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Abstract: In modern industrial settings,
conveyor systems often involve multiple
devices working together, changing tasks, and
complex scheduling needs. A common
challenge is the lack of effective modeling of
how devices are connected and how their
working states depend on each other.
Traditional scheduling methods usually make
decisions based only on local information or
the state of a single device, which makes it
hard to respond quickly and efficiently at the
system level. To address this, we propose a
dynamic scheduling method for conveyor
systems based on graph neural networks
(GNNs). First, industrial cameras capture
real-time image sequences to estimate the
speed of each conveyor belt and extract visual
features. These are used to build small time-
based graphs, which are then combined into a
full system graph. The GNN learns the
relationships and dependencies between
devices to create a global state representation.
Using this representation, a reinforcement
learning-based policy network is trained to
automatically adjust the belt speeds. A visual
feedback loop is also introduced to enable
continuous online learning. Additionally, we
design a method to dynamically split and
compress the system graph to improve
modeling efficiency and scheduling accuracy.
Experiments show that this method offers
better flexibility, stability, and energy
efficiency under complex conveyor conditions.

Keywords: Conveyor System Scheduling;
Topology-Aware Optimization; Graph
Neural Networks; Reinforcement Learning.

1. Introduction

In typical scenarios like ports, smart warehouses,
and mining transport, conveyor systems serve as
key infrastructure for logistics, responsible for
coordinating multiple devices and continuously
moving materials [1-3]. As the system size
grows and tasks become more complex, these

http://www.stemmpress.com

systems show highly dynamic behavior, strong
structural dependencies, and unstable states.
This puts higher demands on the Intelligence
and adaptability of scheduling strategies [4].
However, most existing scheduling methods rely
on fixed rules or static models. They make
decisions based on single devices or local
parameters and do not model the connections
and dependencies between devices as a whole.
As a result, it’s hard for them to maintain overall
system efficiency and fast response when tasks
change frequently or devices are tightly
connected. Therefore, building a scheduling
model that understands the system’s structure
and can adapt to dynamic changes is a key
challenge for improving the intelligence of
conveyor systems [5].

Although some recent studies have started to use
graph-based modeling and intelligent algorithms
to improve conveyor system scheduling, most
existing methods still face major limitations
[6,7]. On one hand, current graph models are
often static or rule-based, making them unable to
capture the dynamic changes in system topology
and state during operation. This makes it
difficult to handle real-world scenarios where
tasks change frequently and working conditions
vary rapidly. On the other hand, the sensing and
modeling layers are not tightly integrated.
System status is often determined by a small
number of sensors or local signals, ignoring
important visual cues such as material
distribution or pile-ups on the conveyor surface.
This leads to scheduling strategies that are not
responsive to the full system state [8]. Moreover,
most scheduling strategies still rely on
traditional optimization methods, which struggle
to coordinate multiple devices effectively in high
-dimensional and complex environments [9].
Therefore, there is an urgent need for a unified
scheduling framework that combines visual
perception, dynamic graph modeling, and policy
learning to ensure efficient and stable operation
of conveyor systems under complex conditions.
To address the above issues, this paper proposes
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a dynamic scheduling method for conveyor
systems that combines visual sensing, graph
neural network (GNN) modeling, and
reinforcement learning [10]. First, industrial
cameras are used to continuously capture image
sequences of conveyor belts. By applying
feature matching and speed estimation
techniques, the system estimates the operational
status of each device and builds time-based
subgraphs to extract sequential state information.
Then, based on multiple conveyor belts, a
system-level graph is constructed to represent
the device network. A GNN [11] is used to
model the connections and state transitions
between devices, creating a global topological
state representation. On top of this, a
reinforcement learning policy network is
designed to adaptively generate speed control
actions based on the system state. A feedback
loop is also introduced using visual information,
allowing the system to continuously learn and
improve its scheduling policy over time. To
improve modeling efficiency and inference
speed, a dynamic graph partitioning and
compression mechanism is proposed. This
mechanism identifies less critical regions based
on activity level and state change density and
models them in a more abstract way to reduce
unnecessary computation. Experimental results
show that this method achieves better scheduling
flexibility, system stability, and energy
efficiency in various typical conveyor scenarios,
demonstrating its effectiveness and practical
value.

