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Abstract: To address the challenge of
balancing accuracy and efficiency in potato
disease detection models under complex field
conditions, this study proposes an improved
lightweight detection algorithm, ERL-
YOLOv8n. The algorithm optimizes the
YOLOvV8n model in three key aspects: First,
the Receptive Field Attention Convolutional
Block Attention Module (RFCBAMConv) is
introduced into the backbone network to
enhance the model's adaptive perception of
disease spot features at various scales. Second,
an EPSA (ECA and Polarized Self-Attention)
module is embedded in the neck network to
improve the model's anti-interference
capability in complex backgrounds by fusing
multi-dimensional  feature  information.
Finally, the LSGE (Large Selective Kernel
Network and Spatial Group-wise Enhance)
attention mechanism is incorporated to
synergistically optimize the backbone and
neck, effectively improving detection
accuracy for large-scale targets and complex
scenes. Ablation and comparative
experiments demonstrate that the ERL-
YOLOv8n model achieves significant
improvements in key performance metrics
while maintaining high detection speed.
Compared to the original YOLOv8n model,
its precision, recall, and mAP@S50 increased
by 1.4, 5.7, and 2.3 percentage points,
respectively. The improved model exhibits
enhanced robustness and superior detection
performance, particularly in the early
identification of early and late blight,
providing reliable technical support for
practical applications in precision agriculture.

Keywords: Potato Disease; Object Detection;
YOLOVS8n; Deep Learning; Attention Mecha
nism.
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1. Introduction

In recent years, China's potato industry has
entered a new stage of rapid development. With
the continuous optimization of cultivation
techniques and rising market demand, both the
planting scale and annual output of potatoes
have maintained steady growth. It is noteworthy
that during the process of industrial expansion,
some production areas have encountered the
problem of field management measures failing
to keep pace, such as in nutrient management
and pest and disease control during the crop
growth stage. This extensive management model
not only restricts the potential for yield
improvement but also significantly increases the
risk of crops being infected by various disease
[1], causing serious economic losses to growers.

The conventional approach to managing potato
diseases depends primarily on the empirical
assessment of agricultural experts. This reliance
on visual inspection, however, presents distinct
drawbacks, including high labor costs, low
detection efficiency, and unstable accuracy.
These limitations are especially acute when
addressing the monitoring needs of large-scale
plantations. To break through this impasse, the
field of agricultural technology has started to
implement intelligent solution [2].

Intelligent agricultural technology is now rapidly
driving industrial change. Within the field of
crop disease recognition, a  complete
technological ecosystem has gradually formed
around deep learning. By building custom
models and training them with massive volumes
of leaf imagery, many research groups have
successfully enabled the intelligent identification
of crop diseases. In the specific niche of potato
disease detection, academia has seen the
emergence of numerous groundbreaking
research outcomes:
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To address the challenges of late blight detection,
the team led by Wang Linbai innovatively
optimized the CenterNet-SPP model architecture.
By constructing a multi-level feature extraction
network, their solution achieves synergistic
optimization of disease center point localization
and target size regression, significantly
enhancing detection sensitivity [3]. Taking a
different approach, Niu Yuxia et al. developed a
layered feature alignment network. This method
achieved a breakthrough in few-shot learning
scenarios by fusing textual semantics and visual
features  through  multi-modal  mapping
technology [4]. Of particular note, the team led
by Sun Jianming combined the Efficient Net v2
network with an attention mechanism. Through
the synergistic application of a pyramid feature
fusion strategy and a visual Transformer encoder
module, their model achieved an accuracy of
98.26%, setting a new benchmark in the field [5].
Regarding real-time detection, the contributions
of Liu Kaiqi with the YOLOV3 framework are
noteworthy. By incorporating a Spatial Pyramid
Pooling module, his YOLOv3-SPP algorithm
markedly enhances accuracy without
compromising detection speed [6]. Meanwhile,
the latest YOLOvS8n-Potato algorithm from Zeng
Liang's team marks a two-fold achievement. By
redesigning the feature fusion network with a
CAA-HS-FPN architecture and combining it
with a lightweight detection head and an
optimized PloU loss function, the model's
precision metric improved by 2.4 percentage
points, even as the number of parameters was
reduced by 42% [7].

