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Abstract: In this study, a novel
hyperparameter optimisation algorithm for
Convolutional Neural Networks (CNNs),
based on a Multi-Strategy Improved Whale
Optimisation Algorithm (IWOA), is proposed
to enhance performance across diverse tasks.
Recognising the critical impact of
hyperparameters on CNN efficacy, the
algorithm is designed to autonomously
identify optimal parameter settings. To
improve population diversity and uniformity
during initialisation, the Singer chaotic
mapping strategy is employed. Additionally, a
nonlinear dynamic speed regulation
mechanism is introduced to refine the spiral
update control parameters in WOA, thereby
enhancing the optimisation process. To
further address premature convergence and
avoid local optima, Gaussian mutation is
utilised, enabling the algorithm to achieve
faster convergence toward the global
optimum. The enhanced IWOA is integrated
with CNNs and evaluated on multiple
benchmark functions to validate its
optimisation capability. Moreover, extensive
image classification experiments on various
datasets demonstrate the algorithm's
effectiveness in improving CNN recall and
accuracy while showcasing strong
generalisation ability. The results highlight
that the proposed approach significantly
outperforms traditional methods in searching
and optimising CNN hyperparameters,
delivering superior performance and
robustness across multiple tasks.
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1. Introduction
Swarm intelligence optimization algorithms are
inspired by collective behaviors observed in

nature, where cooperation and communication
among individuals enable effective
problem-solving. These algorithms exhibit
flexibility, self-organization, robustness, and
distributed processing, making them powerful
tools for addressing complex optimization
problems [1] Over the past decade, their
applications have expanded rapidly,
accompanied by the continuous emergence of
new variants [2]. Representative examples
include the Black-winged Kite Optimization
Algorithm [3], the Electric Eel Foraging
Optimization Algorithm [4], the Honey Badger
Optimization Algorithm [5], and the South
American Raccoon Optimization Algorithm [6].
In 2016, Mirjalili et al. introduced the Whale
Optimization Algorithm (WOA), inspired by the
unique biological behaviors of humpback whales
[7]. WOA models hunting strategies such as prey
encirclement, bubble-net predation (including
shrinking encirclement and spiral updating), and
prey searching. The algorithm initializes the
positions of whales in the population and
iteratively updates them to converge toward the
optimal solution [8]. By simulating behaviors
such as floating, diving, and role differentiation
(e.g., leader, follower, and random whales),
WOA effectively balances global exploration
with local exploitation. Moreover, during the
iterative process, whales dynamically adjust
their search strategies according to the changes
in objective function values, thereby enhancing
the ability to discover high-quality solutions [9].
Convolutional Neural Networks (CNNs) are
among the most extensively studied models in
the field of image recognition, achieving
recognition accuracy that in some cases even
surpasses human performance. Their flexibility
arises from the combination of multiple layers
and nonlinear activation functions, enabling
users to adapt architectures to different tasks [10].
The history of CNNs can be traced back to 1962
[11], while the LeNet model marked the prototype
that underwent iterative refinements and laid the
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foundation of modern CNNs [12]. A major
breakthrough occurred in 2012 with the
introduction of AlexNet, which significantly
advanced deep learning for computer vision.
Since then, numerous architectures have been
developed, including VGG [13], ResNet [14], and
GoogLeNe t[15], each further enhancing CNN
capabilities.
Despite these advances, increasing network
depth often leads to reduced precision due to
issues such as vanishing gradients and
overfitting[16]. To address this challenge,
researchers have sought to improve performance
while maintaining the architectural structure.
CNN efficiency and accuracy are influenced by
a range of hyperparameters, including kernel
size, number of channels, stride, and pooling
window. As model complexity grows, the
sensitivity of performance to hyperparameter
settings amplifies, making hyperparameter
optimization a critical factor in maximizing
CNN performance [17]. Traditional tuning
methods based on expert knowledge rely heavily
on trial-and-error, which is inefficient and
difficult to scale. Consequently, systematic
approaches such as grid search, random search,
Bayesian optimization, and gradient-based
optimization techniques have been developed [18].
However, their computational complexity
increases rapidly with the dimensionality of the
parameter space, leading to significant efficiency
bottlenecks when applied to high-dimensional
optimization problems [19].
To address the aforementioned challenges,
researchers have explored biomimetic
intelligence-based optimization strategies, with
notable examples including the artificial bee
colony algorithm inspired by swarm intelligence
[20], particle swarm optimization that mimics
biological migration [21], and genetic algorithms
derived from evolutionary mechanisms [22].
Nevertheless, most existing approaches
primarily rely on structural modifications of
network architectures or the fusion of multiple
algorithms. Such composite optimization
mechanisms inevitably increase system
complexity, reduce algorithm interpretability,
and raise the difficulty of practical applications.
Therefore, developing hyperparameter
optimization methods that preserve the native
CNN architecture while ensuring simplicity and
usability has become an urgent research priority.
In this study, we aim to optimize CNN
hyperparameters using the Whale Optimization