The main contributions of this paper are as
follows:

* We propose a scheduling modeling framework
for conveyor systems that integrates visual
perception and graph neural networks. By jointly
modeling image-based temporal subgraphs and
the device-level system graph, we achieve, for
the first time, a unified representation of
structural topology and state dependencies in
CONveyor scenarios;

* We design a dynamic topology partitioning and
graph compression mechanism based on
operating speed and image-derived state density.
This approach effectively reduces redundant
modeling costs while improving the modeling
accuracy and inference efficiency in key regions;
* We develop a graph-embedding-driven
reinforcement learning policy network. Through
a closed-loop execution framework based on
visual feedback, the system enables adaptive
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optimization of  multi-device
strategies;

» We conduct experiments across several typical
conveyor task scenarios. Results show that our
method outperforms existing approaches in
terms of scheduling flexibility, energy efficiency,
and system stability, demonstrating strong
potential for practical deployment and broader
application.

The remainder of this paper is organized as
follows: Sec.2 presents the related work,
including mainstream scheduling methods for
conveyor systems, graph neural network
modeling techniques, and the application of
reinforcement learning in industrial control.
Sec.3 provides a detailed description of the
proposed method, covering the visual perception
module, graph construction process, dynamic
topology partitioning mechanism, and the design
of the reinforcement learning policy network.
Sec.4 introduces the experimental setup and
evaluation metrics, followed by performance
validation under various typical conveyor
scenarios. Sect.5 discusses the applicability,
potential extensions, and limitations of the
proposed method. Finally, Sec.6 concludes the
paper and outlines future research directions.

scheduling

2. Related Work

2.1 Scheduling Methods for
Systems

Traditional conveyor system scheduling mainly
relies on rule-based control strategies, such as
start-stop threshold settings, predefined speed
tables, and static task scheduling. These
approaches are typically implemented using
programmable logic controllers (PLCs), which
offer clear control logic and high execution
efficiency. However, they lack the ability to
perceive changes in system status, making them
ineffective under complex or dynamic operating
conditions [1] . In recent years, some studies
have attempted to reframe the scheduling
optimization problem as a modeling and learning
task. Techniques such as machine learning,
optimization  algorithms—including  genetic
algorithms, ant colony optimization, and
reinforcement learning—have been introduced
to improve scheduling performance [9,12].
Nevertheless, these methods often rely on
simplified system structures or assume static
working conditions, making them difficult to
apply to real-world conveyor systems involving

Conveyor
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multiple devices and strong coupling [13].

2.2 Application of Visual Perception in
Conveyor Systems

Visual perception technologies are increasingly
used in manufacturing and logistics systems,
mainly for tasks such as object detection, surface
defect inspection, and state estimation [14]. In
conveyor scenarios, cameras can Sserve as
noncontact sensors, providing richer status
information than traditional sensors—for
example, detecting material accumulation,
spillage, or abnormal halts on the belt surface
[15]. However, most current visual applications
in conveyor systems are limited to static image
analysis. They lack modeling of temporal
continuity and multidevice collaborative states,
making it difficult for visual information to
directly support system-level scheduling and
control. Moreover, there is often a weak
coupling between visual data and system
structure. As a result, image-derived information
is rarely transmitted effectively to the scheduling
decision layer, limiting its value in closed-loop
optimization [16].

2.3 Graph-Based Modeling and Graph Neural
Networks

Graph Neural Networks (GNNs) have gained
wide popularity in recent years for modeling
structured data and have demonstrated strong
capabilities in structural reasoning across
various fields such as traffic scheduling,
industrial process control, and smart grids [17].
In conveyor systems, the devices are connected
through explicit material flow paths and
scheduling dependencies, making them naturally
suitable for graph-based modeling [18]. Some
studies have attempted to model conveyor
devices as graph nodes and use techniques such
as Graph Convolutional Networks (GCNs) or
Graph Attention Networks (GATs) to capture
information flow and state coordination between
devices [8]. However, most of these approaches
still rely on static graph structures and lack the
ability to model topological changes that occur
with dynamic device states. In addition, there is
often no effective integration between graph
structures and visual state information, resulting
in incomplete representations of the overall
system state [19].

