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Abstract: Industrial inspection, a core
component of manufacturing quality control,
is undergoing a profound transformation
driven by artificial intelligence (AI),
particularly multimodal large models. The
study systematically examines the
technological evolution of AI-enabled
industrial inspection. It evaluates its
contributions to efficiency improvement,
accuracy enhancement, cost optimization, and
process restructuring from the dual
perspectives of “value creation” and
“potential risks.” Key challenges related to
data security, model reliability, deployment
costs, and talent shortages are also identified.
On this basis, targeted development strategies
are proposed across technological, economic,
human resource, and standardization
dimensions. The study aims to provide both
theoretical support and practical guidance for
implementing large AI models in industrial
inspection and promoting industrial
upgrading.
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1. Introduction
With the acceleration of global industrialization,
the manufacturing industry faces unprecedented
challenges and opportunities. The rapid
development of intelligent and automated
technologies has positioned production
efficiency and product quality as key factors in
determining enterprise competitiveness.
Industrial inspection, a critical component of
quality control, has long been hindered by
inefficiency, limited accuracy, and high
subjectivity under traditional approaches[1].
Conventional inspection methods are
increasingly inadequate with increasing product

diversity, the growing complexity of
manufacturing processes, and heightened
precision requirements in high-end industries.
The emergence of AI—particularly multimodal
technologies—provides new pathways for
industrial inspection, enabling a paradigm shift
toward high efficiency, high precision, and
intelligence.

2. Adaptation Challenges of Traditional
Industrial Inspection Methods
Traditional industrial inspection relies on manual
quality control and basic automated inspection,
which face significant limitations (see Table 1).
Manual inspection depends on workers’ visual
judgment or simple tools to identify defects.
While intuitive and flexible, it is constrained by
human speed and endurance, making it
unsuitable for large-scale production. Fatigue
during prolonged shifts and variability in
subjective judgment increase the risks of
misclassification and missed defects. Moreover,
manual inspection requires substantial labor
investment, and training skilled workers is time-
intensive[2].
Basic automated inspection, which employs
sensors, optical instruments, and elementary
vision systems, offers improved efficiency and
consistency over manual methods but remains
restricted to predefined defect types. Its
performance is inadequate for products with
complex geometries or diverse materials.
Additionally, when production lines change or
processes are upgraded, these systems cannot
autonomously adapt. Instead, algorithms must be
redesigned, resulting in low development
efficiency, long debugging cycles, and
significant constraints on production flexibility
and scalability.

3. Implementation Path of Large AI Models
Empowering Industrial Inspection
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Implementing large AI models in industrial
inspection follows a six-step approach:
“Requirement-Data-Technology-Integration-
Verification-Deployment”(see Figure 1). Each

phase is tightly interconnected, leveraging the
large model's capabilities in few-shot learning
and multimodal fusion to overcome challenges
in industrial deployment[3,4].

Table 1. Challenges of Traditional Inspection Method
Challenge Core Issues Negative Impact

Limitations in
Detection
Capability

1. Manual inspection relies solely on the
human eye, resulting in weak detection

capability.
2. Basic automated inspection only supports

pre-defined defect types.

1. Defective products enter the market,
leading to increased customer complaint rates.

2. Loss of high-end orders, confining
enterprises to low value-added production

segments.

Low
Inspection
Efficiency

1. Manual inspection is slow, often limited to
sampling, resulting in incomplete quality

coverage.
2. Line changeovers for basic automated

inspection require algorithm redesign, leading
to lengthy debugging cycles.

1. Production line capacity is constrained, and
delivery cycles are prolonged.

2. High risk of batch defects, easily triggering
customer claims.

Poor
Inspection
Accuracy

1. Manual inspection accuracy is unstable,
influenced by experience and fatigue.

2. Basic automated inspection lacks sufficient
accuracy for complex scenarios.

1. Low pass rates for high-end products,
leading to increased production costs.

2. Potential safety hazards in sectors like
aerospace and automotive.

Poor
Objectivity

1. Manual inspection is highly subjective.
2. Basic automated inspection, while

somewhat objective, lacks unified judgment
standards.

1. Inconsistent quality standards across
multinational factories.

2. Difficulties in adapting to upstream and
downstream supply chain requirements.

Weak
Generalization
Capability

1. Manual inspection has high missed
detection rates for new defect types.

2. Basic automated inspection has narrow
applicability; line changeovers are costly, and
it lacks defect cause analysis and decision-

making capabilities.

