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Abstract: To optimize the cost structure of
enterprises, improve decision-making in the
production process, and enhance production
and quality control decisions, this study
comprehensively considers factors such as the
procurement cost of finished products,
inspection costs, replacement losses,
disassembly, and assembly costs. By
employing statistical inference, hypothesis
testing, genetic algorithms, dynamic
programming, and other methods, along with
collected data and materials, a three-stage
multi-process, multi-component production
optimization decision-making model is
established, covering component inspection,
finished product inspection, and defective
product disassembly. A sampling inspection
model was implemented using Python
programming, enabling enterprises to
effectively control component quality. This
model provides the optimal decision-making
solution for the production process.
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1. Introduction
This research problem is derived from Problem
B of the 2024 Higher Education Society Cup
National Undergraduate Mathematical Modeling
Competition[1]. It concerns decision-making in
the production process. When an enterprise
manufactures a product, various types of
components must be purchased separately to
ensure the quality of the finished product.
During production, the components must
undergo rigorous quality inspections to
guarantee that the product meets the required

standards. In assembling the finished product,
the quality criteria for the components are
critical; if any single component is defective, the
assembled product will inevitably be unqualified.
Even if all components are qualified, the
finished product may still fail to meet the
standards.
For defective finished products, the enterprise
has two processing options. Option 1: Scrap the
defective product immediately, thereby
completely avoiding any subsequent processing
costs. Option 2: Disassemble the defective
product. Although disassembly does not damage
the components, it incurs additional disassembly
costs. After disassembly, the components can be
re-inspected to determine whether they can be
recycled and used in producing qualified
products.
Considering that both scrapping and
disassembly involve costs, enterprises need to
optimize their quality inspection and processing
strategies to minimize the overall cost while
ensuring product quality. Against this backdrop,
it is necessary to design a reasonable sampling
inspection scheme and to balance the costs of
scrapping versus disassembly to develop an
optimal decision-making strategy. Consequently,
the following four problems are set up in
increasing order of difficulty:
For Problem 1, hypothesis testing is employed
to decide whether to accept a batch of
components. For large sample sizes, the
binomial distribution can be approximated by a
normal distribution, allowing the use of normal
distribution-based hypothesis testing. Two
testing schemes are designed under confidence
levels of 95% and 90%: one to reject the
components at a 95% confidence level and one
to accept the components at a 90% confidence
level, respectively determining whether the
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defect rate exceeds or does not exceed the
nominal value. A sample size calculation
formula is also provided to ensure that the
estimation error remains within acceptable
limits, along with specific implementation steps
to help enterprises effectively control
component quality.
For Problem 2, strategies for component
inspection, finished product inspection, and
handling defective products are studied. The
cost functions for various types of costs are
separately formulated, and a genetic algorithm is
implemented using Python to search for the
optimal combination of decisions that minimizes
the total cost.
For Problem 3, a total cost objective function is
defined that encompasses multiple costs and
fees, and a constraint is established stating that
defective products that have not been inspected
cannot be disassembled. A dynamic
programming method is employed. [2] The
production process is divided into three stages:
component inspection, semi-finished product
inspection and disassembly, and finished
product inspection and disassembly. The state of
each stage is determined by inspection and
disassembly decisions, and the state transition
equations are used to calculate the minimum
cost.
In Problem 4, the model is constructed by
performing sampling inspections to estimate the
defect rates of both components and finished
products. By approximating the binomial
distribution with a normal distribution, the
confidence interval for the sample defect rate is
calculated. Based on this confidence interval,
the estimated defect rate and required sample
size are determined. Subsequently, the models
for Problems 2 and 3 are adjusted to include
factors such as the procurement costs of
components and finished products, inspection
costs, and the loss incurred from replacing
finished products. Finally, the sampling
inspection model is implemented using Python,
and the cost models for Problems 2 and 3 are
re-solved based on the updated defect rates.

