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Abstract: Concrete strength is a core concrete specimen tests, which suffer from

indicator for evaluating the quality of
construction projects, and its accurate
prediction holds great significance for
engineering design and construction quality
control. However, traditional prediction
methods (e.g., empirical formulas and linear
regression) struggle to accurately capture the
nonlinear relationships between multiple
influencing factors and concrete strength.
This study proposes a concrete strength
prediction model based on Gradient Boosting
Regressor (GBR), systematically elaborating
its mathematical principles and parameter
design logic. Twelve key features—including
cement dosage, fly ash content, water-binder
ratio, and age—are utilized to construct the
prediction model. Through training and
validation on 131 sets of concrete mix
proportion and strength data from an actual
engineering project, the model demonstrates
excellent predictive performance: its
coefficient of determination (R?) reaches
0.9063, root mean squared error (RMSE) is
5.0697 MPa, and mean absolute error (MAE)
is 4.0340 MPa. The results indicate that the
established GBR model can effectively
capture the nonlinear relationships between
concrete components and strength, providing
a scientific basis for concrete mix proportion
design and a reference for similar nonlinear
prediction problems.
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1. Introduction

As one of the most widely used materials in
modern construction engineering, the strength
performance of concrete is directly associated
with the safety and durability of buildings [1].
Traditional  concrete  strength  prediction
primarily relies on empirical formulas and
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drawbacks such as long cycles, high costs, and
limited accuracy [2]. With the advancement of
artificial intelligence technology, machine
learning methods have exhibited significant
potential in the field of material performance
prediction. These methods can learn latent
patterns from historical data to achieve rapid
and accurate prediction of concrete strength [3].
In recent years, scholars at home and abroad
have attempted to apply various machine
learning algorithms to concrete strength
prediction. Approaches like Random Forest,
Support Vector Machine (SVM), and Artificial
Neural Network (ANN) have all achieved
favorable prediction results in relevant studies
[4-6]. As an ensemble learning method,
Gradient Boosting Regressor (GBR) iteratively
constructs multiple weak learners and combines
them with weights. It can effectively handle
nonlinear data and avoid overfitting, thereby
demonstrating unique advantages in regression
prediction tasks [7].

Based on concrete mix proportion and strength
data from actual engineering projects, this study
constructs a concrete strength prediction model
using GBR. Key influencing factors are
extracted through feature engineering, model
parameters are optimized, and the prediction
results are analyzed in depth to verify the
model’s effectiveness. This work aims to
provide a new technical tool for quality control
in concrete engineering.

2. Review of Related Research

Research on concrete strength prediction
models has become a hot topic at the
intersection of civil engineering and artificial
intelligence. Early studies mostly adopted linear
regression methods; for instance, the empirical
formula for concrete strength proposed by Paul
et al. [8] can only reflect the linear relationships
between a few factors and strength, resulting in
limited prediction accuracy. With the
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development of machine learning technology,
nonlinear models have gradually become the
mainstream of research.

Neural network models are widely used in
concrete strength prediction due to their strong
nonlinear fitting capabilities. Li et al. [9]
established a concrete strength prediction model
based on 7 raw material parameters using a BP
Neural Network, and the results showed that its
prediction accuracy was significantly higher
than that of traditional empirical formulas.
However, neural networks face issues such as
numerous parameters and unstable training.
Support Vector Machine (SVM) exhibits good
generalization ability in small-sample scenarios.
Zhang et al. [10] applied an improved SVM
model to the strength prediction of high-
performance concrete, determining the optimal
parameters via the Particle Swarm Optimization
(PSO) algorithm. The average relative error of
the model was controlled within 5%.
Nevertheless, SVM has low computational
efficiency when dealing with large-scale
datasets.

Ensemble learning methods improve overall
performance by integrating the prediction
results of multiple models. Wang et al. [11]
compared the performance of three ensemble
algorithms—Random Forest, AdaBoost, and
Gradient Boosting—in concrete  strength
prediction, and found that the Gradient
Boosting model outperformed the other two
methods in all evaluation indicators.

In recent years, deep learning methods have
begun to be applied in this field. Chen et al. [12]
proposed a concrete strength prediction model
based on Convolutional Neural Network (CNN),
which reduces the influence of human factors
by automatically extracting features. However,
this method requires a large amount of data to
exert its advantages.

Comprehensively, GBR balances prediction
accuracy and computational efficiency on
medium-scale datasets, making it suitable as a
basic model for concrete strength prediction.
Building on this, this study further enhances
prediction performance by optimizing feature
engineering and model parameters.