1. Low production line changeover efficiency,
causing delays in the global supply chain.
2. Lagging process optimization, leading to

recurring batch defects.
3. Rising labor costs compress corporate

profits.

Information
Silos

1. Inspection, process, and maintenance data
exist in isolation, lacking interoperability.

2. Information flow is inefficient, resulting in
long problem response times.

3. Lacks closed-loop capability for
"identification-improvement".

1. Multinational corporations face significant
challenges in quality control due to
difficulties consolidating global data.

2. Slow fault localization leads to extended
equipment downtime.

3. Severe production waste and increased
product scrap rates.

3.1 Requirement Analysis and Scenario
Definition
complex defect recognition challenges—and
quantify objectives (e.g., achieving 99.5% defect
detection accuracy)[5]. Large AI models parse
process documentation and expert knowledge,
converting tacit insights into structured
information to guide subsequent phases[6].

3.2 Data Collection and Preprocessing
Multi-source data—including product images
and production parameters—is gathered via
industrial cameras and sensors. Large-model
few-shot learning and AIGC technologies
mitigate the shortage of real defect data[7].

3.3 Technical Solution Selection and Model
Training
The corresponding author should have an
asterisk. Select a suitable large model (e.g.,
DeepSeek-VL2) based on the application
scenario. Combine transfer learning and fine-
tuning techniques to train the model using
preprocessed data. The large model's multimodal
fusion capability integrates data such as images
and process parameters. The general knowledge
accumulated during pre-training significantly
reduces the required training sample size,
enabling the model to rapidly acquire core
detection capabilities[8].

3.4 Hardware and System Integration
Deployment
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Based on production line requirements for
detection latency, deploy the model either at the
edge (enabling millisecond-level real-time
detection) or in the cloud (supporting multi-line
collaboration and model iteration). Integrate the
AI inspection system with production line MES,
ERP, and other systems to enable real-time
feedback of inspection results to production
control terminals, forming an automated
“inspection-production adjustment” closed
loop[9].

3.5 Testing, Validation, and Iterative
Optimization
Conduct small-batch production line testing to
verify whether the model's defect recognition
accuracy and detection speed meet expectations
in real-world conditions. Address issues like
missed detections or misclassifications by
adjusting model parameters based on production
feedback and supplementing targeted data,
iterating continuously until standardized
detection results are achieved[10].

3.6 Scalable Promotion and Continuous
Improvement
Following successful validation in a single
scenario, horizontally expand AI inspection
capabilities to similar production lines or
different products. Vertically deepen the large
model's generalization and autonomous learning
abilities by integrating more scenario data to
enhance the model. Drive continuous upgrades
to the inspection system, extending value across
the entire factory and even the industry[11].

Figure 1. Implementation Path of Large AI
Models Empowering Industrial Inspection

4. Core Value of Large AI Models in
Industrial Inspection (Positive Impacts)
Large AI models reshape industrial inspections'
technical logic and value chain, delivering
systematic improvements across four core
dimensions: efficiency, accuracy, cost, and
process (see Table 2). This approach not only
overcomes the technical limitations of traditional
inspection methods but also leverages

autonomous learning and end-to-end data
integration capabilities to elevate industrial
inspection from an “isolated process” to an
“intelligent hub.”

4.1 Efficiency Improvement: Breaking
Manual Speed Limits, Ensuring Continuous
Production Line Operation
An AI model-driven industrial inspection
significantly boosts the production line's
inspection processing speed and stability.
Leveraging high-speed data mining capabilities,
it performs parallel analysis on massive datasets
collected by inspection equipment, processing
vast amounts of inspection data at speeds far
exceeding human capacity. This enables 24/7
uninterrupted operation, eliminating efficiency
fluctuations caused by human fatigue. Large AI
models' autonomous adaptation capabilities and
few-shot learning mechanisms drastically
shorten the model deployment cycle for new
equipment and processes. This reduces
inspection downtime during production line
switches, further boosting overall manufacturing
efficiency and aligning with the high-speed and
flexible demands of modern manufacturing[12,13].

4.2 Accuracy Breakthrough: Enhancing
Defect Recognition and Tightening Quality
Control
Large AI models integrate multi-source data—
including visual, spectral, and sensor inputs—to
construct comprehensive defect feature maps,
effectively circumventing information blind
spots inherent in single-data-modality
approaches. Simultaneously, integrating super-
resolution technology with advanced visual
algorithms enables precise capture of micron-
level and even sub-micron-level features. This
resolves the missed detection issues of
traditional inspection methods for defects such
as microcracks and minute deformations,
establishing stricter, all-dimensional control over
product quality. This capability suits high-
precision industries like semiconductors and
aerospace[13,14].