Although these innovations have significantly
improved detection accuracy in laboratory
environments, critical challenges remain in
practical application scenarios. Field operational
environments are subject to uncontrollable
factors such as variations in lighting and
complex background interference. Consequently,
the performance advantages of existing models
on idealized datasets are difficult to fully
translate to real-world planting scenarios [8]. To
address this industry pain point, this study
focuses on overcoming the challenge of disease
recognition in complex environments. By
optimizing the architecture of the YOLOVS
model, we develop a detection system suitable
for open-air cultivation environments. The
algorithm is specifically adapted for two highly
prevalent diseases, early blight and late blight, to
provide a reliable technical solution for practical
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agricultural production.
2. Materials and Methods

2.1 Test Environment and Parameter

The experiments were conducted on a server
equipped with an Intel Xeon Platinum 8481C
CPU operating at 2.70GHz, an NVIDIA
GeForce RTX 4090D graphics card (GPU), and
24 GB of RAM. The algorithm was
implemented in Python. During training, the
batch size was set to 32, the number of epochs to
220, and the initial learning rate to 0.001. The
input images were resized to a resolution of 640
x 640 pixels.

2.2 Dataset Acquisition and Preprocessing

The dataset used in this study was sourced from
the publicly available Plant Village dataset. A
total of 2000 images were selected,
encompassing three categories: early blight
leaves, healthy leaves, and late blight leaves.
Subsequently, the labelimg tool was used to
annotate these three classes of data. The dataset
was then partitioned into training, testing, and
validation sets according to a 7:2:1 ratio. Data
augmentation was performed to expand the
dataset, a process that enhances the model's
training performance and robustness. As shown
in Figure 1, the augmentation process resulted in
a final dataset of 4000 images.

Figure 1. Original Diseased Leaf Images
and Images Generated by Data
Augmentation

2.3 Evaluation Metrics

The evaluation metrics used in this experiment
are Precision, Recall, mAP50, mAP50-95, and
GFLOPs (to measure model computational
complexity). The formula for Precision (P) is
expressed as:

TP
~ TP+FP (1)
The formula for Recall (R) is expressed as:
__ TP 2)
TP+FN (
The mean  Average Precision (mAP)

Copyright @ STEMM Institute Press



Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 3 No. 4, 2025 3

metric mAP50 represents the average precision
calculated at an Intersection over Union (IoU)
threshold of 50%. In contrast, mAP50-
95 represents the mAP value averaged over a
range of IoU thresholds from 50% to 95%. The

formula for its calculation can be expressed as:
| TP
mAP50=- jC:I TN 3)

2.4 Research Methods

2.4.1 The YOLOVS Model

YOLOv8 is a detection algorithm from the
YOLO family, developed by Ultralytics for tasks
such as object detection and instance
segmentation. It features a three-part decoupled
architecture  ("Backbone-Neck-Head").  Its
backbone significantly improves feature
extraction by using the C2f module with cross-
stage dense connections and an adaptive Meta-
ACON activation function. Meanwhile, the head
introduces a dynamic decoupled design,
separating classification from regression and
utilizing an anchor-free mechanism. Its loss
function is bifurcated, comprising a BCE Loss
for classification and a combination of
Distribution Focal Loss and CloU Loss for
regression. Our work builds upon the YOLOv8n
model, introducing improvements primarily to
its convolutional modules, as well as its
backbone and neck architectures.

2.4.2 The ERL-YOLOvVS8n Algorithm

YOLOv8n is a lightweight object detection
model that, despite its advantages, struggles with
high error rates and unstable performance when
detecting potato diseases in challenging field
conditions like fluctuating light and leaf
occlusion.  Nevertheless, its  end-to-end
architecture and decomposable modules offer
ample room for enhancement. Based on this
potential, we introduce ERL-YOLOvS8n, an

improved model for potato leaf disease detection.