2. Construction and Solution of the Optimal
Decision-Making Model for Multi-Process
and Multi-Component Production

2.1 Establishment and Solution of the Model
for Problem 1
This study considers the estimation of the

component defect rate 0 0.10p  , assuming that
the supplier claims a nominal defect rate of P.
Through sampling inspection, the enterprise
needs to infer the overall defect rate P based on
the number of defective items X in the sample.
Therefore, the problem can be described as a
hypothesis test:
Null Hypothesis 0H : The defect rate is 0p p .
Alternative Hypothesis

1H : The defect rate is

0p p .
The results of the sampling inspection follow a
binomial distribution  ,B n p , where n
represents the sample size and X represents the
number of defective items in the sample. The
sample defect rate ˆ Xp

n
 is an unbiased

estimator of the overall defect rate. Since the
binomial distribution can be approximated by a
normal distribution for large sample sizes, a
normal distribution is employed for the
hypothesis test.
(1) Normal Approximation to the Binomial
Distribution
For a large sample size n, the binomial
distribution  ,B n p can be approximated by a
normal distribution:

  ~ , 1 .X N np np p (1)
The distribution of the sample defect
rate ˆ Xp

n
 is:

 1
ˆ ~ , .

p p
p N p

n
 

 
 

(2)

The test statistic Z for hypothesis testing can be
expressed as:

 
0

0 0

ˆ
.

1
p pZ
p p

n






(3)
where the Z-value follows the standard normal
distribution  0,1N . By calculating the Z-value,
we can determine whether the defect rate in the
sample differs significantly from the nominal
defect rate 0p .
(2) Hypothesis Testing
Based on different confidence levels and
decision scenarios, two hypothesis testing
schemes are designed:
Scenario 1: Rejecting Components at 95%
Confidence Level
At a 95% confidence level, the company aims to
determine whether the defect rate exceeds 10%.
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This can be achieved using a “one-tailed test
(upper-tailed test)”.
“Hypotheses”:
Null hypothesis 0H : Defect rate 0p p (i.e., the
defect rate does not exceed the nominal value).
Alternative hypothesis 1H : Defect rate 0p p
(i.e., the defect rate exceeds the nominal value).
For a 95% confidence level, the critical value
from the standard normal distribution is 1.96.
Therefore, if the calculated Z-value is “greater
than 1.96”, the null hypothesis is rejected,
concluding that the defect rate exceeds the
nominal value (i.e., 1.96,Z  ). This can also be
translated into a critical threshold for the sample
defect rate:

 0 0
0

1
ˆ 1.96 ,

p p
p p

n


   (4)

When the defect rate p̂ in the sample “exceeds
this critical value”, the company should reject
the batch of components.
Scenario 2: Acceptance of Components at a
90% Confidence Level
At a 90% confidence level, the enterprise aims
to determine whether the defect rate does not
exceed 10%. This can be addressed using a
one-tailed test (lower-tailed test). The
hypotheses for the test are as follows:
Null hypothesis

0H : The defect rate is greater
than or equal to 10%.
Alternative hypothesis 1H : The defect rate is
less than 10%.
For a 90% confidence level, the critical value
from the standard normal distribution is 1.645.
Therefore, if the calculated Z-value is less than
1.645, the null hypothesis is rejected, and it is
concluded that the defect rate does not exceed
the nominal value. That is: 1.645.Z  This can
also be expressed in terms of the sample defect
rate:

 0 0
0

1
ˆ 1.645 .

p p
p p

n


   (5)

If the defect rate in the sample is lower than this
critical threshold, the enterprise should accept
the batch of components.
The margin of error d refers to the maximum
allowable deviation between the sample defect
rate and the nominal defect rate as tolerated by
the enterprise. The maximum deviation within
the confidence interval can be expressed as:

 0 01
.

p p
d z

n


  (6)

To ensure that the estimation error does not
exceed ddd, the sample size nnn can be derived
from the equation above, resulting in the
following sample size formula:

 2
0 0

2

1
.

z p p
n

d
  

 (7)

This formula is used to estimate the required
minimum sample size under a given confidence
level and allowable margin of error d. Where:
Zα: Critical value from the standard normal
distribution corresponding to the chosen
confidence level. P: Population (nominal) defect
rate. d: Allowable estimation error.
(4) Implementation Plan
The enterprise may implement the inspection
procedure according to the following steps:
Determine the Sample Size: Based on the
desired confidence level, nominal defect rate,
and allowable margin of error, calculate the
minimum required sample size using the
formula:

 2
0 0

2

1Z p p
n

d
  

 (8)

Conduct Sampling Inspection: Randomly select
n components from the supplier’s batch for
inspection. Record the number of defective
items X, and calculate the sample defect rate:

ˆ Xp
n

 (9)

Perform Hypothesis Testing:
At a 95% confidence level, if

 0 0
0

1
ˆ 1.645

p p
p p

n


  
, reject the batch of

components.
At a 90% confidence level, if

 0 0
0

1
ˆ 1.96

p p
p p

n


  
, accept the batch of

components.