2.4 Applications of Reinforcement Learning
in Scheduling Optimization

http://www.stemmpress.com

Reinforcement  Learning (RL), as an
optimization approach for interactive decision-
making problems, has been widely applied in
areas such as job shop scheduling, robotic
control, and energy management [11,20]. In
conveyor system scheduling, RL can be used to
learn the optimal mapping from system states to
control actions (e.g., speed configurations),
offering strong adaptability in policy learning
[21]. However, traditional RL methods often
face performance bottlenecks when dealing with
high-dimensional state spaces, coordinated
decision-making across multiple devices, and
constraints imposed by system topology. In
recent years, some studies have explored
combining GNNs with RL (e.g., Graph-RL,
GNN-RL) to enhance the structural awareness of
policy learning. Nevertheless, applications of
such methods in industrial conveyor scenarios
are still in the early stages, with limited efforts to
systematically integrate visual data, dynamic
graph structures, and multi-objective scheduling
tasks [22,23].

In summary, existing research still shows critical
gaps in the following three areas: (1) A lack of
deeply integrated methods that combine visual
perception  with  graph-based  modeling,
preventing the formation of a closed-loop
structural representation from sensing to
modeling; (2) The absence of scheduling
optimization mechanisms that account for
dynamic changes in system topology; (3)
Limited use of reinforcement learning in
conveyor scenarios for training and feedback of
multi-device coordination strategies. To address
these limitations, this paper proposes a multi-
level structural embedding model that integrates
graph neural networks with visual perception. A
dynamic topology partitioning and compression
mechanism is introduced to adapt to structural
variations, and a reinforcement learning policy
network is employed for speed scheduling
control. This approach enhances the system’s
perception coverage, modeling depth, and
decision-making intelligence, overcoming the

key shortcomings of existing scheduling
methods.

3. Proposed Method

3.1 Vision-Based Non-Contact Speed
Estimation and Temporal Subgraph

Modeling
As shown in Fig 1-A, to achieve accurate and
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non-contact sensing of conveyor belt operating
states, we propose a vision-guided speed
estimation approach that integrates visual
perception with graph-based modeling. The
method consists of four main components:

image acquisition and physical speed estimation,
temporal graph construction from image
sequences, graph structure generation, and
feature extraction using a graph neural network.

A. Vision-Based Non-Contact Speed Estil ion and
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Figure 1. Overall Framework of the Proposed Conveyor Scheduling Method

3.1.1 Visual speed estimation mechanism
An industrial camera is installed above each
conveyor belt, positioned vertically to capture
the belt’s motion area. The camera continuously
captures an image sequencell, 12,...IT at a
fixed frame rate f (frames per second).
To convert pixel distances in the image into real-
world physical distances, a calibration board is
used to obtain the unit conversion coefficient k,
defined as:

k =Ly / Ly (unit:~mm/pixel ) )

Where L is the actual physical distance

measured on the calibration board (in mm), and

real

L. is the corresponding pixel length in the
image.

As shown in Fig 2, for two consecutive frames
I, and I, , the SIFT algorithm is used to
extract sets of image feature points £, and F,,, ,
respectively. A set of matched feature point pairs
{( " )},Sﬁ is then obtained, where SN is

the number of matches. The feature extraction
and matching are defined as:

F,=SIFT(1,).F,., =SIFT(1,;) (2
(PP =Mateh (F,F,) - (3)
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The pixel displacement for each matched pair is
computed as:

Match(F,, F,,) ={(p.q =0.75 (4)

Ap, = p;" = pll, (5)

The average pixel displacement is given by:
Ap = 6
= Z, Ap, (6)

With the conversion coefficient k and the time
interval between frames, the average physical

displacement Ax and the estimated

instantaneous speed V, are calculated as:

Bk B b= fkely )

Feature point

Figure 2. SIFT-Based Visual Speed
Estimation Pipeline
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To reduce noise in the speed

Vi, V5., Vp , a sliding window filter with length

sequence

w is applied. The smoothed speed is computed
as:

1
Vi = ;Zi:t—wﬂvi (8)

The final output V| is used as the speed feature

input for the belt node in the device system
graph.