As shown in Figure 2, the ERL-YOLOv8n
network features three key architectural
upgrades. To better capture complex features,
we replace the backbone's standard Conv layers
with RFCBAMConv [9] modules. To boost
detection accuracy in complex scenarios, we
introduce the EPSA attention mechanism into
the neck. Finally, to improve accuracy on large
targets and in cluttered backgrounds without
sacrificing real-time speed, we insert the LSGE
attention mechanism between the backbone and
neck. As a result, our approach achieves higher
accuracy at a lower computational cost,
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demonstrating superior performance in the
detection of potato leaf diseases.

2.4.3 The EPSA Module

In object detection tasks, environmental

interference poses a significant challenge that
cannot be overlooked. To enable the model to
adapt to detection in various complex
environments and thereby enhance its accuracy,
this study designed a novel attention mechanism,
EPSA (ECA and Polarized Self-Attention). This
mechanism was developed by integrating the
advantages of two existing attention mechanisms:
ECA [10] (Efficient Channel Attention) and
PSA [11] (Polarized Self-Attention). A key
characteristic of EPSA is its ability to balance
multi-dimensional ~ feature  capture  with
computational efficiency.

Backbone

Head

Head ]

Figure 2. Architecture of the ERL-YOLOv8n
Model
The EPSA attention mechanism optimizes image
feature extraction by combining the advantages
of ECA and PSA. The ECA module uses
adaptive average pooling and a one-dimensional
convolution to capture inter-channel
dependencies. In contrast, the PSA module
captures multi-dimensional features through
channel and spatial attention, but at a high
computational cost. EPSA strikes a balance
between these two approaches by using a
learnable weight parameter (alpha) to achieve
comprehensive feature extraction. While ECA is
known for its efficiency, its granularity is limited;
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PSA offers comprehensive feature extraction but
incurs significant computational overhead. By
fusing these two mechanisms and adjusting the
alpha  parameter, EPSA  optimizes the
computational load, achieving a balance between
efficiency and performance.

The EPSA attention mechanism achieves
comprehensive and rich feature extraction by

Input(x)
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integrating the advantages of ECA and PSA, all
while preserving computational efficiency. This
mechanism is incorporated into the ninth layer of
the backbone network to enhance the efficiency
and accuracy of feature extraction. The
architecture of the module is illustrated in Figure
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Figure 3. Architecture of the EPSA Module

First, within the ECA module, the global context
is captured by applying global average pooling
to the input feature map. A one-dimensional

convolution is then used to fuse channel
information, with the kernel size being
determined by an  adaptive  function.

Subsequently, a Sigmoid activation function is
applied to generate the weights for each channel.
In parallel, the PSA module generates spatial
attention weights and a new feature map using
its own 1D convolution, global pooling
operations, and a Sigmoid function. Finally, the
output from PSA is dynamically fused with the
output from ECA, governed by a learnable
weight. The corresponding mathematical
formula is shown below.

Fepsa(X)=a+ Fpea(X)+(1-0) -+ Fpsa(X)  (4)
2.4.4 The RFCBAM Module
This research addresses two primary challenges.
First, disease samples collected in the field often
exhibit indistinct feature boundaries and
complex morphological variations. Second,
conventional convolution operations have
distinct limitations during the feature extraction
stage [12]. To overcome these technical
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bottlenecks, this study incorporates an adaptive
perceptual convolution mechanism into the
backbone network architecture. This technical
approach, which integrates multi-scale receptive
field optimization with dual-dimension attention
regulation, significantly enhances the model's
analytical capability for complex pathological
signs while controlling computational resource
consumption.

The performance of conventional Convolutional
Neural Networks (CNNs) in disease recognition
is primarily constrained by two factors. First, the
fixed parameters of convolutional kernels
struggle to adapt to the diverse feature variations
across different diseased regions, resulting in
insufficient sensitivity for capturing subtle
pathological signs. Second, the weight allocation
method, often based on global averaging, dilutes
the representational strength of critical disease
regions [13]. This dual limitation frequently
causes traditional models to suffer from the loss
of fine-grained features and the misclassification
of key areas during leaf spot detection.
Therefore, Receptive Field Attention
Convolution is introduced. By leveraging the
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synergistic interaction of spatial perception and
channel attention mechanisms, it constructs
dynamic convolutional kernels with region-
adaptive capabilities. This, in turn, enhances the