2.2 Model Formulation and Solution for
Problem Two
2.2.1 Complete cost model
It is now necessary to incorporate the
procurement costs 1bC and 2bC into the
model, especially considering that if
components are not inspected, defective items
may enter the assembly process.
Procurement and inspection costs for
components: For component 1 and component 2,
the company needs to procure and may choose
to inspect them.
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Total inspection cost for components:
c  1omponent inspection component componentC C C  2 (10)

If components are inspected, the company
incurs both procurement and inspection costs,
and defective products are eliminated;
If components are not inspected, only the
procurement cost is incurred, and defective
components directly enter the assembly.
Total cost for component 1:

1 1 1 1 1 1 1( ) (1 ) (1 ) .b dcomponen btC x N C C p x N C          (11)
Total cost for component 2:

2 2 2 2 2 2( ) (1 ) (1 ) .b dcomponen btC x N C C p x N C         2 (12)
When 1 1x  or 2 1x  , it indicates the
company inspects the components, removing
defective ones and keeping only qualified
components; the cost includes procurement and
inspection expenses.
When 1 0x  or 2 0x  , components directly
enter the assembly stage, and the company only
pays the procurement cost, with defective items
also entering assembly.
1) Finished Product Inspection Cost
Finished product inspection cost:

  .finished product inspection fC y N C   (13)
If inspected, defective finished products are
removed and do not enter the market. The
inspection cost is proportional to the number of
finished products inspected.
2) Replacement Loss from Finished Products
If finished products are not inspected, defective
items enter the market, leading to return and

replacement losses:
r  (1 ) .eplacement loss f rC y N p C     (14)

3) Disassembly Cost
If defective finished products are chosen to be
disassembled, the disassembly cost is:

d  .isassembly cost tC z N C   (15)
Disassembly cost is proportional to the number
of defective finished products and the
disassembly fee.
4) Assembly Cost
Regardless of inspection, a fixed assembly cost
is incurred during the assembly stage:

a  .ssembly c aostC N C  (16)
Whether or not components and finished
products are inspected, assembly costs remain
fixed.
5) Recovery Revenue
When defective finished products are
disassembled, component of the component
costs can be recovered. It is assumed that the
recovery price of components is 50% of the
purchase price, and the recovery revenue is:

r  r

2

1

0.5 (1 ).ecovery evenue bi i
i

C z N C p


      (17)

Where z indicates whether the defective finished
product is disassembled, and biC is the
purchase price of the component.
Objective Function:
The objective of this study is to minimize costs,
i.e.:

c   c    l  c  romponent inspection assembly ost finished product inspection replacement oss disassembly ost recovery evenueMinimizeZ C C C C C C      (18)
Combining all components, the total cost model for the company is:

   
 

1 1 1 1 1 1 2 2 2 1 1 1

2 2 2 2 2 2

2

1

( ) (1 ) (1 ) ( ) (1 ) (1 )

( ) (1 ) (1 ) (1 )

0.5 (1 )

b d b b d b

b d b f a f r t

bi i
i

MinimizeZ x N C C p x N C x N C C p x N C

x N C C p x N C y N C N C y N p C z N C

z N C p


                   

                      

     
(19)

Constraints: Decision variables 1x , 2x , y ,
and z are binary variables:

 1 2, , , 0,1 .x x y z (20)

the production quantity N must be greater
than 0:

0.N  (21)
2.2.2 Genetic algorithm optimization
To find the optimal decision combination for
each scenario, the company adopts a genetic
algorithm [3] for solution. The flowchart of the
genetic algorithm is shown in Figure 1.
Step 1: Population Initialization – Generate the

initial population, with each individual
representing a possible decision
combination  1 2, , ,x x y z .
Step 2: Fitness Evaluation – Calculate the total
cost for each individual. The fitness value is the
negative of the total cost; the goal is to
maximize fitness (i.e., minimize cost).
Step 3: Selection – Based on fitness values, use
a tournament selection strategy to select
individuals with higher fitness for the next
generation.
Step 4: Crossover – Perform crossover on
selected parent individuals to generate offspring.
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Step 5: Mutation – Perform mutation on
offspring individuals to ensure population
diversity.
Step 6: Termination Condition – The algorithm
terminates based on the number of iterations or
early stopping criteria, and outputs the optimal
solution.