4.3 Cost Optimization: Dual Advantages of
Reducing Global Enterprise Expenditure
Large AI models optimize industrial inspection
cost structures through reduced data
requirements and labor expenditures. Regarding
data needs, vision models based on Transformer
architectures (e.g., MetaSAM2) support few-shot
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learning, reducing required defect recognition
samples by 90%. This significantly shortens
model training cycles while minimizing
enterprise time and labor costs for data
annotation. Regarding labor costs, AI systems
can replace manual repetitive inspection tasks,
reducing the need for dedicated quality
inspectors while eliminating scrap costs caused
by human misdetections or missed defects.
Furthermore, large models' autonomous learning
capabilities reduce manual intervention costs in
subsequent model iterations, further compressing
long-term operational expenses[13].

4.4 Process Restructuring: Upgrading from
"Single Defect Recognition" to "Full-Process
Quality Management"
Large AI models possess autonomous learning,

optimization, and decision-making capabilities.
They rapidly adapt to new inspection
requirements in small-sample scenarios,
dynamically adjust recognition strategies based
on inspection data, generate real-time quality
reports, and provide data insights for production.
By leveraging large models, enterprises can
establish unified fault knowledge bases and
knowledge graphs that integrate inspection data,
production process parameters, and equipment
maintenance records. This enables real-time
defect determination and automated generation
of diagnostic reports and fault solutions. These
provide precise guidance for production process
optimization and equipment preventive
maintenance, achieving a closed-loop
“inspection-analysis-improvement” process[13,15].

Table 2. Positive Impacts of AI Large Models on Industrial Inspection
Impact

Dimension Core Technical Support Typical Cases

Efficiency
Improvement

High-speed data processing, 24/7
uninterrupted operation, self-adaptation

to production lines

European forestry giant Södra has adopted an AI
strength grading scanner capable of inspecting 240

boards per minute, significantly enhancing
production efficiency.

Accuracy
Breakthrough

Deep learning feature capture, micron-
level recognition, multimodal data fusion

Siemens, in collaboration with Dazhi Technology,
has deeply integrated AI models with industrial
edge platforms, increasing defect recognition

accuracy from 90% to over 99%.

Cost
Optimization

Labor replacement reducing salary
expenses, few-shot learning lowering

data costs, full inspection reducing waste
costs, open-source ecosystem lowering

barriers

Schaeffler's AI bearing inspection checks 80,000
bearings daily, compatible with over 20 models,

saving 80% in labor costs.

Process
Restructuring

Fault knowledge base construction, self-
learning/optimization/decision-making,
autonomous diagnostic report generation

At BMW Group's Regensburg plant, an AI-
powered paint inspection line autonomously

detects paint defects, classifies them, and triggers
automated handling processes, achieving
unprecedented levels of paint quality.

5. Potential Risks of Applying AI Models in
Industrial Inspection (Negative Impacts)
While large AI models bring technological
innovation to industrial inspection, they face
four common cross-border challenges: data
security, model reliability, cost pressures, and
knowledge/talent barriers (see Table 3). These
challenges stem from inherent conflicts between
technical characteristics and industrial scenarios
and are also constrained by external factors such
as uneven global industrial development and
inconsistent regulations. They impose
differentiated pressures on enterprises of varying
scales and locations[16].

5.1 Data Security and Privacy Risks: The
Conflict between Sensitive Data Flow and
Security Requirements
Data security and privacy risks represent the
primary barrier to implementing AI in industrial
inspection. Industrial inspection data
encompasses core process parameters and
product design details, forming the bedrock of
corporate competitive advantage[17]. However,
large model iteration relies on data feedback,
and its collection and transmission involve
substantial sensitive information regarding
production processes and product quality. This
risk is particularly heightened in cross-border
inspection workflows, where data traverses
multiple stages—collection, annotation, and
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cloud-based training—significantly increasing
the probability of leakage. Additionally,
different countries have established data security
regulations, such as the European Union’s
General Data Protection Regulation (GDPR),
and the varying requirements of these data
regulations make it easy for AI models to violate
rules when processing data across borders. This
forces multinational corporations to balance the
security baseline of "data not leaving the
factory" with the efficiency requirement of
"model iteration requiring data." While opting
for on-premises deployment ensures security
through physical isolation, it sacrifices large
models' learning and iterative capabilities.
Choosing cloud collaboration, on the other hand,
exposes companies to data leakage risks.