RFA

model's ability to extract multi-scale features
from complex diseases. Its architecture is
illustrated in Figure 4.
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Figure 4. Architecture of the RFAConv Module

First, the input feature map is down sampled
using an average pooling layer to reduce
computational complexity while preserving
principal features. Subsequently, a grouped
convolution layer performs feature extraction on
the pooled feature map; by dividing channels
into multiple groups, grouped convolution
enhances the model's representational capacity.
The resulting feature maps are then divided into
groups, where each group interacts with its
corresponding kernel and generates an attention
weight map via a softmax function. These
weight maps indicate the importance of different
spatial locations. The attention map is then
multiplied element-wise with the original
receptive field features, which re-weights the
original features to emphasize important regions.
Following this, the shape of the re-weighted
feature map is adjusted to accommodate
subsequent convolutional operations. Finally, the
receptive field's spatial features are processed
based on the weights from the attention map,
then resized to the appropriate dimensions to
produce the final output of the Receptive Field
Attention Convolution. The computational
process of the Receptive Field Attention

Convolution is detailed in Equation (5).
F&=Softmax (g' x (Angool(X))) xReLU (Nonn (gkxk (X))) (5)
&=Ap¥Fe

In Equation (5), g'! represents a grouped
convolution of size ixi, k is the size of the
convolution kernel, and Norm denotes the
normalization function. X is the input feature
map, and the output F is obtained by multiplying
the attention map 4, with the transformed
receptive field spatial features F.

Spatial attention mechanisms focus on receptiv

Copyright @ STEMM Institute Press

e field spatial features and, when combined wit
h aggregation mechanisms, overcome the probl
em of shared parameters in standard convolutio
ns. Existing spatial attention mechanisms, such
as the Convolutional Block Attention Module
[14] (CBAM), already account for long-range i
nformation by generating a global context thro
ugh global average pooling or global max pooli
ng. Therefore, this study introduces RFCBAM
Conv, a Receptive Field Attention Convolution
module that combines RFA with CBAM. Its ar
chitecture is illustrated in Figure 5.
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Figure 5. Architecture of the RFCBAMConv
Module

2.4.5 The LSGE Module

To address key challenges in detecting leaf
spots against complex backgrounds, such as
significant scale variations and high levels of
background interference, this study proposes a
leaf disease detection method based on locally
sensitive group enhancement. By fusing multi-
scale feature optimization with a dynamic
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attention mechanism, this method overcomes
the performance bottlenecks of traditional
models that rely on single-path attention
mechanisms. It provides a high-precision,

SpatoalGroupEnHance G
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Global average pooling

Position-wise dot product

- jacﬁ¢ﬁ.ﬁNﬁ

=

LSKNet C ) Channel Concatenation + ) Element Addition ( x ) Element Product

lightweight solution for disease detection in
complex agricultural scenarios [15]. The
architecture of the LSGE module is illustrated
in Figure 6.
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Figure 6. Architecture of the LSGE Module

This study combines the Spatial Group-wise
Enhance [16] (SGE) and the Large Selective
Kernel Network [17] (LSKNet) mechanisms to
enhance the model's ability to capture and
understand image features.

First, a grouped convolution operation is
performed on the input feature map. By
partitioning the input feature map into multiple
groups and applying convolution operations
independently within each group, this process
generates several sets of intra-group feature
maps, achieving an initial separation and
extraction of features.

Subsequently, Global Average Pooling (GAP) is
applied to each intra-group feature map. This
operation compresses each feature map along its
spatial dimensions by calculating the average
value for each channel. The result is a
corresponding global feature vector, which
achieves both dimensionality reduction and the
aggregation of global information.

Next, a dot product operation is performed
between the global feature vector and the
original feature map to generate attention
weights. This operation highlights key feature
regions by establishing a correlation between
global information and local features. To ensure
the weights conform to a probability distribution,
the generated attention weights are sequentially
processed with normalization and a Sigmoid
activation function. Subsequently, the processed
attention weights are applied to the original
feature map via a multiplication operation,
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which enhances the feature map's capacity to
represent key information.