Figure 1. Genetic Algorithm Flow Chart

Figure 2. Minimum Total Cost and Optimal
Decision Combination Chart for Each

Situation
2.2.3 Results and analysis
A genetic algorithm was implemented using
Python to optimize the six scenarios involved in
the company's production.[4] The optimal plans
for the six scenarios were obtained, and the
optimal solutions and corresponding costs were
visualized, as shown in Figure 2 above.
For each scenario, specific decision plans and
corresponding minimum total costs are provided.
Table 1 presents the optimal decisions for each

scenario (whether to inspect component 1,
component 2, and finished products, and
whether to disassemble defective finished
products), as well as related metric results.
2.2.4 Decision basis and analysis
The company needs to optimize decisions across
four stages in the production process:
(1) Whether to inspect component 1 or
component 2
Decision basis: If the inspection cost is high and
the defect rate is low, the company may choose
not to inspect, thereby reducing inspection costs.
Conversely, if the defect rate is high and
inspection cost relatively low, the company may
opt for inspection to reduce defective rate after
assembly.
(2) Whether to inspect the assembled finished
product
Decision basis: If the defect rate is high, the
company may inspect finished products to
reduce return loss. If inspection costs are high
and the defect rate is low, they may choose not
to inspect and send directly to market.
(3) Whether to disassemble defective finished
products
Decision basis: If the disassembly cost is high,
the company may discard the defective products.
If disassembly costs are low, they may opt to
disassemble and reassemble.
(4) Whether to replace defective products
returned by users
Decision basis: Replacement is the final step in
handling defective products. Unconditional
replacement causes replacement losses, so
defective finished products should be prevented
from reaching the market to reduce replacement
costs.
Decision Analysis:
Components Inspection Decision: When the
defect rate of component 2 is high, inspecting
component 2 can effectively reduce defective
products entering the market (e.g., scenario 2
and 5). In some cases (e.g., scenario 1 and 3),
when the defect rate is low, the company opts
not to inspect components to save on inspection
cost.

Table 1. Optimal Decisions and Corresponding Metric Results for Each Scenario
Scenario

ID
Component
1 Inspection

Component
2 Inspection

Product
Inspection

Disassemble
Defective
Product

Minimum
Cost

(Yuan)
Decision Basis

1 0 0 0 1 23,700
Low defect rate of components and

products; disassembling products yields
recovery revenue

2 0 1 0 1 24,200 High defect rate in component 2, low
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product defect rate; disassembly reduces
cost

3 0 0 1 1 26,100 High product defect rate; disassembly
recovers value and reduces loss

4 0 1 1 1 23,400
High defect rate in component 2 and

finished products; inspection reduces loss;
disassembly effective

5 0 1 0 1 22,200 High defect rate in component 2, low in
finished products; high disassembly return

6 0 0 0 0 28,500
Low defect rate; high cost of

inspection/disassembly; not inspecting
reduces cost

Finished Product Inspection Decision: When the
product defect rate is high, inspection
significantly reduces replacement loss (e.g.,
scenario 4). However, when defect rate is low
and inspection cost is high (e.g., scenarios 1 and
6), the company may choose not to inspect and
send products directly to market.
Disassembly Decision: In several cases (e.g.,
scenarios 1, 2, 3, 4, and 5), the company
chooses to disassemble defective products
because the recovered component value offsets
the disassembly cost, reducing overall
production cost. In scenario 6, due to low defect
rates in both products and components,
disassembly is not chosen.

2.3 Problem 3 Model Establishment and
Solution
For Problem 3, the total cost needs to be
clarified first. It includes the procurement and
inspection costs for components, assembly and
inspection costs for semi-finished products,
inspection costs for finished products, and the
replacement losses and disassembly costs due to
defective items. Additionally, an important
constraint must be considered: only finished and
semi-finished products that have been inspected
and confirmed as defective can be disassembled;
uninspected defective products cannot be
disassembled. To solve this problem, dynamic
programming[5] needs to be used. This is
because the production process can be divided
into multiple decision stages, and each stage’s
decision will impact the subsequent stages’ state
and cost. Dynamic programming breaks down
large problems into smaller ones and uses the
results of these smaller problems to construct

the final solution, making it ideal for solving
multi-stage decision problems.
2.3.1 Total cost
(1) Components Procurement and Inspection
Costs

      
8

1

1 1 .i bi di i i bi
i

componentC N x C C p x C


         (22)

Where ix indicates whether component i is
inspected, ip is the defective rate, biC is the
procurement cost, and diC is the inspection cost.
(2) Semi-Finished Product Assembly and
Inspection Costs

 
3

1
 .semi finished produc aj i

j
t i fC N C y C


     (23)

Where
ja

C is the assembly cost of semi-finished

product j , fjC is the inspection cost, and jy
indicates whether it is inspected.
(3) Finished Product Inspection Costs,
Replacement Losses, and Disassembly Costs

   1 .
f ffinished prod f r f tuctC N z C z C t C        (24)

Where
ff

C is the finished product inspection

cost, rC is the replacement loss, and
ft

C is the
disassembly cost.
(4) Disassembly Recovery Profit
If disassembling semi-finished products or
finished products is selected, component of the
cost of the components can be recovered. When
disassembling semi-finished products, the
recovery cost is 50% of the unit price of
components. When disassembling finished
products, component of the component cost can
be recovered.