Algorithm (WOA), originally proposed by
Mirjalili [23]. Owing to its simple structure and
efficient computational mechanism, WOA has
attracted considerable attention and has
demonstrated competitive performance across a
wide range of optimization problems [24].
Building upon this foundation, we further
introduce an Improved Whale Optimization
Algorithm (IWOA) to intelligently optimize
CNN hyperparameters. Specifically, the
proposed IWOA is applied to CNN models
without altering their architectural layers,
enabling automatic hyperparameter optimization
across different datasets. Experimental results
validate the effectiveness of the improved
method in enhancing CNN performance [25]. The
main contributions as follows:
(1) A High-Efficiency Deep Learning
Framework Based on CNN: This study presents
an efficient deep learning framework built on
Convolutional Neural Networks (CNNs),
employing a hierarchical feature extraction
mechanism. Through local perception, weight
sharing, and pooling operations, the framework
achieves spatial dimensionality reduction and
exhibits outstanding image feature abstraction
capabilities. It is well-suited for image
classification, object detection, and feature
extraction tasks. Key modules, including
convolutional layers, activation functions,
pooling layers, and fully connected classifiers,
are designed to significantly enhance robustness
against geometric transformations (e.g.,
translation and rotation) while reducing
parameter complexity.
(2) Improvements to the Whale Optimisation
Algorithm (IWOA): To address the limitations of
the standard Whale Optimisation Algorithm
(WOA)—such as susceptibility to local optima
and limited global search ability—this study
proposes three key enhancements. First, the
Singer chaotic map is adopted to initialise a
uniformly distributed and diverse population,
boosting search space exploration. Second, a
nonlinear time-varying convergence factor is
introduced to dynamically balance global
exploration and local exploitation. Third,
Gaussian mutation operations are applied during
later iterations to perturb the optimal region and
prevent premature convergence. These
improvements collectively enhance global
convergence accuracy and optimisation stability.
(3) IWOA-CNN: A Hybrid Approach and
Experimental Validation: The proposed IWOA is
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integrated with a CNN model to optimise its
hyperparameters, forming the IWOA-CNN
framework. Experimental results on multiple
datasets demonstrate the framework’s
effectiveness in image classification, achieving
superior accuracy, recall, and generalisation
performance. These findings not only confirm
the practical applicability of the approach but
also validate the theoretical analysis, providing a
reliable and efficient solution for CNN
hyperparameter optimisation.
The rest of this study is structured as follows.
The second section introduces the background
work related to whale optimisation algorithms
and convolutional neural networks. The third
part introduces in detail the improved strategy of
the whale optimisation algorithm and the design
of the convolutional neural network model
structure. Section IV includes experimental
results, discussion, and analysis. Finally, the
conclusions are briefly summarised in section V.

2. Relevant Technical Framework
In this part, we will retrospect the detailed steps
of WOA and some details of CNNs.

2.1 The Fundamental Whale Optimization
Algorithm
Whales are highly intelligent marine mammals
with complex emotional expressions and unique
foraging strategies. One of their most remarkable
behaviors is bubble-net hunting, a cooperative
feeding method that inspired Mirjalili and Lewis
to propose the Whale Optimization Algorithm
(WOA) in 2016 [26]. WOA is a novel swarm
intelligence optimization algorithm that mimics
the hunting strategies of humpback whales. Its
core mechanism is based on biomimetic
simulation of whale predation, and the algorithm
mainly consists of three key phases: searching
for prey, encircling prey, and bubble-net hunting
[27]. In this framework, each whale’s position in
the search space represents a candidate solution,
and the optimization process simulates whale
hunting strategies through spiral position updates
and shrinking encirclement operations on
solution vectors. Over successive iterations, the
population collectively explores the search space
and gradually converges toward the optimal
solution of the objective function [28].
Assume that there are N whales in the WOA.
The spatial coordinates of the target prey in the
solution space correspond to the global
extremum of the optimization problem. At the

initialization stage, the position of the i-th whale,
also referred to as the leader whale, can be
mathematically represented as: Assume that
there are N whales in the WOA. The spatial
coordinates of the target prey in the solution
space correspond to the global extremum of the
optimization problem. At the initialization stage,
the position of the i-th whale, also referred to as
the leader whale, can be mathematically
represented as:

1 , 2 3[ , ... ], 1, 2,..., .i i i i DiX x x x x i N 

Where D represents the dimensional space of the
solution vector.
In the evolutionary mechanism of WOA, once a
search agent identifies a candidate optimal
position vector, individuals employ a
probabilistic exploration strategy to conduct
global random searches in the solution space,
rather than solely updating their positions
relative to the current best solution. Specifically,
when the condition A≥1 is satisfied (see equation
(2)), the search agent selects reference whales at
random and performs position migration based
on them. The coordinate values are then
iteratively updated according to the predefined
mathematical update rules, thereby guiding the
swarm toward potential global optima. The
specific formal expression is equation (1).

1t t t t
i rand rand iX X A C X X     (1)

Where
t
randX is the current population's

randomly selected location,
t
iX and

1t
iX


are
the current and updated positions of the search
agent, and A and C are modulus vectors, as
defined by equation (2) and (3) respectively.

A = 2a r a  (2)
C = 2  r  (3)

Here, r is a random vector within the interval
[0,1], typically referred to as the spiral update
control parameter. During iterations, it decreases
linearly from 2 to 0. The associated parameter a
guides the agents to gradually converge toward
the neighborhood of the optimal solution as the
algorithm progresses. This parameter plays a
critical role in regulating both the speed and the
amplitude of the whales’ spiral movements
within the search space.
In the swarm intelligence simulation of whale
hunting, when individuals enter the
prey-encirclement stage, the system designates
the current best solution vector as the global
optimal position. At this stage, the population
follows a phasesynchronization mechanism, and
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the coordinates of each whale are iteratively
updated according to the predefined differential
equation (4). Through this process, all agents
progressively converge toward the global
optimum.

1t t t t
i best best iX X A C X X     (4)

Where t is the present iteration and
t
bestX is the

position of the optimal solution representing the
present best candidate solution. Furthermore,
when the whale surrounds its prey, A < 1.
When humpback whales employ bubble-net
feeding, the strategy can be described by two
mechanisms.
(1) Shrink-and-wrap mechanism. In this
mechanism, A is defined as a random value
within the interval [−a, a], where a decreases
linearly from 2 to 0 during iterations, as shown
in equation (2). When A∈(−1,1), the position
update rule enables the search agent to relocate
to any point within the region bounded by its
current position and the best-known solution. As
illustrated in Figure 1, this process reflects the
geometric accessibility of the search space,
capturing the possibility for agents to migrate
from their initial coordinates (X, Y) to the target
coordinates (X′, Y′).

Figure 1. Changes in the Search Subject’s
Position Under the Shrinking and

Surrounding Mechanism
(2) Spiral update position mechanism. This
mechanism simulates the distinctive foraging
strategy of humpback whales by computing the
spatial distance between the current position (X,
Y ) and the target position (X′, Y′). The prey is
then approached along a logarithmic spiral
trajectory, as expressed in equation (5), which
effectively models the spiral motion patterns
observed in bubble-net hunting.