3. Mathematical Principles of the Gradient
Boosting Regressor Model

3.1 Core Framework of the Model
The essence of GBR is to minimize the loss
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function through gradient descent iteration and
incrementally optimize the prediction model. Its
core logic is as follows: the initial model is set
to the mean value of the target variable; in each
iteration, a new weak learner is trained to fit the
prediction error (residual, i.e., the negative
gradient of the loss function) of the current
model; finally, the prediction results are output
by weighted combination of all weak learners.
The mathematical expression is:

Fy ()= Fy(0)+ Yy, (1)

m=1
Where:
F,,(x) denotes the final prediction model

after M iterations;
F,(x) is the initial model, which takes the

mean value of the target variable
(Fo(x):j;:Zilyi/N , where N is the total

number of samples);
h, (x) represents the weak learner trained

in the m-th iteration (decision trees are used in
this study to adapt to nonlinear data);

7, 1s the weight coefficient of the m-th

weak learner (solved by minimizing the loss
function).

3.2 Mathematical Logic of Iterative Training
For the continuous regression task of concrete
strength prediction, Mean Squared Error (MSE)
is selected as the loss function. Its continuous
differentiability facilitates gradient calculation,
and the square term causes the error loss to
grow quadratically—this effectively penalizes
large errors, which aligns with engineering
requirements for strength prediction accuracy.
The mathematical expression of MSE is:

L. F(x) =+ (v F ()
2 )

Where:

v is the actual concrete strength, F(x) is
the strength predicted by the model.
The pseudo-residual is calculated as follows:
before the m-th iteration, the current model is
F . (x), and its prediction error for samples is
x; represented by the negative gradient of the
loss function. Taking the partial derivative of
Equation (2) yields:

OL(y;, F(x,))

OF (x,)

By taking the negative gradient (the direction of

‘F(xi):F:nq(x,) = _(yl - Fm—l ('xi )) (3)
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steepest descent), the pseudo-residual of the m-
th iteration is obtained, which represents the
error direction that the current model needs to
correct:

r}m:yi_Fm—l(xi) (4)
The training objective of the m-th weak learner
hw(x) is to fit to {(x,r,)}Y, achieve error

1

correction.
After obtaining hu(x), the weight y, is

determined by minimizing the loss function.
Substituting  F (x)=F ,(x)+yh, (x) into
Equation (2), the optimization objective is
constructed as:

A

N
&1
7, = argmin > SO —LE, L (x)+ 1, EANE)
i=l

Taking the derivative of with respect to y and

setting the derivative to 0, the optimal weight is
solved as:

A Zz]\il r;mhm (xi)
Vo= ©6)
DA, ()]
A learning rate v (shrinkage coefficient) is
introduced to control the contribution of a
single tree and avoid overfitting. Referring to
the parameter setting experience of Liu et al.
(2022) in recycled concrete prediction [13], the
final weight is:
7!71 = Uj/m (7)
After each iteration, the model is updated
according to F (x)=F, (x)+yh,(x) . The
processes of calculating residuals, training weak
learners, solving weights, and updating the
model are repeated until the number of
iterations reaches M or the loss of the validation
set converges.

4. Data Processing and Model Establishment

4.1 Affiliations

The data used in this study is derived from the
test reports of concrete mix proportion and
strength of a large-scale construction project,
totaling 131 sets. The classification of concrete
strength grades is presented in Table 1. The
original features in the dataset include: cement
dosage, fly ash dosage, water dosage, fine
aggregate dosage, coarse aggregate dosage,
admixture dosage, age, and cubic compressive
strength under standard curing conditions.
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Table 1. Classification of Concrete Strength

Grades
Number of Original
Category | Strength Grade Samples
I <30 MPa 23
11 30 MPa~50 MPa 56
11 >50 MPa 52

To improve the generalization ability of the
model, the following preprocessing steps were
performed on the original data:

1.Missing value handling: A small number of
missing values were filled using the K-Nearest
Neighbors (KNN) algorithm.

2.0utlier detection: Outlier samples were
identified and removed using the Z-score
method.

3.Feature standardization: All input features
were standardized to have a mean of 0 and a
standard deviation of 1.

The comparison between data before and after
processing is shown in Figure 1 and Figure 2.

Original Data Strength Grade Distribution Cleaned Data Strength Grade Distribution

Low Strength  Medium Strength  High Strength LowStrength  Medium Strength  High Strength
(<30MPa) (30-50MPa) (>50MPa) (<30MPa) (30-50MPa) (>50MPa)

Figure 1. Comparison of the Distribution of
Strength Grades Between Original Data and
~ Cleaned Data

e = 8

Figure 2. Comparison of the Distribution of
Strength Grades in Original Data and the
Distribution of Data Features after
Standardization
A total of 39 outlier samples were removed
during data preprocessing, and the cleaned
data was subjected to feature standardization—
this ensured all features had a mean close to 0
and a standard deviation of 1, laying a solid
foundation for subsequent modeling and

analysis.