During the feature fusion stage, the feature maps
from the multiple groups are first concatenated
along the channel dimension. On this basis, a
large-kernel convolution is applied. By
expanding the receptive field, this operation
captures a broader range of contextual
information, thereby enhancing the network's
ability to understand global semantics.

To further enhance the representational capacity
of the feature map, a self-attention mechanism is
introduced. This mechanism adaptively adjusts
the weights of different feature components by
calculating the degree of correlation between
elements within the feature map. Concurrently,
both average pooling and max pooling
operations are utilized to capture information
from the feature map from different perspectives.
Average pooling preserves the overall, holistic
information of the features, while max pooling
highlights the most salient local information.
Finally, the different types of features acquired
through the aforementioned operations are fused
and then processed by a Sigmoid activation
function to generate the final attention weights.
These weights are applied to the original feature
map to produce the final output feature map.
Through this design, which combines multi-
scale feature capture with an efficient attention
mechanism, the model's performance in image
recognition tasks is effectively enhanced [18].
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Table 1. Ablation Study Results

Model EPSAILSGE|RFCBAM |Precision (%)|Recall (%) mAP@50(%) mAP@50~95(%)

YOLOvS8n x x x 89.7 70.0 84.3 69.6

1 v [ x x 89.9 73.5 85.3 69.6

2 x N x 90.3 72.4 84.9 70.1

3 x x N 87.0 78.3 84.3 69.2

4 N N x 90.0 72.1 83.6 69.5

5 v [ x N 88.7 73.8 86.1 69.8

6 x N N 89.1 75.2 85.0 70.1

ERL- YOLOv8n | v | N 91.1 75.7 86.6 70.6

3. Results and Discussion

3.1. Ablation Study

To validate the effectiveness of the individual
improved modules and their final combination in
the ERL-YOLOvV8n model, an ablation study
was designed. In this study, comparative
experiments were conducted using different
combinations of the three proposed modules. To
ensure the fairness of the evaluation, all
experiments were performed on the same dataset
and with the same hyperparameters.

The results of the ablation study are presented in
Table 1. Compared to the original YOLOvVSn,
the ERL-YOLOV8n model—which
simultaneously incorporates the RFCBAMConv,
EPSA, and LSGE modules—achieved
improvements of 1.4, 5.7, 23, and
1.0 percentage points on the four key metrics of

Precision, Recall, mAP@50, and mAP@50-95,
respectively, after 220 epochs of training. This

demonstrates that the improved algorithm
proposed in this study, ERL-YOLOvS8n,
achieves significant results in practical
applications.

3.2 Comparative Experiments

To evaluate the performance of the ERL-
YOLOV8n algorithm for the task of potato leaf
disease detection, we conducted a comparative
analysis against several other models: YOLOVS,
YOLOV7-tiny, and the original YOLOv8n. All
experiments were conducted under identical
conditions, including the same environmental
setup, dataset, and hyperparameters. The
performance differences are summarized in
Table 2, and their respective F1-Confidence
curves are compared in Figure 7.

Table 2. Comparative Experiment Results

F1-Confidence Curve

| YOLO v5

/ N ||| voroven

nnnnnnnnnn

Model Precision (%) Recall (%) mAP@50 (%) mAP@50~95 (%)
YOLO v5 89.1 73.1 84.6 68.7
YOLO v7-tiny 87.1 67.1 79.4 61.2
YOLO v8n 89.7 70.0 84.3 69.6
ERL - YOLO v8n 91.1 75.7 86.6 70.6

YOLO v7 -tiny

ERL-YOLO v8n

Figure 7. Comparison of Fi-Confidence Curves for the Different Models
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3.3 Detection Results