3.1.2 Temporal subgraph construction and
modeling from image sequences

Within a fixed time window 7T, an image

sequence I;,1,,....,1; is collected, where each

image It is represented as a graph node Nt with
node features defined as:

N, =[9(1,)1] ©)
Here, ¢(It ) denotes the deep feature vector

extracted from image /, using a convolutional
neural network (e.g., ResNet).

subgraph G, :(N E ) is
constructed from the image sequence, where
N =N i; is the set of nodes and £ is the edge

set composed of two types of edges:
Temporal Edges connect consecutive frames:

E, ={(N,N, )I<t<T} (10

Similarity Edges connect pairs of nodes with
cosine similarity above a threshold 6:
w, = cos(N. N.): NN (11)
i i J ‘N,' || Nj
Eg={(N.N, )w, > 5} (12)
The final graph structure is defined as:
Gimg =(Nimg’ ETUES) (13)

A temporal

The graph Gimg is then fed into a graph neural
network (GNN), Joww , for

embedding learning. Let NV, e R™  denote

denoted as

the initial node feature matrix. The graph
convolutional update at layer /+1 is expressed
as:

NED = o (G Mo ) = (DAL DN ) (14)

img img > Vi img “limg

’ . . . .

Here, Aimg = + s the adjacency matrix with
-1/2 . .

self-loops, D,'-mg is the corresponding degree

matrix, w )

img

is the learnable weight matrix at
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layer / , and O'() is a nonlinear activation

function.

Finally, a READOUT operation aggregates the
node embeddings to produce a subgraph-level
representation:

Zing = READOUT ({N"}1,) (15
Where READQOUT (+) is implemented as mean
pooling.

This embedding Z;,, captures both the temporal

dependencies and structural patterns of the
image sequence and is used as one of the input
features for the conveyor belt node in the system
-level device graph. It provides dynamic visual
information to support downstream modeling
and scheduling optimization.

3.2  Speed-Aware
Partitioning and
Modeling

As shown in Fig 1-B, to address the challenges
of heterogeneous device states and strong
scheduling dependencies in conveyor systems,
we propose a speed-aware dynamic topology
partitioning method. Combined with graph
compression strategies, this approach enables
structural abstraction and semantic aggregation
for inactive regions, thereby improving the
efficiency and reasoning capacity of system-
level graph modeling.

3.2.1 Device system graph modeling

As shown in Fig 1-B-2, each conveyor belt in
the system is represented as a node Np within
the current time window. The node feature is
defined as the concatenation of the smoothed
speed value and the image subgraph embedding:

N, =[v,. 5" ] (16)
Where, VP denotes the estimated smoothed

speed of belt p, and z,.’,’,,g is the embedding

Dynamic
Graph

Topology
Compression

from its corresponding temporal image subgraph.

The operator |[.] represents  feature

concatenation.

The device system graph is defined as
BN

Gsys :(Nsys ’ A ) ’ where Nsys = Np:l

represents the set of all BN conveyor nodes, and
A denotes the set of directed edges representing
scheduling dependelncies. If device p transfers

material to device q, a directed edge (N, > N,)

is created. The edge weight @,, is dynamically
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generated based on feature similarity or
scheduling relevance. In this paper, the edge
weights are computed as:

:MLP([NP,NJ) (17)

Where [.] denotes feature concatenation and

MLP () is a multi-layer perceptron used to
learn the latent relationship strength between
nodes.

The entire system graph Gsys is input to a
graph neural network ( f;y ) for joint modeling.
The initial node feature matrix is denoted as

N eRMXd

sys
Each node includes both speed and visual
embedding features.
The graph convolutional update process is
defined as:
S}I:l fow(G N )::O-(D, 1/2‘4, D' 2N

LD NI (18)
Where Asys = Asys +

is the adjacency matrix

with self-loops, D;ys is the corresponding

1
Active(vi) = { ’ 0

Based on this rule, the active node set V., and

inactive node set V., are determined, resulting
in an initial speed-driven subgraph partition.

