
NX

Recognition
Models

Network
Architecture MobileNetV2

Image frame
processing rate

Real-time
processing
capability

≥30FPS

2.3 Automatic Feeding Execution Module
Design
Using the label and size data from the
recognition module, the feeding execution
module performs precise, position-controlled,
and quantitative feeding. It adopts an integrated
X-Y-Z three-axis planar drive system coupled
with a multi-compartment feeding unit, forming
a "three-dimensional positioning + multi-channel
feeding” execution architecture [3]. As shown in
Figure 2, the actuator platform is supported by a
two-stage synchronous belt drive and linear
guide rails to realize X-Y axis planar positioning,
while the Z-axis adopts an electric screw lifting
mechanism to control the feeding height, taking
into account the speed and load stability. The
end of the actuator is installed with multi-station
suction cups and flip feeding structure, which
can realize fast switching and stable release
between multiple ingredient bins. Corresponding
to the ingredient category label c∈ C output
from the recognition module and the hopper
center position (xd,yd), a fifth degree
polynomial trajectory interpolation function is
used to generate a continuous smooth path:
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where t∈ [0,T] is the planning time period and
the coefficients ai,bi are determined by the
boundary conditions (position, velocity,
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acceleration) to ensure the balance between the
end trajectory continuity and the mechanical
stiffness response [4]. In order to support the
instantaneous feeding control under the
high-frequency recognition response, the system
adopts a closed-loop stepping motor with a
high-resolution photoelectric encoder to realize
real-time position feedback, and the relevant
parameter configurations are shown in Table
2.The actuator module also reserves a CAN bus
communication interface to ensure a low-latency
command transmission between it and the main
control chip and the decision-making system,
and real-time transmission of the current
position and feeding status back to the
decision-making layer, which provides a
feedback interface to the subsequent control The
integrated system provides a feedback interface.

Figure 2. Structure of the Automatic Feeding
Actuator Module

Table 2. Key Parameters of the Automatic
Feeding Module Actuator.

Module
Component Parameter Numerical value/

specification
Stepping motor Step angle 1.8°/step
Optical encoder Resolution 1000 PPR
Screw lifting
mechanism Maximum stroke150 mm

Suction cup end
structure

Number of feed
bin connections 4 pcs

Control cycle Minimum
command cycle 5 ms

Communication
protocols

Control and
feedback
interface

CAN 2.0B

2.4 Decision-Making and Control Integration
System
In order to realize efficient closed-loop control

from image recognition to action execution, this
system designs an integrated control system
based on state management logic and instruction
mapping rules, and builds a
"recognition-decision-execution" full-process
scheduling architecture. The control core is
based on STM32F407 main control chip, adopts
embedded real-time operating system (RTOS)
architecture, and integrates task priority
scheduling mechanism and state transfer control
model [5]. The control process is divided into six
states in the form of a state machine: standby
state, recognition startup, execution preparation,
path computing, action control and reset reset,
and the control logic is driven by the output of
the visual recognition module of the ingredient
labels c, the size valuation m and the image
confidence Pc to transfer the state. The path
calculation module executes the trajectory
function by scheduling thread calls, combining
the end feedback position (xf,yf,zf) with the
desired coordinates (xt,yt,zt) to perform PD
control, and the error controller is calculated as
follows:

dt
tdeKteKtu dp
)()()( 

Where e(t)=xt-xf is the instantaneous position
error, Kp and Kd are the proportional and
differential coefficients, respectively. The
control commands are distributed to the
multi-axis motors and the multi-bin flip module
through the CAN 2.0B bus to ensure the
synchronized response of each execution node.
All modules in the system follow the unified
communication protocol, and the main command
field structure is listed in Table 3, including
frame header identification, command category,
data valid bits and CRC check fields, and
supports the data link abnormal self-recovery
mechanism. In order to be compatible with
future module expansion, the system reserves the
interrupt interface and I²C sub-node expansion
channel, so that the new identification module or
feeding mechanism can be embedded into the
scheduling system without reconfiguring the
main logic.
Table 3. Control Command Communication

Protocol Structure
Field
Name

Number
of bytesFunction Description

Frame
Header 1 Byte Start flag (0xAA)

Command 1 Byte Command Type (0x01
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Type Recognition Class, 0x02
Execution Class)

Payload
Length 1 Byte Effective data byte length

Data
Payload N Byte Position command, feeding

information

3.System Realization and Experimental
Verification

3.1 Experimental Platform Construction and
Experimental Design
Based on the hardware and software
collaboration to build the experimental platform,
the design includes task perception, instruction
transmission, path execution and data feedback
of the complete closed-loop verification system.
The platform is built using Jetson Xavier NX as
the edge recognition processing core, supporting
GPU-accelerated reasoning, with a
high-resolution industrial camera for image
acquisition, and transmitted to the local model
running environment via USB3.0 high-speed bus.
The control execution part is based on
STM32F407 main control chip, which completes
the image label receiving and the action sending
of the feeding device through UART and CAN
bus respectively. The mechanical structure part
selects three-axis linear module and stepping
drive system. In order to match the system logic
flow, the experimental design is divided into two
parts: single-module function test and overall
co-simulation, and the test content includes:
verification of multi-class ingredient recognition
accuracy, positional trajectory tracking error
analysis, statistics of feeding action time delay
and overall response closed-loop test. All
experiments are based on the key performance
parameters of the system as indicators, set
standard input incentives and constraints
boundaries to ensure that the results can be
traced back and the process can be reproduced.

3.2 Analysis of Experimental Results
Based on the integrated experimental platform
built, the visual recognition module, path
execution system and feeding control logic are
verified for functionality and performance. In the
multi-category ingredient recognition test, the
system realizes 6 categories of target
classification under 30FPS image stream, with
an average recognition accuracy of 93.6%, in
which the recognition rate of solid categories
(e.g., peanuts, garlic cloves) is generally higher

than that of shredded structures. In the trajectory
tracking experiment, by recording the deviation
between the actual path of the end actuator and
the planned trajectory, the average trajectory
error is calculated to be ±1.8 mm, and the
maximum deviation does not exceed 3.4 mm,
which meets the demand for high-precision
localization. In the control response analysis, the
average response delay of the system from the
recognition output to the completion of feeding
is 842 ms, and the stability fluctuation is ±5.2%
in 50 repeated tests. As shown in Fig. 3, the
non-linear growth trend between path error and
response time in multi-task concurrent scenarios
suggests that task scheduling and system load
management strategies need to be further
optimized in the future. The whole system shows
good controllability and repeatability in
multi-task linkage, module coordination and data
closed-loop capability, which verifies the
effectiveness of the recognition control fusion
mechanism.

Figure 3. Distribution of Path Error and
Response Delay under the Condition of Task

Concurrency

4. Conclusion
The system realizes accurate classification and
closed-loop automatic feeding control of
multi-class ingredients based on visual
recognition, and shows good stability and
accuracy in multi-task response and path
planning. Due to the image acquisition
conditions and complex ingredient morphology,
there is still room for improvement in the
recognition accuracy between occlusion and
similar classes. In the future, multimodal sensing
and dynamic task scheduling mechanism can be
introduced to further expand the versatility and
intelligence level of the system.
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