1 ' cos(2 )t bl t
i bestX D e l X   (5)

Let t t
best iD X X  denote the Euclidean

distance between the i-th whale and the current
best candidate solution, where l is a normalized

random coefficient in the interval [−1, 1], and b
is the adjustment parameter controlling the spiral
shape. Based on these parameter definitions, a
spiral approximation model can be constructed
to characterize the hunting behavior of
humpback whales. This model describes the
motion of whale populations performing spiral
position updates within a gradually shrinking
circular region around the prey. Its core
mechanism lies in simultaneously satisfying two
constraints: contraction toward the prey and
trajectory tracking along a logarithmic spiral.
The resulting motion can be mathematically
formulated as equation (6).

t t t
b e s t b e s t i

t
b e s t

X X - X , 0 .5
D =

' c o s ( 2 ) X , 0 .5b l

A C P

D e l P

   


 
(6)

The parameter p is used as a probability
distribution variable within the [0, 1] interval to
control the switching threshold of the search
agent location update strategy. As shown in
Figure 2, in the visualization of the spiral
position update mechanism, the horizontal axis
corresponds to the adjustment factor l in formula
(5), and the vertical axis maps the updated
coordinate distribution in two-dimensional space.
This dual parameter joint regulation mechanism
achieves dynamic optimization of search paths
through the synergistic effect of probability
selection and geometric constraints.

Figure 2. Spiral Update SearchAgent Position

2.2 Architecture of CNNs
This section focuses on analyzing the
representative architectures of deep CNNs. As an
artificial intelligence system based on
hierarchical feature learning, CNNs perform
image object detection, recognition, and
classification through parameterized filter banks,
and are capable of advanced visual tasks such as
pixel-level semantic segmentation [29]. Figure 3
illustrates the topology of a typical CNN, which
consists of alternating convolutional modules
and pooling layers for spatial downsampling.
The network comprises two feature extraction
stages, two spatial dimensionality reduction
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operations, four progressively abstract feature
map groups, and an end-to-end fully connected
classifier. This hierarchical feature abstraction
enables shallow layers to capture basic patterns
such as edges and textures, while deeper layers
extract higher-order semantic representations
that are discriminative for complex visual
recognition tasks.

Figure 3. Architecture of the CNN Model
(1) Convolutional layer. The convolutional layer
primarily performs feature extraction. It applies
learnable filters to the input tensor via sliding
convolution operations, enabling local feature
detection and spatial information encoding. This
process effectively captures spatial correlations
in the input data through parameter sharing,
allowing the network to hierarchically learn
local patterns in images. Mathematically, given
an input feature tensor X, convolution kernel
parameters W, and a bias term b, the output
feature map Y can be obtained by applying
discrete convolution followed by a nonlinear
transformation. Formally, this process can be
expressed as the nonlinear transformation of the
discrete convolution of X and W with the bias
term b incorporated [30].

( , ) ( , ) ( , )
m n

Y i j X i m j n W mn b     (7)
In the above notation, ( , )Y i j denotes a pixel
value in the output feature map from the
convolutional layer, ( , )X i m j n  denotes a
pixel value in the input data, ( , )W m n
represents the filter weight, b is the bias term;
and i and j indicate the coordinates in the
output feature map.
The convolution operation performs local feature
extraction on the input tensor using a sliding
filter, and its computation can be decomposed
into three fundamental steps: first, an
element-wise dot product is computed between
the input patch and the convolution kernel within
the sliding window; second, the results are
summed and added to the bias term; finally, the
corresponding activation value in the output
feature map is generated. The learnable
parameters of this layer, including the filter
weights and bias vectors, are optimized via
gradient-based updates during backpropagation,

enabling the network to autonomously extract
effective feature representations from the input
data. As the core computational unit of CNNs,
convolutional layers form a hierarchical feature
abstraction structure through multi-layer
stacking. Shallow layers capture basic patterns
such as edges and textures, whereas deeper
layers progressively integrate features to
construct high-order semantic representations.
This hierarchical feature abstraction allows the
network to perform multi-level representation
learning and in-depth analysis of visual
information.
(2) Pooling layer. The pooling layer is a crucial
module in CNN architectures, responsible for
feature map dimensionality reduction and
enhancement of model robustness through
spatial downsampling. This mechanism reduces
the number of model parameters while
compressing the spatial dimensions of feature
maps by aggregating information within local
receptive fields. By introducing spatial
invariance, the pooling layer improves the
network’s resilience to geometric variations in
the input data, such as translation, scaling, and
rotation. The core operation involves applying a
sliding window over the feature map to extract
regional features, followed by aggregation via
operations such as maximum or average pooling.
This dimensionality reduction strategy
effectively mitigates the risk of overfitting while
preserving essential feature representations.
There are various forms of implementation for
pooling operations, among which the most
widely used is the max pooling mechanism. The
mathematical expression of this method can be
defined as: given an input feature matrix X and a
sliding window size S , the max pooling layer
uses a local region feature extremum extraction
mechanism to achieve spatial dimension
compression. The calculation formula for its
output matrixY can be expressed as:

,
( , ) max ( , )

m n
Y i j X i S m j S n     (8)

where ( , )Y i j represents a pixel value in the
feature map output by the pooling layer;

( , )X i S m j S n    represents selecting the
maximum value in the pooling window. ,

max
m n

represents the pixel value inside the pooling area
within the input data.
The pooling layer, as a core component of CNN
architectures, performs data dimensionality
reduction while preserving essential information
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through feature aggregation. Specifically, the
max pooling operation reduces dimensions by
selecting the maximum value within each local
receptive field, thereby emphasizing salient
features and reducing data redundancy. Average
pooling serves as a complementary strategy,
performing smooth dimensionality reduction by
computing the mean of features within a sliding
window. These spatial downsampling operations
not only reduce the size and complexity of
feature maps, enhancing computational
efficiency and model robustness, but also
support improved generalization performance by
promoting effective feature abstraction.
(3) Fully connected layer. The fully connected
layer, also known as a dense or linear
transformation layer, is a fundamental
component in deep neural network architectures.
It establishes connections between each neuron
in the current layer and all nodes in the
preceding layer through a fully interconnected
weight matrix. This global connectivity enables
powerful feature integration, allowing the layer
to model complex nonlinear relationships among
input features via spatial linear combinations of
weighted parameters. Although this fully
connected topology introduces substantial
computational complexity, its parameterized
feature fusion mechanism provides critical
capabilities for high-level feature abstraction in
deep learning models.
Suppose the output of the previous layer is

vector X , the weight matrix of the fully

connected layer is W . The output of the fully
connected layer can be calculated by