Image Subgraph Density-Aware Analysis For
each conveyor belt’s corresponding image

subgraph G | we compute the number of

nodes ni and the inter-frame variation rate Avar .

If the following condition is met:
n>06 orA, >0, 21)

The complete graph structure is preserved.

Otherwise, the subgraph is subject to
compressed modeling.

3.2.3 Multi-strategy  graph  compression
modeling

Based on the previously described region
partitioning, the device system graph Gsys is

divided into two types of subgraphs:
Active region subgraph: G, =(N,.E,,).

act

Inactive region
Ginact ( N Emact )

inact ®
Here, N,

active and inactive nodes,

subgraph:

and NV, represent the sets of
respectively, and
E, . and E, , are the corresponding edge sets.
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, where M is the number of devices.

v, <0, and operating under noload

degree matrix, () is the learnable weight at

layer / , and O () is a non-linear activation

function.
A READOUT operation is applied to obtain
the global system-level state embedding'

2, = READOUT (V1)) (19)

Where READOUT (-) is implemented using
mean pooling. The resulting vector ¥SVS serves
as the input for the subsequent scheduling
control module.

3.2.2 Dynamic topology partitioning strategy

To enhance the responsiveness of the system
graph structure to operational activity, As shown
in Fig 1-B-3, we introduce a dualcriterion
strategy based on speed awareness and subgraph
density  perception for dynamic  graph
partitioning:

Speed-Based Subregion Partitioning Let 6Ov
denote the activity threshold. For each node vi,
the activity status is defined as:

if v, > 0 or locate data scheduling boundary

(20)

To reduce the modeling complexity in inactive
regions, we apply a differentiable graph pooling

mechanism—DiffPool [24]—on G,

inact >

enabling
joint structural and semantic compression.

Let the node feature matrix of G,,,, be Ninact
€ RNxd and the adjacency matrix be Einact €
RY*N . DiffPool uses two graph neural networks:

A GNN to generate the node-to-cluster
assignment (soft pooling matrix):

S GNNpool (Nmmt ’Emant ) R K H (22)
A GNN to extract node embeddings:
mact = GNNembed (Ninact ’Eimlct )E R NXd” (23)

The super node features and their new

connectivity are updated as:
Nier =S Zipug €R™024)

inact
mact S Emacts € RKXK (25)

Where, N, mace TEPresents the compressed super
node features, and Emm represents the
corresponding  adjacency  structure.  This

mechanism supports end-to-end training and
effectively preserves both structural and
semantic information.

Finally, the full structure of the active region
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G,.. and the compressed representation of the

L
inactive region ( IV, E,, .. ) are combined to

inact >
generate the nested

embedding:

system graph state

Graer = (Ninaers Einaer ) (26)

3.2.4 Cross-scale nested graph construction
Based on the compressed graph embedding

Ginact | the final optimized system graph is

constructed as:

Gs'ys = (Gact o G E’) (27)

inact >

Where, E' includes the original connections
within the active region and additional cross-
layer edges between the virtual super nodes

(from G,,,,) and real nodes (from G, ).

This cross-scale nested structure preserves
topological completeness while achieving
representational compression. It serves as the
final input to the reinforcement learning module
for scheduling policy optimization:

2 finat = Somn (G;ys ) (28)

3.3 Graph-Embedding-Based Reinforcement
Learning Scheduling and Closed-Loop Online
Optimization

As shown in Fig 1-C, to optimize scheduling in
conveyor systems under complex topologies and
dynamic task conditions, we formulate the
scheduling control problem as a Reinforcement
Learning (RL) task. A closed-loop control
framework is designed based on graph-
embedded system states, policy generation, and
real-time feedback. The system takes the global
state embedding extracted via a graph neural
network as input, generates speed control actions
through a policy network, and continuously
improves the scheduling strategy using feedback
rewards—thus forming a closed-loop of state
perception — policy decision — feedback
learning for intelligent scheduling.