3 8

  
1 7

0.5 0.5 .
j i f i

j

d j t b f t b
j i P i

isassembly recovery profitC t N C C t N C C
  

   
                
   (25)

Where jP represents the set of components

involved in semi-finished product j , and jt

indicates whether disassembly is performed.
Total Cost:
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    total component semi finished product finished product disassembly recovery profitC C C C C    (26)
Based on the above, the cost minimization model is:

        

  

8 3

1 1

3 8

1 7

1 1

1 0.5 0.5 .
f f j i f i

j

i bi di i i bi aj i fi
i j

f r f t j t b f t b
j i P

total

i

C N x C C p x C N C y C

N z C z C t C t N C C t N C C

 

  

            

                           

 

  
(27)

Constraints: If defective items are not inspected,
they cannot be disassembled. That is:

j jt y , .ft z (28)
Only defective finished products and
semi-finished products that have been confirmed
after inspection can be disassembled.
2.3.2 Dynamic programming solution
(1) Applicability of Dynamic Programming
Dynamic programming is a solution method
suitable for multi-stage decision problems.[6]-[7]

The production process of an enterprise can be
divided into multiple decision stages, where
each stage’s decision impacts the state and cost
of subsequent stages. Dynamic programming
decomposes the problem into sub-problems and
uses the results of these sub-problems to
construct the final solution, making it
well-suited for solving production optimization
problems.
(2) Stage Division and State Definition
This problem can be divided into three main
stages:
Stage 1: Decide whether to inspect each
component, determining the quality of the
components entering assembly.
Stage 2: Based on the semi-finished products
generated from assembly, decide whether to
inspect the semi-finished products and whether

to disassemble them, which will affect the
quality of the finished products.
Stage 3: Inspect the finished products, and based
on the inspection results, decide whether to
disassemble them or sell them directly to avoid
defective products entering the market and
causing losses.
The state of each stage consists of decisions on
inspection and disassembly:

 1 2 8, ,...,x x x x : Decisions on the inspection
of 8 components.

 1 2 3, ,y y y y : Decisions on the inspection of 3
semi-finished products.
fz : Decision on finished product inspection.

 1 2 3, , , fw w w w w : Decisions on disassembly
of semi-finished and finished products.
(3) State Transition Equation
The core of dynamic programming lies in state
transitions.[8]-[9] The optimal decision at each
stage depends on the state and decisions made at
previous stages. For example, in Stage 1, if a
component is not inspected, defective
components may enter the semi-finished product
assembly stage, affecting the subsequent quality
and cost of the semi-finished and finished
products.
The recursive equation can be expressed as:

   , mi   . n inspection cost disassembly cost recV t s overy revenue  + (29)

Where  ,V t s represents the minimum cost at
state s in stage t .
(4) Solution Steps
a. Initialize all states in Stage 1 and calculate
the cost of component inspection.
b. Based on the results of component
inspections, recursively calculate the cost of
semi-finished product inspection and
disassembly.
c. Make decisions on finished product
inspection and disassembly, and obtain the final

total cost and optimal solution.
2.3.3 Results and analysis
Using Python to build the dynamic
programming model, and based on the results of
dynamic programming, this study obtained the
following optimal decision scheme:
Optimal Decision: The optimal combination of
decision variables is
(0,0,0,0,0,0,0,0,1,1,0,1,1,1,0,0), and the
corresponding minimum total cost is 92,000
yuan. Table 2 is an explanation of the decision
variables in the combination:

Table 2. Explanation of Decision Variables in the Combination
Decision Stage Decision Object Decision Value Meaning

Component Inspection Components 1-8 0 No inspection for any components
Semi-Finished Product Semi-finished Product 1 1 Inspect Semi-finished Product 1
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Inspection Semi-finished Product 2 1 Inspect Semi-finished Product 2
Semi-finished Product 3 0 Do not inspect Semi-finished Product 3