( , ) ( )Y i j W X b   , where W is the
weight matrix, each row of the matrix

corresponds to the weight vector of a neuron; b
is the bias term, which is used to regulate the
activation value of each neuron; RELU is the
activation function, usually a nonlinear function,
such as Rectified Linear Unit function, Sigmoid
function or Tanh function; represents matrix
multiplication.
The fully connected layer performs an affine
transformation of feature vectors by linearly
combining the outputs of the preceding layer
with the weight matrix, adding bias vectors, and
applying nonlinear activation functions. This
hierarchical processing enables the network to
generate high-order abstract feature
representations through cascaded nonlinear

transformations, thereby enhancing the model’s
capacity for nonlinear feature modeling. In
typical CNN architectures, the fully connected
layer is positioned at the network’s end, serving
as the mapping from feature space to decision
space. Its primary function is to transform the
distributed feature representations extracted by
convolutional and pooling modules into the
dimensions of the target classification space.
This design allows deep networks to learn
parameterized mappings from high-dimensional
feature embeddings to specific class predictions
[31].

3. Proposed Method
This section introduces the convolutional neural
network architecture designed for our
multimodal classification performance
evaluation framework. The hyperparameter
optimization model based on the Improved
Whale Optimization Algorithm (IWOA) is
employed to effectively extract informative
features from the input dataset and maximize the
predictive performance. Figure 2 presents a
schematic overview of the overall process. A
regularized fully connected layer is incorporated
into the CNN, and IWOA is applied for
hyperparameter tuning during the initial training
stage. The optimized network is subsequently
used for model training and evaluation. The
detailed procedure is described as follows:

3.1 Proposed Improvement Strategies
The canonical Whale Optimization Algorithm
(WOA) exhibits limitations in solution accuracy,
slow convergence rates, and susceptibility to
premature convergence at local optima. To
address these shortcomings, this study proposes
several improvements to the standard WOA to
enhance its position update mechanism and
reduce the risk of stagnation in suboptimal
regions. First, a Singer chaotic mapping system
replaces the original random initialization,
leveraging the ergodic properties of chaotic
sequences to generate a more diverse initial
population. Second, a novel nonlinear
convergence factor is introduced in place of the
original linear convergence factor, balancing
global exploration and local exploitation during
the search process. Finally, a Gaussian mutation
strategy is applied to improve the overall search
capability, facilitating the algorithm’s ability to
escape from local optima and achieve better
global performance.
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(1) Singer Chaotic Mapping. Chaotic behavior is
an inherently unstable phenomenon that emerges
spontaneously in deterministic systems, typically
observed in nonlinear dynamics [32]. Due to the
ergodic nature of chaos, a chaotic system can
traverse all possible states within a given range
without repetition. Consequently, optimization
strategies leveraging chaotic variables can
achieve superior performance compared with
purely random or disordered search methods.
Singer chaotic mapping is a widely used chaotic
system characterized by rich and complex
dynamic properties. It is derived from the
logistic map and combines piecewise linear
mapping with nonlinear functions, exhibiting
simplicity in mathematical form, ergodicity, and
randomness. The introduction of Singer chaotic
mapping has provided a foundational framework
for both theoretical studies and practical
applications of chaos. This mapping was first
proposed by the American mathematician J.
Singer in 1994, and its general form is presented
in equation (9).

2 3 4
1 (7,86 23.31 28.75 13.302875 )k k k k kx x x x x     (9)

Among them, [0.9,1.08], [0,1]x   . The
distribution diagram of Singer chaotic mapping
after 200 iterations as shown in the Figure 4. It
can be clearly seen that Singer mapping is
evenly distributed between [0,1]. The figure
shows the dynamic behavior of the Singer
chaotic map, which contains two sub-graphs.
The upper graph depicts the evolution process of
the chaotic sequence with number of iterations,
with the initial value 0 0.5x  , showing
non-periodic oscillation characteristics. The
phase space graph in the lower graph presents a
typical chaotic attract structure, and the
distribution of the point set shows that the
system has fractal characteristics, verifying the
intrinsic randomness of the chaotic system. The

abscissa X marks the value points from 0 to
0.9, which is used to observe the ergodicity of
the state variable in the unit interval. Using this
feature can make the search space more uniform,
increase the uniformity and diversity of the
whale population, and thus increase the overall
situation search capability.
(2) Nonlinear Convergence Factor. In heuristic
optimization algorithms, balancing global
exploration and local exploitation is crucial, and
WOA faces this core challenge as well [33]. In the
original WOA, the whale population’s behavior

is controlled by the parameter A (derived from

the convergence factor a ): when 1A  , whales
perform global exploration; when 1A  , they
switch to local exploitation. However, the
original linear decreasing strategy for a has
inherent limitations when addressing complex
optimization problems.

Figure 4. Singer Chaotic Map Iterative
Sequence Diagram and Phase Space Diagram
First, it leads to insufficient early-stage
exploration: high-intensity exploration is needed
at the beginning to avoid premature convergence,

but the linear decrease of a causes A to
enter the local exploitation stage too early,
weakening the global search capability. Second,
it results in inefficient late-stage exploitation: in
the later stages, the algorithm must focus on
local refinement, but the linear strategy
decreases a gradually, delaying convergence to
the ideal exploitation range and slowing solution
quality improvement. Finally, it exhibits weak
adaptability for high-dimensional, multi-modal
problems, as linear changes cannot dynamically
adjust the balance between exploration and
exploitation according to the search process.
To overcome these limitations, we propose a
nonlinear convergence factor to replace the
original linear parameter (see equation (10)).
This design reshapes the trajectory of a by
introducing logarithmic functions: maintaining
higher values in the early stage to extend global
exploration, accelerating decay in the middle
stage to facilitate a smooth transition from
exploration to exploitation, and approaching
zero in the later stage to enable deep local
optimization. This nonlinear mechanism
significantly enhances the algorithm’s
self-adaptability in complex solution spaces,
ensuring sufficient early-stage exploration to
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avoid premature convergence while improving
late-stage exploitation accuracy, ultimately
achieving a synergistic enhancement of global
optimization efficiency and solution quality.