3.3.1 Problem formulation: RL-based MDP
definition

We model the conveyor scheduling process as a
Markov Decision Process (MDP), defined by the

5-tuple (S,A,P,R,}/), where:

State Space S: The system state S, eR? s
represented by the global graph embedding
2 fina Obtained from the GNN, which integrates
device topology, visual features, and historical
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speed information:
St = 2 finar 29)

Action Space A: The action @ €R1 represents
the speed configuration of n conveyor belts:

a, = {Vlt’V2t>'“>vnt} (30
Probability ~ P(s,,,|s,,qa,)
Determined by the dynamics of the physical
system, including transport delays, material
accumulation, and execution noise. These are
difficult to model explicitly and are
approximated implicitly through reinforcement
learning.

Reward Function R(s,,a,) :

alignment between scheduling actions and
recommended speeds, defined as:

n 2
I = _Zi=1(vit _vi,t) (31)

Where, v} is the recommended speed for belt i,

Transition

Encourages the

derived from wvisual estimation and load
expectations. A material accumulation detection
module is introduced to assess blockage risks on
the belt. The detection function is defined as:

. A,
Pile,’:{ i >5}, 5€(0,1), (32)

i
total

Where A}é is the foreground (material) area,
and A,’;,,a, isthe total area of the image. [ [] is

the indicator function. When Pile, = 1, it

indicates a risk of material accumulation.
The recommended speed is adjusted based on
the pile-up status:

, min (v, v, if  Pile] =0 1

v,' = . .
’ A-vie if  Pile =1,4<(0,1) (33)
Where V) is the recommended speed, vsis is the

historical stable speed, v\'“ is the maximum
allowable speed, and A is a slowdown factor
applied under pile-up risk.

Discount Factor 7 : Reflects the decay of future
rewards, set as ¥ =0.95,

3.3.2 Policy function modeling and network
architecture
The reinforcement learning policy function

7y(a, |s,) is implemented using a multi-layer

perceptron (MLP) with the following structure:
Input layer: The input is the system state vector

steRd.
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Two hidden layers: Each consists of ReLU
activation and Batch Normalization modules.

Output layer: Applies the tanh activation
function to produce normalized actions

a e(-L1)".

Action Mapping and Clipping: The normalized
action a, is then mapped to the actual velocity
range and clipped to satisfy system constraints:

: vm — vmir vm +v in
ar = Cllp “ - ar, + “ 2 = 3 Vmin’ vmax] (34)
Here, v,;,, and Vv,,  denote the system’s

minimum and maximum allowable speeds,

respectively.
The final output of the policy network is the
speed control action:

a, =7, (s,) (35)
3.3.3 Policy optimization algorithm: PPO-based
training mechanism
We adopt the Proximal Policy Optimization
(PPO) algorithm to train the policy network. In
each training iteration, the agent interacts with
the environment to collect a trajectory

(St,a,,f’,,Sm) . The advantage estimate AE, is
used to construct the PPO loss function:

Liyy = E, [ min(p, (0)x AE clip (p, (0),1-Thold, 1+ Thold WK AE, )| (36)

Vg
Where, 2, (9 ) :% is the probability
Ha,d tt

ratio between the new and old policies, and
Thold is the clipping threshold to ensure stable
training,.

To estimate the long-term return from each state,
we introduce an independent Critic network

V, (St) to learn the value function. The Critic is

implemented as a two-layer MLP, and the loss is
defined as:

Lo = E, [(V¢ (s,)-R, )2} (37)

T—t i .
Where R, = leoy (r,”) is
cumulative return.

The advantage function is computed using
Generalized Advantage Estimation (GAE):

At’ = ZIT:_(;}/I (’;Jrl + ]/V (SHHI)_V (SHI )) (38)
Where V(S,):V¢ (St)

predicted by the Critic.

3.3.4 Online deployment
feedback optimization

As shown in Fig 1-C-3, the trained policy is
deployed in the control module and executed in
a loop with a cycle of 1-60 seconds, performing
the following closed-loop steps:

State Perception: The visual sensing module
continuously captures images, estimates belt
speed and load, performs material pile-up
detection, constructs the system graph Gt, and
extracts the current state st.