Finished Product Inspection Finished Product 1 Inspect Finished Product

Semi-Finished Product
Disassembly

Semi-finished Product 1 1 Disassemble Semi-finished Product 1
Semi-finished Product 2 1 Disassemble Semi-finished Product 2
Semi-finished Product 3 0 Do not disassemble Semi-finished Product 3

Finished Product Disassembly Finished Product 0 Do not disassemble Finished Product
Based on this optimal decision variable
combination, the study can analyze the meaning
of each decision variable in the production
process as follows:
Components Inspection Decision: Do not
inspect components 1 to 8. This suggests that for
this batch of components with a low defect rate,
the inspection cost is too high, and the enterprise
chooses not to inspect them and directly
proceeds with assembly.
Semi-Finished Product Inspection and
Disassembly Decision: Inspect semi-finished
products 1 and 2, but do not inspect
semi-finished product 3. Disassemble
semi-finished products 1 and 2, but do not
disassemble semi-finished product 3. This
indicates that semi-finished products 1 and 2
might have a higher defect rate, and inspection
and disassembly are effective methods to reduce
the defect rate in subsequent finished products.
However, inspecting and disassembling
semi-finished product 3 is not economical.
Finished Product Inspection and Disassembly
Decision: Inspect finished products and
disassemble defective finished products. This
decision ensures that defective products do not
enter the market, avoiding replacement losses
caused by defective products.
Decision Basis and Corresponding Indicators:
Components Inspection: Decision Basis:
Defective rate and inspection cost of each
component. The defective rate of the
components is relatively low (10%), and the
inspection cost is high. Therefore, not inspecting
them avoids unnecessary costs and proceeds
directly to assembly.
Semi-Finished Product Inspection and
Disassembly: Decision Basis: The quality and
defect rate of semi-finished products after
assembly. The inspection and disassembly of
semi-finished products 1 and 2 are based on
their higher defect rates and the inspection costs
after assembly. Inspection and disassembly can
effectively reduce the defect rate of finished
products. For semi-finished product 3, the
cost-benefit ratio of inspection and disassembly
is not high, so the decision is to not inspect or

disassemble it.
Finished Product Inspection and Disassembly:
Decision Basis: Market replacement losses for
finished products. Finished product inspection
prevents defective products from entering the
market and reduces additional losses caused by
returns or exchanges. Disassembling finished
products recovers component of the component
costs, so inspecting and disassembling finished
products is the optimal choice.

2.4 Model Construction and Solution for
Problem 4
It is assumed that the defective rates of
components, semi-finished products, and
finished products in Problem 1 and Problem 3
are all estimated through the method of
sampling inspection[10]. The enterprise needs to
infer the overall defective rate through sampling
inspection and re-optimize decisions based on
the inspection results. In order to solve the
problem based on sampling inspection, this
study combines the method used in Problem 1 to
recalculate the defective rates in Problem 2 and
Problem 3, and then updates the decision model
accordingly.
2.4.1 Sampling inspection model
To estimate the defective rates of components
and finished products, it is assumed that the
enterprise can infer the defective rates by
conducting sampling inspections on components,
semi-finished products, and finished products,
and optimize based on the results. The method
of approximating the binomial distribution with
the normal distribution is used to infer the
confidence interval of the defective rate. [11]The
steps for sampling inspection are as follows:
(1) Estimation of sample defective rate
By counting the number of defective items in
the sample, the overall defective rate can be
inferred. Assuming that the number of defective
items in the sample follows a binomial
distribution, the confidence interval of the
sample defective rate is calculated using the
method of approximating the binomial
distribution with the normal distribution.
According to the given confidence level and
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error range, the defective rate and sample size
can be estimated using the following formula.
Assuming the enterprise requires a 95%
confidence interval, 1.96 from the standard
normal distribution is used as the critical value
of the confidence interval. Let the defective rate
be p , and the sample size be n , then the upper
and lower bounds of the confidence interval are:

 1
.

p p
p Z

n


  (30)

Where: 1.96Z  (the standard normal
distribution value corresponding to the 95%
confidence level), p is the defective rate, and
n is the sample size.
(2) Calculation of Sample Size
In order to control the estimation error within
the given error range e the sample size n
can be calculated using the following formula:

 2

2

1
.