22 2 ( )
_
ta

M a x ite r
  

(10)
With in the algorithmic framework, Where

_M ax ite r specifies the predefined maximum
iteration threshold, whereas t recording the
real-time iteration counter.
(3) Gaussian Mutation. Gaussian mutation is a
probabilistic variation strategy based on the
normal distribution, commonly employed in
evolutionary algorithms. Its primary function is
to fine-tune candidate solutions by introducing
Gaussian perturbations, where the mean
corresponds to the current solution and the
standard deviation is adjustable, thereby
emphasizing local refinement. Compared with
uniform mutation, the high-probability region of
the Gaussian distribution is concentrated near
the mean, enabling the algorithm to perform
small adjustments to explore the neighborhoods
of high-quality solutions while still allowing
low-probability larger jumps. This balance
between exploitation and exploration makes
Gaussian mutation particularly effective in
continuous optimization problems, especially
during the later stages of convergence,
accelerating the approximation to the global
optimum [34]. The position update operation for
this strategy is defined in equation (11).

Among them, A is a dominate parameter used

to regulate the amplitude of location update. D
is the range between the target position and the

present personal position.
2(0, )N  is a

Gaussian variation term, which represents the
value randomly sampled from a Gaussian scatter

with a mean value of 0 and a variance of
2 .

By adjusting the  value, the intensity of the
variation can be controlled, thereby affecting the
expansive roaming or focused refinement
capabilities in the search. By introducing this
method, WOA can introduce randomness when
searching, thereby enhancing the potential of the
algorithm to carry out a global search.
Now we call the algorithm that applies the above
improved strategy IWOA, and provide a detailed
explanation of its execution process through the
following Table 1. The fitness curve of the
improved algorithm is shown in Figure 5.

Table 1. Algorithm 1 IWOA
Algorithm 1 IWOA
1: Initialize the ( 1, 2,..., )iX i N  by eq.(9)
2: Calculate the values of each whale
3: while t < maximumiteration do
4: for each whale do
5: Calculate values of a in eq.(10)
6: Generate random values of , , ,r A c b and
p

7: if p < 1=2 then
8: if 1A  then

9: Select a random whale randX
10: Renew the position of the present
whale by eq.(1)
11: else
12: Renew the location of the present
whale by eq.(4)
13: end if
14: end if
15: Update the location of the present whale by
eq.(5)
16: end for
17: Correct the location of the whales which goes
beyond the search space
18: Convert the updated location by eq.(11)
19: Calculate the fitness value of whale before and
after the conversion
20: Retain or instead of the unconverted location and
its associated fitness value according to the
caculation results
21: Update bestX if have the better solutions

22: 1t t 
23: end while
24: Return bestX

Figure 5. IWOA Fitness Curve

3.2 NetworkArchitecture
This study constructs a deep CNN based on the
classic LeNet-5 architecture [35]. The network
comprises two convolutional layers for feature
extraction, followed by a max pooling layer for
dimensionality reduction, and concludes with
three fully connected layers for classification, as
illustrated in Figure 3 [36]. Network parameters
are initialized using a random uniform
distribution, and all convolutional and fully
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connected layers employ ReLU activation to
enhance the model’s nonlinear representation
capability. Model training is performed using the
Adam optimizer, which integrates the benefits of
momentum and adaptive learning rates. Key
hyperparameters, including an initial learning
rate of 1e-3 and an L2 weight decay coefficient
of 1e-4, were determined through preliminary
experimental validation. The Softmax function is
used at the network’s output layer to transform
the final outputs into a probability distribution
suitable for multi-class classification tasks.
During model initialization, the size and number
of convolution kernels in the first convolutional
layer ( 1C ), the pooling window size for the first

pooling layer ( 2P ), the convolution kernel
configuration for the second convolutional layer

( 2C ), and the parameter settings for the second
pooling layer ( 3P ) are selected within predefined
optimal ranges, with specific values provided in
Table 2. The fully connected layer ( 5FC ) serves
as the classifier output layer, with its neuron
count strictly corresponding to the number of
target categories. The structural parameters of
this layer remain fixed and are excluded from
subsequent hyperparameter optimization, based
on the following considerations: 1) the output
dimension is problem-dependent; 2) structural
modifications may adversely affect classification
performance; and 3) maintaining a fixed
structure reduces the complexity of the
optimization process.

Table 2. CNNArchitecture and
Hyperparameters Range

LayersHyperparameters range

C1

Size of Kernels: 2×2, 3×3, 4×4
Number of Kernels: [16, 64]
Strides: 1×1

P2 Size of Pooling: 2×2, 3×3, 4×4
Strides: 1×1

C3

Size of Kernels: 2×2, 3×3, 4×4
Number of Kernels: [32, 128]
Strides: 1×1

P4 Size of Pooling: 2×2, 3×3, 4×4
Strides: 1×1

FC6 Manually set by number of categories

4. Experimental Result and Discussion
In this section, we evaluate the comprehensive
performance advantages of the IWOA algorithm
in optimizing CNNs through a series of

multi-dimensional empirical analyses. The
evaluation mainly focuses on two aspects: the
improvement in convergence accuracy of IWOA
on the CEC2017 benchmark functions, and the
enhanced classification performance of
IWOA-CNN on high-dimensional datasets. In
the theoretical verification stage, the basic WOA,
IWOA, and other representative intelligent
optimization algorithms are employed to
investigate their ability to locate global optima
across multiple benchmark functions. In the
application verification stage, five CNN-based
optimization strategies are compared within the
proposed multimodal classification performance
evaluation framework, including CNN optimized
with basic PSO (PSO-CNN), CNN optimized
with basic GA (GA-CNN), CNN optimized with
basic SCA (SCA-CNN), WOA-CNN, and CNN
optimized with IWOA (IWOA-CNN).
The convergence behavior of IWOA on the
Sphere function is illustrated in Fig.5. The
fitness value decreases rapidly from 140 to 20
within 10 iterations, exhibiting an exponential
decline that demonstrates efficient global search
capability and fast convergence. In comparison,
the original WOA achieves only a reduction
from 140 to 60 in the initial iterations, indicating
slower convergence and a higher likelihood of
stagnating in local optima, which requires more
iterations to reach comparable accuracy.
Through its improved mechanisms, such as
dynamic weighting and hybrid strategies, IWOA
effectively balances global exploration and local
exploitation, ultimately reaching a lower fitness
value within 10 iterations. These results verify
the superior convergence accuracy and stability
of IWOA compared to the standard WOA.