4.2 Feature Engineering Indicators Affecting
Concrete Strength
There are 7 factors in the concrete mix
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proportion that influence strength, namely:
cement dosage (mc), fly ash dosage (mf), water
dosage (mw), fine aggregate (sand) dosage (ms),
coarse aggregate (gravel) dosage, admixture
dosage, and age.

To investigate the nonlinear effects of the
combination of various factors on concrete
strength, 5 additional feature engineering
indicators were introduced in this study: total

binder content (BinderTotal), water-binder ratio
(WaterBinderRatio), fly ash content ratio
(FlyAshRatio), total  aggregate  content
(AggregateTotal), and sand ratio (SandRatio).
Details are provided in Table 2. Finally, the
feature set used for model training included 12
features, covering the key influencing factors of
concrete mix proportion.

Table 2. Added Feature Engineering Indicators for Concrete Strength

Feature Indicator | Mathematical Calculation Formula Description
Name Symbol

Total Binder Content m, m,=m, +m;, Sum of cement and fly ash dosages
Water-Binder Ratio W /B W/B=m,/m, Ratio of water dosage to total binder content

Fly Als{l; t?;)ntent B I ﬂ F=my / m, Ratio of fly ash dosage to total binder content

Total Aggregate _

m =m_+m
Content m, ” s < Sum of fine aggregate and coarse aggregate dosages
Sand Ratio B, B, =m /(m, + mg) Ratio of fine aggregate dosage to total aggregate content

4.3 Model Construction
In this study, the GBR algorithm was employed
to construct the prediction model. This
algorithm generates a series of decision trees
iteratively and minimizes the loss function via
the gradient descent method. The dataset was
divided into a training set and a test set at a
ratio of 8:2, and 5-fold cross-validation was
adopted for model parameter optimization. The
main parameter settings of the model are listed
in Table 3.
Table 3. Initial Parameter Settings of the
Model
Parameter Name
Number of iterations (number M 300
of weak learners)
Learning rate v 0.1
Subsample ratio n 0.8
Maximum tree depth d 5
Minimum number of samples
for splitting 10
Minimum number of samples
at leaf nodes

Symbol| Initial Value

5

t 5

4.4 Evaluation Indicators

Three indicators were selected to assess the
model performance:

1.Coefficient of determination (R?): Measures
the model’s ability to explain the variation of
the dependent variable. Its value range is (-0, 1],
and a value closer to 1 indicates a better fitting

effect
3

D YN0
zi:l(yi _)7)2

Copyright @ STEMM Institute Press

2. Root Mean Squared Error (RMSE):
Reflects the average deviation between
predicted values and actual values, with the
same unit as the dependent variable. A smaller
value indicates a smaller difference between
predicted and actual values.

< 2
RSME=.|=>" (v~»)’ ©)
i
3. Mean Absolute Error (MAE): Reflects
the average absolute deviation between

predicted values and actual values, and is
insensitive to outliers. A smaller value indicates
a smaller difference between predicted and
actual values.

)A,,__yl_ (10)

n
i=1

MAE:lz
n

5. Results and Analysis

5.1 Model Performance Evaluation
The prediction results of the GBR model on the
test set were compared with the actual values,
and the model performance indicators are
shown in Table 4.

Table 4. Model Performance Evaluation

Indicators
Evaluation Indicator \Value
R? 0.9063
RMSE 5.0697 MPa
MAE 4.0340 MPa

As indicated in Table 4, the R? of the model
reaches 0.9063, which means the model can
explain 90.63% of the variation in concrete
strength and exhibits high goodness of fit. The
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RMSE and MAE are 5.0697 MPa and 4.0340
MPa, respectively—this demonstrates that the
deviation between predicted and actual values is
within an acceptable range. The model has good
prediction accuracy and can meet the prediction
needs in engineering practice.

5.2 Visual Analysis of Prediction Results

ompar ison of Concrete Strength Prediction (R"2<0.906)

B

“© © 5
Actual Concrete Strength (WPa)

Figure 3. Comparison between Predicted and
Measured Values of Concrete Strength
Figure 3 presents a scatter plot of the predicted
and actual concrete strength values in the test
set. The diagonal line in the figure represents
the ideal prediction result (predicted value
equals actual value). It can be observed from
the figure that most data points are distributed
near the diagonal line, indicating good
consistency between predicted and actual
values and verifying the reliability of the model.

5.3 Feature Importance Analysis

The permutation importance method was used
to calculate the influence of each feature on the
model’s prediction results, and the results are
illustrated in Figure 4.

re Importance Analysis

H

Figure 4. Ranking of the Importance of
Various Features to Concrete Strength
The analysis results reveal that age (Age) is the
most critical factor affecting concrete strength,
with an importance score as high as 0.5738.
This is consistent with the basic characteristic
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that concrete strength increases with age—
cement hydration reaction becomes more
complete over time, leading to continuous
strength development.