5.2 Model Reliability Gap: Disconnect
Between Laboratory Performance and
Industrial Environments
AI model reliability exhibits a significant gap in
industrial “zero-tolerance” scenarios. Industrial
inspection demands extreme accuracy, yet large
models' decision-making processes possess
“black-box attributes,” making it impossible to
trace the logical chain behind “why a defect was
identified.” Once misjudgments occur,
enterprises struggle to pinpoint the root cause.
Moreover, incomplete data or environmental
interference can trigger “AI hallucinations,”
generating seemingly plausible yet inaccurate
results. However, the diversity of global
geographical environments and complex
industrial interferences (e.g., high temperatures,
dust, voltage fluctuations) can cause sharp
performance declines. Open-source models
suffer even worse adaptability, failing to meet
diverse global industrial scenarios across regions
and sectors[3].

5.3 Cost Pressure: High Initial Investment
and Long-Term Maintenance Challenges for
Widespread Adoption
Cost pressure remains the primary barrier to
widespread adoption of AI industrial inspection,
significantly impacting SMEs and enterprises in
developing nations. Initial deployment requires
hardware such as industrial cameras, GPU
servers, and robotic arms, alongside costly
integration and modification of existing
production lines. Long-term maintenance costs
include annual fees for high-end GPU servers,
replacement expenses for industrial camera

lenses (every 2-3 years), and yearly commercial
software licensing fees, resulting in substantial
cumulative expenditures. This cost burden leads
to a “head-heavy” distribution in global AI
inspection adoption rates.

5.4 Knowledge and Talent Barriers: Difficulty
in Converting Tacit Knowledge and
Imbalance in Talent Supply and Demand
Knowledge and talent barriers hinder the
advancement of AI industrial inspection toward
deeper applications, manifesting in two primary
ways. First, tacit knowledge is difficult to
structure: AI models' deep decision-making
relies on tacit knowledge within industrial
domains. However, this knowledge often exists
as the experience of senior engineers and cannot
be converted into structured data for model input.
Consequently, models can only identify defects
but cannot assess risks or guide process
optimization. Second, There Is a Shortage and an
Imbalanced Distribution of Interdisciplinary
Talent. Technological advancements have
created a demand for "AI + industry"
interdisciplinary talent, but traditional workers'
knowledge structures are often rigid and
challenging to transform. Meanwhile, most high-
end talent chooses to work for European and
American companies, leading to a severe "brain
drain" in developing countries and further
exacerbating the imbalance between talent
supply and demand. [18].

5.5 International Technology Barrier Risks:
Technological Blockades Widen the Global
Inspection Capability Gap
International technology barriers are becoming a
critical obstacle for developing countries seeking
to deploy advanced AI inspection technologies.
Technologically leading nations can impose
control lists restricting the export of AI-related
models, software, and hardware through
differentiated policy systems. They can even
extend their jurisdictional reach, requiring
licenses for models developed overseas if they
utilize underlying algorithm frameworks or
computing power support from these countries.
Furthermore, technologically advanced nations
are embedding implicit controls within open-
source ecosystems. Even if basic models are
made available, their licensing terms may
mandate that "training data must be transmitted
in real time to servers in the country of origin" or
use "data fingerprinting" technologies to track
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the actual application scenarios of models in developing countries.
Table 3. Negative Impacts of Large AI Models on Industrial Inspection

Challenge Dimension Core Theoretical Support Typical Cases

Data Security and
Privacy Risks

Cross-border multi-stage flow of
sensitive data, conflicts in global
data regulations, balance between

security and efficiency

1. Samsung experienced a leak of chip secrets due
to the use of ChatGPT.

2. According to guidelines issued by the
European Data Protection Board (EDPB), the
determination of cross-border data transmission
requires that both the data exporter (controller or
processor) be subject to GDPR jurisdiction.

Model Reliability Gap

Discrepancy between lab and
field environments, AI

hallucinations, poor adaptability
of open-source models

The hallucination rate of GPT-5-thinking-mini is
22%.

Cost Pressure
High initial deployment costs,

long-term maintenance expenses,
limited affordability for SMEs

NVIDIA's reference design AI server based on
the Blackwell architecture, the NVL36 equipped
with 36 B200 GPU accelerators, is priced at

approximately $2 million.