Z p p
n

e
 

 (31)

Where: 1.96Z  , e is the allowed error
range, and p is the initial estimate of the
defective rate. The confidence interval is
composed of the upper and lower limits lowerp
and upperp .:

 1
max 0, ,lower

p p
p p Z

n

 
   
 
 

(32)

 1
min 1, .upper

p p
p p Z

n

 
   
 
 

(33)

The calculated confidence interval represents a
95% probability that the true defective rate is
contained within this interval.
Estimated Average Defective Rate
To provide a simplified estimate, the average
value of the confidence interval is used as the
final defective rate:

.
2

lower upper
estimate

p p
p


 (34)

This estimated average defective rate is used as
the input for the defective rate in the cost
models and optimization algorithms of Problem
2 and Problem 3, helping the enterprise make
reasonable inspection and production decisions.
2.4.2 Modification of problem 2 model
After obtaining the defective rate from the
sampling inspection, this study incorporates it
into the cost model. Based on the model of
Problem 2, the following modifications are
required:
(1) Components Procurement and Inspection
Costs
For components 1 and 2, the enterprise needs to
procure components and may inspect them. If
defective components are detected, the
non-conforming components are discarded. The
cost model is as follows:

     1 1 1 1 11 11 1 .b d bcomponentC x N C C p x N C          (35)
     2 2 2 2 22 21 1 .b d bcomponentC x N C C p x N C          (36)

Where 1p and 2p are the defective rates of
components 1 and 2, 1x and 2x indicate
whether the components are inspected.
(2) Finished Product Inspection Costs
Finished product inspection can reduce the risk
of defective products entering the market. If
inspected, defective finished products will be
discarded to avoid replacement losses. The
finished product inspection cost is as follows:

  .finished product inspection fC y N C   (37)

Where y indicates whether the finished product
is inspected, and fC is the finished product
inspection cost.
(3) Finished Product Replacement Losses
Undetected defective products will enter the
market, leading to replacement losses. The
replacement loss when not inspected is:

 r  1 .eplacement loss res fC y N p C     (38)
Based on the above, the updated model for
Problem 2 is:

         

   

1 1 1 1 1 1 2 2 2 2

2

2 2
1

1 1 1

1 1 0.5 (1 )

b d b b d

b a f f r t bi i
i

MinimizeZ x N C C p x N C x N C C p

x N C N C y N C y N p C z N C z N C p


               

                       (39)

Where fp is the defective rate of the finished

product, and rC is the cost of each
replacement loss.
2.4.3 Reworking the solution for problem 3
model

(1) Components Cost
For each component i , assume the defective
rate is ip (obtained through sampling
inspection), the procurement cost is

biC , the
inspection cost is

jd
C , the assembly quantity is
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N , and the decision variable ix indicates
whether the component is inspected:

 
8

1

1 .
i i

bi i d i i b
i

componentC C N x C N x p C N


           
(40)

(2) Semi-Finished Product Cost
For each semi-finished product j , the defective
rate is jp , the assembly cost is

ja
C , the

inspection cost is
jd

C , the disassembly cost is

jt
C , the recovery benefit is jR ,, and the

decision variable jy indicates whether the

semi-finished product is inspected, while jt
indicates whether it is disassembled:

  

3

1

1 .
j j j jasemi fini j d i j a j t j jshed product

j

C C N y C N y p C N t C N t R



                 (41)

Where jR represents the recovery value of
components after disassembly, and the
calculation formula is:

 0.5 .
kj b

k

R C N   (42)

That is, after disassembly, component of the
component cost can be recovered.
(3) Finished Product Cost

The finished product inspection cost is fC , the

replacement loss cost is rC , the disassembly
cost is tC , and the decision variable z
indicates whether the finished product is
inspected, while ft indicates whether defective
finished products are disassembled:

  1 .ffinished produc f r f f ft tC z C N z p C N t C N t R             (43)
Based on the above, the updated model for Problem 3 is:

 

 

 
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1
3

1

1

1

1 .
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j j j j
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C C N x C N x p C N

C N y C N y p C N t C N t R

z C N z p C N t C N t R





           

                

            



 (44)

Constraints: If defective products are not
inspected, they cannot be disassembled. That is:

j jt y ,
ft z (45)

Only defective finished products and
semi-finished products confirmed after
inspection can be disassembled.

2.5 Solution Steps
① Construct a sampling inspection model
through programming (Python).
② Assume an error range of 0.03 and an initial
nominal defective rate of 0.10 (which can be set
by the enterprise).
③ Substitute the defective rate obtained from
the sampling model into the defective rate in the
models of Problem 2 and Problem 3, and finally
obtain new decision schemes by solving the
models.