Policy Decision: The policy network generates
the corresponding speed control action at.

Action Execution: The control command is sent
to the equipment controller via the Modbus

the actual

is the state value

and closed-loop
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communication bus.
Reward Feedback: The reward rt is calculated
based on the deviation between the executed
action and the recommended speed.

Policy = Update: The experience

(st,at,rt,sm) is stored in a buffer. PPO is used

to periodically update the policy parameters.
Safety Mechanism: If abnormal outputs from the
policy are detected, a fallback strategy is
triggered (e.g., static speed or manual override).
This scheduling approach effectively integrates
graph-based modeling with reinforcement
learning, enabling structure-aware, adaptive, and
online-optimized control, and is suitable for
multi-device collaborative scheduling scenarios.

tuple

4. Experiments

4.1 Experimental Setup

4.1.1 Experimental platform and environment
configuration

The proposed method was validated on the
following experimental platform: the computing
setup includes an Intel Xeon 6226R processor,
128GB RAM, and an NVIDIA RTX 3090 GPU.
The software environment consists of Python 3.9,
PyTorch 2.0, and the DGL framework for model
training and inference.

The control system is built on a PLC
communicating via the Modbus TCP protocol,
with industrial-grade servo drives executing
control commands. The visual sensing system
uses a Basler acA1920-40gc industrial camera,
capturing at 30 FPS, with a calibrated
measurement accuracy of 0.2 mm.

4.1.2 Dataset and evaluation metrics

Dataset: A real-world dataset was collected by

http://www.stemmpress.com



22 Journal of Engineering System (ISSN: 2959-0604) Vol. 3 No. 3, 2025

deploying sensors and industrial cameras on a
factory production line. It includes 30 hours of
conveyor system operation, with scheduling
records covering 8 conveyor belts, 104 task
transitions, and nearly 50,000 image frames.
Evaluation Metrics: Mean Squared Error (MSE)
of Speed: Measures the deviation between the
control output and the target speed; Control
Latency: The average time from issuing a
control action to observing the corresponding
acceleration/deceleration on the belt; Makespan:
The total time required to complete a batch of
tasks under each scheduling method; Action
Stability: The standard deviation of speed
changes across successive control actions,
indicating the smoothness of the policy output.

4.2 Baseline Methods
To comprehensively evaluate the performance of
the proposed method, we compare it against four

representative baselines: Rule-Based Baseline
(RB): A manually designed control strategy
using fixed-speed rules based on expert
experience. Traditional Reinforcement Learning
(DON): A Deep Q-Network-based approach
using the mean pixel intensity of images as the
input state representation. GNN-RL without
Graph Structure: A method that uses global
feature vectors without explicit graph modeling,
combining GNN-based representation with PPO
training. GNN-Vision-RL (Ours): The full
proposed framework that integrates vision-based
graph modeling and graph neural reinforcement
learning.

4.3 Quantitative Results and Analysis

Table 1 shows the comparison results of
different methods across all evaluation metrics
on the test set.

Table 1. Performance Comparison on the TestSet

Method MSE | Latency/ms | Makespan/s | Stability |
RB 0.043 124 923.1 0.037
DQN 0.028 96 845.6 0.025
GNN-RL 0.023 89 818.3 0.021
GNN-Vision-RL (Ours) 0.011 62 776.5 0.014

The results demonstrate that our proposed
method outperforms all baselines across the
board, particularly in terms of speed control
accuracy (MSE) and task completion time
(Makespan). These improvements highlight the
effectiveness of visual subgraph modeling and
dynamic graph compression in enhancing both
the stability and responsiveness of the
scheduling policy.

4.4 Visualization and Ablation Study

4.4.1 Policy output visualization

Fig.3 illustrates the variation trends of target
conveyor belt speeds over time under different
scheduling strategies within a typical task-
switching interval. To simulate the system’s
response to sudden task changes, the interval
from t = 20 to 40 seconds (highlighted in gray) is
selected as the disturbance window. We
compare each method’s ability to adjust speeds
during abrupt state transitions and evaluate
system recovery behavior.