Knowledge and Talent
Barriers

Difficulty in structuring tacit
knowledge, imbalance in

interdisciplinary talent supply and
demand, industrial technology

gap

A report titled "The State of AI Talent 2025"
released by UK data company Zeki shows that
there are 800,000 top AI talents globally (outside

of China).

International
Technology Barriers International Technology Barriers

In January 2025, the United States introduced the
"AI Diffusion Rule," implementing a three-tier

licensing system to restrict the export of chips and
model weights. However, due to industry

opposition and high complexity, the rule was
abolished in May of the same year. Nevertheless,

the Bureau of Industry and Security (BIS)
indicated that it might reintroduce the policy in

the future, emphasizing the necessity of
controlling model weights.

6. Development Suggestions and
Countermeasures
To more efficiently advance the implementation
of large AI models in industrial inspection, it is
recommended that key challenges—including
security risks, excessive barriers to entry,
capability mismatches, and regulatory gaps—be
addressed by focusing on four core dimensions:
technology, cost, talent, and standards. This
approach will ensure the full realization of the
value of large AI models within industrial
inspection scenarios.
Regarding technological optimization, focus
should be placed on enhancing reliability and
security[4]. To address data security challenges, a
full-chain protection system should be
established. A global joint training framework
for industrial inspection data based on federated
learning and homomorphic encryption should be
developed to achieve "data usability without
visibility." Enterprises in different countries can

retain local data ownership while participating in
model iteration through parameter sharing,
avoiding compliance risks associated with cross-
border data transmission. The "Global Industrial
Inspection Data Security Guidelines" should be
formulated to unify data classification standards
(e.g., "core process data" and "general quality
data") and cross-border flow procedures,
reducing compliance costs for enterprises. To
tackle insufficient model reliability, explainable
AI modules should be developed, using
visualization tools to display feature weights and
logical chains for defect determination, enabling
enterprises to trace the root causes of
misjudgments. Additionally, dynamic
environment adaptive algorithms should be
created, leveraging sensor data such as
temperature, humidity, and lighting to adjust
model parameters in real time, enhancing
robustness against complex industrial
interference and bridging the gap between
laboratory performance and field applications.
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Regarding cost management, we recommend
establishing a “low-barrier, high-efficiency”
implementation pathway[19]. Adopt a “priority-
driven” phased deployment strategy, guiding
enterprises to apply large AI models to high-risk,
high-return inspection tasks (e.g., detecting
minute defects in precision components). After
demonstrating effectiveness through single-point
validation, gradually expand deployment across
entire production lines to balance short-term
investment with long-term returns. Advance
lightweight model technologies to reduce
parameter sizes through pruning, quantization,
and knowledge distillation. This enables
adaptation to mid-to-low-end GPUs or edge
computing devices, lowering hardware barriers.
Enhance open-source toolchains by providing
standardized model fine-tuning templates,
industrial data preprocessing plugins, and
troubleshooting manuals. This reduces
enterprises' technical and time costs for
independent development, empowering SMEs to
efficiently reuse mature technologies.
Regarding talent cultivation, we recommend
building a composite “AI + Industry”
competency pipeline3. Promote deep integration
between the education system and industrial
scenarios, and foster global collaboration in
educational resources. Courses such as "AI
Industrial Inspection Scenario Applications,"
"Industrial Data Annotation Standards," and
"Model Performance Evaluation Methods"
should be added to traditional industrial
engineering and automation programs to
cultivate talent with both industrial process
knowledge and AI technical skills. Enterprises
should be encouraged to conduct internal tiered
training for traditional quality inspectors. An
international talent certification mutual
recognition mechanism should be established:
led by the International Organization for
Standardization (ISO), the "Global AI Industrial
Inspection Talent Competency Standards"
should be developed to standardize competency
evaluations and ensure a precise match between
talent skills and job requirements. [20].
Regarding standardization, we recommend
establishing a unified application specification
system[3]. Establish Global Performance
Evaluation Standards for AI Industrial
Inspection Systems, led by ISO, these standards
should define testing methods and thresholds for
core metrics such as accuracy, response time,
and robustness, preventing enterprises from

making erroneous technology selections due to
"ambiguous standards." Global annotation and
formatting guidelines for industrial inspection
data should be developed, unifying standards for
defect classification, feature description, and
parameter recording to ensure data
interoperability and reuse across different
enterprises and scenarios, thereby improving
model training efficiency. Furthermore, a
knowledge base framework for common
industrial inspection defects should be
established, standardizing definitions of defect
characteristics, cause-effect correlations, and
solution descriptions to reduce redundant
development and adaptation costs in model
training and accelerate the technological catch-
up process for enterprises in developing
countries.