4.1 Benchmark Functions Test
In this test, five intelligent optimization
algorithms-PSO, GA, SCA, basic WOA, and
IWOA are employed to search for the global
optima of eight benchmark functions[37]. To
ensure experimental fairness and eliminate
confounding factors, all critical operational
parameters were kept identical across
comparative analyses. The experimental
configuration is as follows: function dimension
of 30, maximum iterations of 500, population
size of 30, and 10 independent runs.
Experiments were conducted on a personal
computer with an Intel Core@ i9-12900H CPU
(2.50 GHz), 16 GB of RAM, running a 64-bit
operating system. The programming
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environment used is MATLAB R2022b. To
comprehensively evaluate algorithm
performance, eight benchmark functions of
varying complexity were selected from the CEC
2017 test suite.
In this experiment, we compared five different
search agent algorithms. By analyzing the
performance of each algorithm under certain
parameter settings, we can compare their
efficiency and accuracy in the search space [38].
To clearly illustrate the generalization capability
of these algorithms, convergence curves are
employed to characterize the optimization
trajectory toward the global optimum. As shown
in Figure 6, the trajectories of the five algorithms
are compared across the benchmark functions.
The IWOA algorithm demonstrates notable
advantages, particularly on functions F10 and F22.
Compared with WOA, PSO, SCA, and GA,
IWOA achieves solutions closer to the global
optima for these functions, indicating faster
convergence and superior iteration outcomes
among the five algorithms.
The enhanced performance of IWOA can be
attributed to the combined effects of Singer
chaotic initialization and the nonlinear
convergence factor, which significantly
accelerate convergence toward the global
optimum. Furthermore, the incorporation of the
Gaussian mutation mechanism allows dynamic
perturbation of the population, effectively
preventing premature convergence to local
extrema while maintaining population diversity.
Experimental results confirm that IWOA
exhibits superior performance in function
optimization tasks, and its comprehensive
optimization capability demonstrates its
effectiveness as a robust method for solving
complex optimization problems.

Figure 6. The Convergence Curves of
Benchmark Function

4.2 Dataset Classification Experiments
Optimization Algorithm (IWOA) is employed to
optimize both the number and dimensions of
convolutional kernels, thereby enhancing
classification performance. The proposed
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IWOA-CNN model is rigorously benchmarked
against alternative optimization methods across
multiple datasets to evaluate its classification
efficacy.
In the experimental design, all datasets were
partitioned using a standardized 7:3 split for
training and testing subsets. Under identical
network configurations, with a population size of
25 and a maximum of 200 iterations, simulation
experiments were conducted to obtain
comparative classification accuracy metrics,
facilitating detailed performance assessments.
All datasets were sourced from the UCI Machine
Learning Repository [39], with their
characteristics summarized in Table 3.
To validate the practical utility of the IWOA
algorithm, convergence behavior was analyzed
based on accuracy benchmarks established in
prior studies [40], with recognition accuracy and
loss values showing stable convergence trends.
Experimental outcomes were evaluated using
two primary metrics: classification accuracy
(covering both training and validation subsets)
and confusion matrix analysis. Classification
accuracy is quantified by the following equation
(11):

TPAccuracy
TP FN


 (11)

To validate the effectiveness of the IWOA-CNN

algorithm, a comprehensive performance
evaluation was conducted through comparative
experiments. Experimental metrics, including
True Positive (TP) and False Negative (FN)
cases, were employed to quantify detection
accuracy and error patterns. A systematic
comparison framework was established to assess
the advantages of IWOA-CNN by benchmarking
it against four established optimization-based
CNN approaches: SCA-CNN, GA-CNN,
PSO-CNN, and WOA-CNN across multiple
datasets. The experimental setup for
cross-algorithm comparison is detailed in Table
3, while Table 4 reports quantitative
classification accuracy measurements. This
rigorous evaluation framework enables a
multidimensional assessment of IWOA-CNN's
operational efficiency, generalization capability,
and performance stability relative to
state-of-the-art counterparts.
Table 3. Classification Experiment Dataset

Datasets InstanceAttributesCategories
wdbc 569 30 2
vehicle 846 18 4
Cervical Cancer
Behavior Risk

72 19 2

Ionosphere 351 34 2
Backup-large 307 35 19

Table 4. Datasrt classification Experimental Results
Datasets IWOA-CNN WOA-CNN SCA-CNN GA-CNN PSO-CNN
wdbc Train 1.0000 1.0000 1.0000 1.0000 1.0000

Test 0.9883 0.9649 0.9883 0.9707 0.9707
vehicle Train 0.9966 0.9763 0.9983 0.9847 1.0000

Test 0.8189 0.7992 0.7716 0.7952 0.7598
CCBR Train 1.0000 1.0000 1.0000 1.0000 1.0000

Test 0.9091 0.8636 0.8181 0.8181 0.8636
Ionosphere Train 0.9919 0.9918 0.9959 0.9918 0.9918

Test 0.9528 0.9622 0.9622 0.9621 0.9339
Backup-large Train 0.9907 0.9953 1.0000 0.9906 1.0000

Test 0.8710 0.8602 0.9139 0.8817 0.8602
Based on the training and testing accuracy of
five methods—IWOA-CNN, WOA-CNN,
SCA-CNN, GA-CNN, and PSO-CNN—across
multiple datasets, several conclusions can be
drawn. IWOA-CNN consistently achieves
superior test accuracy, particularly on the
WDBC, Vehicle, and Cervical Cancer Behavior
Risk datasets, demonstrating high classification
performance. For instance, the test accuracy of
IWOA-CNN on the Vehicle dataset (0.8189)
surpasses that of WOA-CNN (0.7992),
GA-CNN (0.7952), PSO-CNN (0.7598), and