Total binder content (BinderTotal) ranks second
in importance score (0.1639), indicating that the
total dosage of binder has a significant impact
on concrete strength. Sufficient binder is the
foundation for forming high-strength concrete.
The importance score of admixture (Admixture)
ranks third (0.1179), reflecting that in the
concrete mix proportions covered by this
dataset, admixtures play a crucial role in
strength development. This may be attributed to
the functions of admixtures in improving
concrete workability and promoting hydration
reactions.

The importance score of water-binder ratio
(WaterBinderRatio) is 0.0964, which is also an
important factor affecting concrete strength.
This result is consistent with the basic theory of
concrete material science—the water-binder
ratio directly influences the compactness and
strength of cement paste.

It is worth noting that some features (e.g., fly
ash content ratio (FlyAshRatio) and fine
aggregate (FineAggregate)) have negative
importance scores. This indicates that the
random permutation of these features in the
model slightly improves the prediction effect.
This  phenomenon may be due to
multicollinearity between these features and
other features, or their minimal impact on
strength within the range of the current dataset.

5.4 Analysis of the Influence of Key Factors
5.4.1 Influence of Water-Binder Ratio on
Concrete Strength

With the age fixed at 28 days, the relationship
between water-binder ratio and concrete
strength was analyzed, and the results are
shown in Figure 5.

@

Figure 5. Effect of Water-Binder Ratio on
28-Day Concrete Strength
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As shown in Figure 5, within the range of mix
proportions studied in this work, concrete
strength  exhibits a significant negative
correlation with water-binder ratio: as the
water-binder ratio increases, concrete strength
decreases gradually. This result verifies the
correctness of the "water-binder ratio rule" in
classical concrete theory—under the same other
conditions, a smaller water-binder ratio leads to
higher concrete strength.

5.4.2 Influence of Fly Ash Content on Concrete
Strength

-

] /
e )
«

The Influence of Fly Ash Content on Strength (as a function of time)

©

Figure 6. Variation of Concrete Strength
with Age under Different Fly Ash Dosages
The influence of different fly ash contents (low
content: 0-15%, medium content: 15-30%, high
content: 30-45%) on concrete strength at
different ages was analyzed, and the results are

presented in Figure 6.

As can be seen from Figure 6, at all ages,
concrete with different fly ash contents shows
distinct  strength  development  patterns.
Concrete with low fly ash content has relatively
higher early-age strength (3-7 days), which is
because the hydration reaction of fly ash is slow,
and it mainly plays a filling role in the early
stage. With the increase of age, the strength
growth rate of concrete with medium and high
fly ash content accelerates, reflecting the late-
age strength contribution of fly ash. This is
associated with the pozzolanic effect and micro-
aggregate effect of fly ash.

6. Conclusions and Future Outlook

6.1 Conclusions

In this study, a concrete strength prediction
model based on GBR was constructed. Through
training and validation on actual engineering
data, the following conclusions were drawn:
1.The GBR model demonstrates excellent
performance in concrete strength prediction.
With an R? of 0.9063, its prediction accuracy

Copyright @ STEMM Institute Press

meets the requirements of engineering
applications, providing a reliable tool for
concrete strength prediction.

2.Age is the most critical factor affecting
concrete strength, with an importance score of
0.5738. It is followed by total binder content,
admixture, and water-binder ratio. The
combined importance of these four factors
exceeds 95%, offering a clear direction for mix
proportion optimization.

3.Visual analysis of the model verifies the
negative correlation between water-binder ratio
and concrete strength, as well as the influence
law of fly ash content on strength development.
These results are consistent with the theory of
concrete material science, indicating that the
model has good interpretability.

4.Some features (e.g., fly ash content ratio and
fine aggregate) have negative importance scores,
suggesting that their impact on strength is
minimal within a specific mix proportion range
or that they have multicollinearity with other
features. This provides a reference for feature
selection in subsequent studies.

6.2 Future Outlook

Future research can be expanded
following aspects:

1. Expand the dataset scale by incorporating
more environmental factors (e.g., curing
temperature and humidity) and material
property parameters to enhance the model’s
generalization ability.

2. Attempt to combine the GBR model with
other machine learning methods to construct a
hybrid prediction model, further improving
prediction accuracy.

3. Conduct in-depth research on features with
low importance, optimize feature engineering
methods, and explore the potential relationships
between these features and concrete strength.

4. Develop a Web-based concrete strength
prediction platform to realize the engineering
application of the model and provide a
convenient tool for concrete mix proportion
design.

5. Combine optimization algorithms to achieve
intelligent optimization of concrete mix
proportion based on the prediction model,
ensuring strength while reducing costs and
carbon emissions.
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