7. Future Outlook
The application of large AI models in industrial
inspection will transition from “deep
penetration” to “paradigm innovation,”
achieving breakthroughs in three key areas:
technological upgrades, comprehensive scenario
expansion, and value dimension
transformation[21]. This evolution will serve as
the core engine driving manufacturing's shift
from “passive quality inspection” to “proactive
quality control” and from “local optimization” to
“system-wide upgrades.”
From a technological perspective,
multidimensional integration will break
traditional inspection limitations[3,21]. Large AI
models will achieve deep coordination among
multimodal perception, generative intelligence,
and cross-technology linkage. They will
construct three-dimensional defect maps and
detect latent defects through microcurrents and
magnetic field variations by integrating visual,
acoustic, vibration, spectral, and environmental
parameters. Generative AI can automatically
generate highly realistic defect samples,
shortening adaptation cycles for new scenarios.
Large AI models will enable millisecond-level
closed-loop cycles for inspection, simulation,
and process adjustment when integrated with
digital twins, quantum computing, and brain-
computer interfaces. This approach not only
overcomes traditional computational bottlenecks
but also facilitates the conversion of engineers'
tacit knowledge. Concurrently, lightweight
modeling techniques will adapt large models to
mid-to-low-end edge devices, compressing
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inspection response times to sub-millisecond
levels and significantly reducing enterprises'
reliance on high-end hardware[12 21].
In terms of application scenarios, large AI
models will achieve comprehensive penetration.
Detection scopes will extend from internal
factory production lines to cross-border remote
inspection of raw materials in supply chains and
post-sales product maintenance fault diagnosis,
ultimately forming a holistic quality control
network. Detection processes will expand from
finished product defect inspection to include
upstream raw material quality prediction,
midstream production process monitoring, and
downstream inspection equipment health
forecasting, comprehensively covering the entire
product lifecycle. AI inspection technology will
also transcend conventional industrial
constraints, extending into extreme scenarios
such as chemical reaction product detection
under high-temperature and high-pressure
conditions, aerospace component inspection
amid substantial electromagnetic interference,
and unmanned inspection in nuclear radiation
environments. Furthermore, AI inspection will
accelerate its penetration into traditional
manufacturing sectors like ceramics and
hardware, enabling SMEs to deploy tailored
inspection systems without substantial
investment[3,12].
From a value perspective, large AI models will
elevate industrial inspection to serve as the
intelligent decision-making hub for
manufacturing[21]. The predictive decision-
making capabilities of large AI models will
significantly strengthen, enabling the early
anticipation of product quality trends and the
reverse guidance of product design processes to
mitigate quality risks at their source. Inspection
data will become a core asset in manufacturing
digitalization. Through analysis and integration
by large AI models, this data will be transformed
into high-quality decision-making references
such as supply chain quality assessment reports
and equipment health profiles, thereby driving
cross-enterprise and cross-regional quality
collaboration. Large AI models will ultimately
transform industrial inspection from an isolated
quality control step into a data-driven core
spanning the entire manufacturing chain,
providing critical support for the global
manufacturing industry's advancement toward
“zero-defect manufacturing” and
“intelligent manufacturing.”

8. Conclusion
As a core component of global manufacturing
quality control, industrial inspection is
fundamentally transforming from traditional
methods to an intelligent hub through large AI
models. Conventional inspection approaches
commonly suffer from low efficiency, poor
accuracy, and weak generalization capabilities,
making them ill-suited for complex
manufacturing demands. Leveraging core
features like multimodal fusion and few-shot
learning, large AI models deliver systematic
empowerment across efficiency gains, accuracy
breakthroughs, cost optimization, and process
restructuring, effectively overcoming traditional
limitations. However, applying large AI models
in industrial inspection still faces practical
challenges, including data security risks,
insufficient model reliability, high cost pressures,
and significant knowledge and talent barriers. It
is recommended that the practical difficulties in
implementing large AI models be addressed
through targeted strategies such as technological
optimization, cost control, talent cultivation, and
standard development. This will promote the
continuous deepening of technological
integration, the ongoing expansion of application
scenarios, and the accelerated realization of an
inclusive ecosystem.
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