SCA-CNN (0.7716), highlighting its strong
generalization capability in complex
classification tasks.
While most methods achieve high training
accuracy, a decrease in test accuracy is observed
for some approaches, suggesting potential
overfitting. IWOA-CNN exhibits excellent
robustness on the Cervical Cancer Behavior Risk
dataset. On the Ionosphere dataset, WOA-CNN
attains slightly higher test accuracy (0.9622)
compared to IWOA-CNN (0.9528), indicating
marginally better generalization in this specific
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case. Overall, IWOA-CNN achieves optimal or
near-optimal test accuracy across multiple
datasets and demonstrates stable performance,
confirming that its optimization strategy
effectively enhances CNN training. In
comparison, WOA-CNN, GA-CNN, and
PSO-CNN perform well on certain datasets but
generally exhibit slightly lower performance
relative to IWOA-CNN.
Experimental results demonstrate that the
IWOA-CNN model achieves excellent
classification performance and generalization
capability across most datasets, significantly
enhancing CNN accuracy through intelligent
hyperparameter optimization. The model
exhibits strong robustness in handling complex
data distributions, effectively mitigating the
challenges posed by noise interference and
overlapping inter-class features. The
performance on the Vehicle dataset is
particularly notable: as shown in the confusion
matrix in Figure 7, the model achieves
fine-grained classification with high precision,
confirming a substantial improvement over the
original CNN. Compared to the baseline CNN,
IWOA-CNN significantly enhances feature
discrimination, demonstrating the effectiveness
of its optimization mechanism.
A key direction for future optimization is the
integration of attention mechanisms. By
dynamically weighting features to emphasize
critical discriminative regions—such as adding a
spatial attention module after the convolutional
layer to suppress background interference, or
implementing a channel attention mechanism to
recalibrate feature map responses—the model
can selectively reduce confusion between closely
related categories. This approach is expected to
further improve boundary recognition and
fine-grained classification performance,
enhancing the model’s capability in complex
visual tasks.

(a) Classification Matrix of the
IWOA-Optimized CNN Model

(b) WOA-CNNs ConfusionAnalysis Results

(c) Performance Matrix for the
SCA-Enhanced CNN

(d) GA-CNNs Classification Accuracy
Visualization

(e) PSO-driven CNNModels Error
Distribution Matrix.

Figure 7. Confusion Matrix Outcomes for
Various NetworkArchitectures Evaluated on

the Vehicle Dataset (Developed Using
MATLAB)
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5. Conclusions
This paper presents a high-efficiency deep
learning framework based on Convolutional
Neural Networks (CNNs) with robust feature
extraction capabilities, improving performance
in tasks such as image classification and object
detection through hierarchical feature abstraction
and reduced parameter complexity. To enhance
optimisation performance, an improved Whale
Optimisation Algorithm (IWOA) is proposed,
employing a Singer chaotic map for population
diversity, a nonlinear time-varying convergence
factor for exploration-exploitation balance, and
Gaussian mutation to prevent premature
convergence. By integrating IWOA with CNN to
form the IWOA-CNN framework, this study
achieves optimised hyperparameters, resulting in
superior classification accuracy, recall, and
generalisation across various datasets, offering
an efficient and reliable solution for deep
learning optimisation.
It should be noted that the experimental scope
was constrained by relatively limited sample
sizes, and future investigations with more
diverse datasets could yield stronger statistical
validity. This work primarily demonstrates the
significant potential of Heuristic and Meta
heuristic algorithms in improving neural network
capacity. Dawning research directions include
developing more effective meta-heuristic
enhancement strategies and exploring their
broader Utilization in varied domains featuring
selection regression analysis, predictive
modeling, and path optimization tasks. The
findings underscore the practical value of
integrating evolutionary computation techniques
with deep learning architectures.

6. Disclosure Statement
The authors declare that they have no conflicts
of interest.

7. Data Availability Statement
Data will be made available on reasonable
request.

References
[1] Chakraborty A, Kar A K. Swarm intelligence:

A review of algorithms[J]. Nature-inspired
Computing and Optimization: Theory and
Applications, 2017: 475-494.

[2] Abdollahzadeh B, Khodadadi N, Barshandeh
S, et al. Puma Optimizer (PO): a novel

metaheuristic optimization algorithm and its
application in machine learning[J]. Cluster
Computing, 2024, 27(4): 5235-5283.

[3] Wang J, Wang W, Hu X, et al. Black-winged
kite algorithm: a nature-inspired
meta-heuristic for solving benchmark
functions and engineering problems[J].
Artificial Intelligence Review, 2024, 57(4):
98.

[4] Zhao W G, Wang L Y, Zhang Z X, et al.
Electric eel foraging optimization: A new
bio-inspired optimizer for engineering
applications[J]. Expert Systems with
Applications, 2024, 238: 122200.

[5] Passino K M. Biomimicry of bacterial
foraging for distributed optimization and
control[J]. IEEE Control Systems Magazine,
2002, 22(3): 52-67.

[6] Eusuff M, Lansey K, Pasha F. Shuffled
frog-leaping algorithm: a memetic
meta-heuristic for discrete optimization[J].
Engineering Optimization, 2006, 38(2):
129-154.

[7] Mirjalili S, Lewis A. The whale optimization
algorithm[J]. Advances in Engineering
Software, 2016, 95: 51-67.

[8] Tanyildizi E, Cgali T. Whale Optimization
Algorithms With Chaotic Mapping[J]. Frat
Universitesi Muhendislik Bilimleri Dergisi,
2017, (1): 307-317.

[9] Asghari K, Masdari M, Gharehchopogh F S,
et al. A chaotic and hybrid gray wolf-whale
algorithm for solving continuous
optimization problems[J]. Progress in
Artificial Intelligence, 2021, 10(3): 349-374.

[10] Nam C. Convolutional neural
network-based prediction of hardness in
bulk metallic glasses with small data[J].
Journal of Non-Crystalline Solids, 2025,
654123451-123451.

[11] Hubel D H, Wiesel T N. Receptive fields,
binocular interaction and functional
architecture in the cat's visual cortex[J]. The
Journal of Physiology, 1962, 160(1): 106.