As shown in the Fig. 3, the traditional Rule-
Based control strategy lacks global awareness of

system state and relies solely on fixed thresholds.

This results in slow responses and delayed speed
adjustments when a task change occurs, making
it unsuitable for fine-grained control.

http://www.stemmpress.com

The DQN method demonstrates some ability to
adjust dynamically; however, since its state
input is limited to local statistical features, it
cannot model inter-device structural
dependencies. This leads to significant speed
oscillations and instability in response to task
disturbances.

The GNN-RL method incorporates graph
structural information into its modeling, which
allows for better representation of device
connections compared to DQN. As a result, it
achieves faster and smoother speed adjustments.
Nonetheless, its reliance on static state inputs
without fine-grained visual perception causes
noticeable fluctuations during task disturbances,
and its recovery speed is slightly inferior to our
method.

In contrast, the proposed GNN-Vision-RL
approach can quickly detect and respond to state
changes by jointly modeling visual subgraph
embeddings and the system- level graph
structure. This significantly enhances the
precision of scheduling policy under complex
task transitions. The resulting speed curves are
smoother, more continuous, and exhibit faster
recovery, clearly outperforming the other
methods. These results validate the proposed
method’s  advantages in  responsiveness,
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robustness, and overall stability under dynamic
scheduling scenarios.

4.4.2 Module ablation study

To verify the importance of each component in
the proposed scheduling system, we conduct the
following ablation experiments:

No Graph Modeling: The device system graph is
removed. Global features are computed using
average pooling over image features only.

No Compression Mechanism: The system graph
is constructed as fully connected, without
applying dynamic topology partitioning or graph
compression.

No Visual Perception: Visual subgraph
embeddings are replaced with values from

dynamic perception capability enabled by vision.
As shown in Table 2, removing individual
modules results in performance degradation,
confirming the necessity of subgraph modeling,
topology partitioning, and the nested graph
structure.

Speed Response of Different Strategies During Task Switching

Task Switch Interval |
GNN-Vision-RL (Ours)
GNN-RL

DQN

Rule-Based

18

9 S

Target Speed (m/s)

°

0.6

[ 10 20 40 50 60

30
Time (s)

Figure 3. Comparison of Target Speed

conventional speed sensors, removing the Curves during Task-Switching Intervals
Table 2. Ablation Study Results
Configuration MSE Makespan/s Stability

GNN-Vision-RL (Ours) 0.011 776.5 0.014

w/o Visual Perception 0.019 812.3 0.020

w/o Graph Modeling 0.022 837.7 0.026

w/o Compression 0.017 791.4 0.019
The results validate the effectiveness of the reinforcement learning approaches in terms of
proposed scheduling optimization framework in scheduling responsiveness, speed control

improving response speed, control precision, and
system stability. The integration of visual
perception and graph modeling provides a
structured representation of system states, while
reinforcement learning—supported by dynamic
topology adaptation and online feedback—offers
strong adaptability for complex scheduling tasks.

5. Conclusion

This paper addresses the problem of scheduling
optimization for conveyor systems under multi-
device coordination and dynamic task changes.
We propose a novel method that integrates
visual perception, graph neural network
modeling, and reinforcement learning for
dynamic scheduling. Specifically, the system
uses non-contact industrial cameras to capture
image sequences and construct temporal
subgraphs for speed estimation and state
modeling. A system-level graph is then built
based on scheduling dependencies between
devices, and amultilayer graph neural network is
used to extract a topology-aware global state
embedding. Finally, a reinforcement learning-
based policy network is constructed, forming an
adaptive closed-loop control framework with
online visual feedback and reward evaluation.
Experimental results demonstrate that the
proposed method outperforms both traditional
rule-based strategies and mainstream deep

Copyright @ STEMM Institute Press

accuracy, and overall system stability. In
scenarios involving frequent task switching and
state disturbances, our method shows superior
robustness and generalization capability. Future
work will explore extensions such as multi-task
scheduling under complex working conditions,
self-recovery mechanisms for device failures,
and integration with higher-level MES
(Manufacturing Execution Systems), aiming to
facilitate practical deployment in industrial
conveyor and manufacturing systems.
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