2.6 Decision Result Analysis
Reconstruct a new model for Problem 2 and
Problem 3 using programming (Python), and
obtain new decision schemes through execution.
For Problem 2, the defective rate is calculated
through the sampling inspection model and the

results are visualized, as shown in Figure 3:
It can be seen that the predicted defective rate
for each component under various conditions is
0%. By substituting this defective rate into the
original model of Problem 2, the latest decision
scheme is obtained and visualized using
matplotlib in Python, as shown in Figure 4:

Figure 3. The Defect Rate of Each Situation

Figure 4. The Lowest Total Cost and Optimal
Decision Combination for Each Situation
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The decision scheme is shown in Table 3:
Table 3. Decision Plan Table

Case No. Component 1
Inspection

Component 2
Inspection

Final Product
Inspection

Disassembly of
Defective Products

Minimum Cost
(Yuan)

1 0 0 0 1 23,700
2 0 0 0 1 23,700
3 0 0 1 1 26,100
4 0 1 1 1 24,200
5 0 1 0 1 23,200
6 0 0 0 0 29,000

Components Inspection: When the defective rate
is relatively high, components inspection can
effectively reduce the number of defective
finished products after assembly, thereby
lowering the costs of replacement and
disassembly. When the inspection cost is high
and the defective rate is low, the company
chooses not to inspect in order to save
inspection expenses.
Finished Product Inspection and Replacement
Loss: Finished product inspection can
significantly reduce replacement loss when the
defective rate is high, while in the case of a low
defective rate, not inspecting helps avoid
unnecessary inspection costs.
Finished Product Disassembly: Disassembling
finished products can recover component of the
component cost. When disassembly costs are
low and the recovery benefit is considerable,
disassembly becomes an effective cost control
measure.
For Problem 3, similarly, the latest optimal
scheme and the minimum cost are obtained as
follows:
Optimal Decision: (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0,
1, 1, 0, 0), Minimum Cost: 96400.0
Decision Analysis:
Components Inspection (x1–x8 = 0, 0, 0, 0, 0, 0,
0, 0):
All components are not inspected, indicating
that these components have a relatively low
defective rate or the inspection cost is high. The
company directly uses these components for
assembly without inspection. This strategy
avoids unnecessary inspection costs, though it
may allow defective components into the
assembly line.
This also implies that the defective rate of
components is relatively low, or the company
has other methods to mitigate the impact of
defective components entering the assembly
line.
Semi-Finished Product Inspection and

Disassembly (y1–y3 = 1, 1, 0; t1–t3 = 1, 1, 0):
Semi-finished products 1 and 2 are inspected,
and those identified as defective are
disassembled. This indicates that the defective
rate of semi-finished products 1 and 2 is
relatively high, and inspection and disassembly
can effectively reduce the defective rate of the
final products.
Semi-finished product 3 is neither inspected nor
disassembled, suggesting that its defective rate
is low or that its impact on the final product is
minimal, thus inspection is unnecessary.
Finished Product Inspection and Disassembly
(y_f = 0; t_f = 0):
The finished product is not inspected, indicating
a low defective rate, high inspection cost, and
minimal benefit from inspection. Therefore, the
company skips finished product inspection to
reduce inspection expenses.
At the same time, finished product disassembly
is not selected, suggesting that even if a small
number of defects exist in the final product, the
potential loss is lower than the cost of inspection
and disassembly.

3. Conclusion and Outlook
This model demonstrates strong practicality: it
encompasses multiple cost components in the
production process, including components
procurement, assembly, finished product
inspection, and disassembly, making it suitable
for real-world production optimization; the
sampling inspection method is reasonable: it
estimates the defective rate through hypothesis
testing and makes acceptance or rejection
decisions under different confidence levels;
comprehensive cost consideration: the model
accounts for the recovery value after
disassembly, providing a more complete
assessment of the enterprise’s cost; dynamic
optimization: it applies dynamic programming
to make stage-wise decisions, flexibly
responding to changes in the production process.
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However, it is worth noting that the model does
not consider the impact of external factors on
the defective rate and neglects fluctuations in
the production environment. The sample size
may not be sufficient to accurately represent the
defective rate, affecting the reliability of
decisions. It does not take into account risk
factors such as price fluctuations and logistics in
the supply chain. Some costs are difficult to
obtain accurately, which affects practical
application.
Directions for Model Improvement:
(1) Introduce stochastic factors to enhance the
model's ability to cope with uncertainty.
(2) Consider supply chain management to
further optimize cost control throughout the
production chain.
(3) Improve the method for estimating sample
size to ensure a more accurate estimation of the
defective rate.
(4) Introduce more sophisticated dynamic
programming methods.
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