[12] LeCun Y, Boser B, Denker J S, et al.
Backpropagation applied to handwritten zip
code recognition[J]. Neural computation,
1989, 1(4): 541-551.

[13] Ha I ,Kim H ,Park S , et al.Image retrieval
using BIM and features from pretrained
VGG network for indoor localization[J].
Building and Environment, 2018, 14023-31.

[14] Yang H, Wenjun K, Jinqiang L. ResNet
Combined with Attention Mechanism for

Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 3 No. 3, 2025 69

Copyright @ STEMM Institute Press http://www.stemmpress.com



Genomic Deletion Variant Prediction[J].
Automatic Control and Computer Sciences,
2024, 58(3): 252-264.

[15] Yao X, Wang X, Karaca Y, et al.
Glomerulus classification via an improved
GoogLeNet[J]. IEEE Access, 2020, 8:
176916-176923.

[16] Wang L, Yang Y, Min R, et al. Accelerating
deep neural network training with
inconsistent stochastic gradient descent[J].
Neural Networks, 2017, 93: 219-229.

[17] Raiaan M A K, Sakib S, Fahad N M, et al. A
systematic review of hyperparameter
optimization techniques in Convolutional
Neural Networks[J]. Decision Analytics
Journal, 2024: 100470.

[18] Bergstra J, Bengio Y. Random search for
hyper-parameter optimization[J]. The
Journal of Machine Learning Research,
2012, 13(1): 281-305.

[19] Tuerxun W, Chang X, Hongyu G, et al.
Fault diagnosis of wind turbines based on a
support vector machine optimized by the
sparrow search algorithm[J]. IEEE Access,
2021, 9: 69307-69315.

[20] Gorkemli B, Kaya E, Karaboga D, et al. A
review on the versions of artificial bee
colony algorithm for scheduling problems[J].
Journal of Combinatorial Optimization,
2025, 49(4): 1-46.

[21] Suriyan K, Nagarajan R. Particle swarm
optimization in biomedical technologies:
innovations, challenges, and opportunities[J].
Emerging Technologies for Health Literacy
and Medical Practice, 2024: 220-238.

[22] Mirjalili S. Genetic algorithm[J].
Evolutionary Algorithms and Neural
Networks: Theory and Applications, 2019:
43-55.

[23] Liu Z, Yeh W C. Simplified swarm
optimisation for CNN hyperparameters: a
sound classification approach[J].
International Journal of Web and Grid
Services, 2024, 20(1): 93-113.

[24] Munsarif M, Sam'an M, Fahrezi A.
Convolution neural network hyperparameter
optimization using modified particle swarm
optimization[J]. Bulletin of Electrical
Engineering and Informatics, 2024, 13(2):
1268-1275.

[25] Aghabeigi F, Nazari S, Osati Eraghi N. An
efficient facial emotion recognition using
convolutional neural network with local
sorting binary pattern and whale

optimization algorithm[J]. International
Journal of Data Science and Analytics, 2024:
1-16.

[26] Seyedali M, Andrew L. The Whale
Optimization Algorithm[J]. Advances in
Engineering Software, 2016 (1): 95-101．

[27] Luan F, Cai Z, Wu S, et al. Improved Whale
Algorithm for Solving the Flexible Job Shop
Scheduling Problem[J]. Mathematics, 2019,
7(5): 384-384.

[28] Hiba A, Mohammed A. Software fault
prediction using Whale algorithm with
genetics algorithm[J]. Software: Practice and
Experience, 2020, 51(5): 1121-1146.

[29] Taye M M. Theoretical understanding of
convolutional neural network: Concepts,
architectures, applications, future
directions[J]. Computation, 2023, 11(3): 52.

[30] Wang Z J, Turko R, Shaikh O, et al. CNN
explainer: learning convolutional neural
networks with interactive visualization[J].
IEEE Transactions on Visualization and
Computer Graphics, 2020, 27(2):
1396-1406.

[31] Cheng N, Chen Y, Gao W, et al. An
improved deep learning model:
S-TextBLCNN for traditional Chinese
medicine formula classification[J]. Frontiers
in Genetics, 2021, 12: 807825.

[32] Ewees A A, El Aziz M A, Hassanien A E.
Chaotic multi-verse optimizer-based feature
selection[J]. Neural Computing and
Applications, 2019, 31: 991-1006.

[33] Wei F , Shi X , Feng Y, et al. Improved
Harris hawk algorithm based on
multi-strategy synergy mechanism for global
optimization [J]. Soft Computing, 2024,
28(21): 1-46.

[34] Qian P, Pu C, Liu L. Ultra-high-precision
pneumatic force servo system based on a
novel improved particle swarm optimization
algorithm integrating Gaussian mutation and
fuzzy theory[J]. ISA Transactions, 2024, 152:
453-466.

[35] Zhang J, Yu X, Lei X, et al. A novel deep
LeNet-5 convolutional neural network
model for image recognition[J]. Computer
Science and Information Systems, 2022,
19(3): 1463-1480.

[36] Tulbure A A, Tulbure A A, Dulf E H. A
review on modern defect detection models
using DCNNs–Deep convolutional neural
networks[J]. Journal of Advanced Research,
2022, 35: 33-48.

70 Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 3 No. 3, 2025

http://www.stemmpress.com Copyright @ STEMM Institute Press



[37] Wu X, Li S, Jiang X, et al. Information
acquisition optimizer: a new efficient
algorithm for solving numerical and
constrained engineering optimization
problems[J]. The Journal of Supercomputing,
2024, 80(18): 25736-25791.

[38] Jamil M, Yang X S. A literature survey of
benchmark functions for global optimisation
problems[J]. International Journal of
Mathematical Modelling and Numerical

Optimisation, 2013, 4(2): 150-194.
[39] Tanveer M, Gautam C, Suganthan P N.

Comprehensive evaluation of twin SVM
based classifiers on UCI datasets[J]. Applied
Soft Computing, 2019, 83: 105617.

[40] Wang C X, Shi T T, Han D N. Adaptive
dimensional gaussian mutation of
PSO-optimized convolutional neural
network hyperparameters [J]. Applied
Sciences, 2023, 13(7):4254.

Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 3 No. 3, 2025 71

Copyright @ STEMM Institute Press http://www.stemmpress.com