To validate the effectiveness of the algorithm's
improvements, this study conducted a
comparative experiment using samples of three
common potato leaf diseases. As illustrated in
Figure 8, when tested on the same dataset, the
ERL-YOLOv8n model demonstrates superior
identification capabilities compared to the
original YOLOv8n model. The experimental
data show that the improved model performs
better in recognizing complex morphologies and
small-sized lesions. For the late blight samples,
the original model was prone to misclassifying
leaves with tiny, early-stage brown spots as
healthy. In contrast, the new model can
effectively capture these subtle features,
significantly reducing missed detections of
early-stage lesions. For the early blight samples,
which are often characterized by indistinct lesion
borders and irregular shapes (especially in the
initial stages of infection), the recognition
accuracy of the improved model was 12.6

percentage points higher than the original model.
Healthy Potato

Original Image

YOLO v8n

ERL-YOLO v8n

Figure 8. Comparison of Disease Detection Results

4. Conclusion and Discussion

Targeting the critical industry issue of
balancing accuracy and efficiency in
agricultural disease recognition, this research
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This indicates that, under complex field
conditions, the new model can more reliably
identify leaves exhibiting the early signs of early
blight.

In-depth analysis reveals that the improved
model, through its optimized feature extraction
mechanism, captures detailed features such as
leaf texture and spot distribution in its shallow
layers, while simultaneously enhancing its
ability to process mid-level semantic information.
This dual optimization enables the model to
maintain  strong  feature  discrimination
capabilities even against complex backgrounds.
This is particularly evident when dealing with
the semi-transparent lesions of early-stage late
blight, where the model can achieve accurate
judgments by cross-validating features across
multiple  dimensions. = The  comparative
experiments confirm that the improved network
architecture effectively boosts the recall rate for
small object detection, offering a new approach
to resolving misclassification issues in
agricultural image detection.

Early Blight_Potato Late Blight Potato

healthy_potgto 0.51

healthy_potato

nealthy, potato OL39%
healthy_potato 0.71

proposes an innovative detection framework
named ERL-YOLOvV8n. Through a systematic
optimization of the existing algorithm
architecture, the interaction between the
attention mechanism and the feature extraction
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module was fundamentally redesigned.
Experimental results demonstrate that the
model, enhanced by synergistic multi-module
optimization, exhibits significant advantages in
complex field scenarios. It not only effectively
captures minute lesion features but also shows
particularly notable improvements in detection
accuracy under conditions of leaf occlusion.
Compared to the baseline model, the improved
ERL-YOLOV8n achieves a breakthrough 2.3
percentage point increase in the mean Average
Precision metric while maintaining
computational efficiency, thus validating the
effectiveness of the structural optimization
strategy. This research has achieved positive
results in improving the YOLOv8n model,
demonstrating superior performance on the
potato leaf disease detection task. These
promising outcomes provide robust support for
the future development of object detection and
offer a more accurate and efficient solution for
practical applications.

Acknowledgments

This work was supported by the University-
level Research Project of Chongqing College
of Humanities, Science and Technology (Grant
No. CQRKZK202005).

References

[1] Yuan Y J. Potato Planting Technology and
Common Pest and Disease Control
Strategies—A Case Study of Ningjin
County. Southern Agricultural Machinery,
2023, 54(06): 66-68, 86.

[2] Javed R, Imran K, Ghulam A, et al. Multi-
Level Deep Learning Model for Potato
Leaf Disease Recognition. Electronics,
2021, 10(17): 2064-2064.

[3] Wang L B, Zhang B, Yao J F, et al. Potato
Leaf Disease Recognition and Lesion
Detection Based on Convolutional Neural
Networks. Journal of Chinese Agricultural
Mechanization, 2021, 42(11): 122-129.

[4] NiuY X, Sun Z H, Ren W, et al. Few-Shot
Potato Disease Leaf Detection Based on a
Layered Feature Alignment Network.
Journal of  Chinese  Agricultural
Mechanization, 2024, 45(02): 250-258.

[5] SunJ M, Bi ZY, Niu L D. Recognition of
Potato Leaf Diseases Using an
EfficientNet v2 Network with a Feature
Fusion Transformer. Jiangsu Agricultural
Sciences, 2024, 52(08): 166-176.

Copyright @ STEMM Institute Press

[6] Liu K Q. Research on Potato Leaf Disease
Recognition Based on YOLOv3-SPP.
Automation Application, 2022, (06): 21-
24+28. DOLI: 10.19769/ j.
zdhy.2022.06.006.

[7] Zeng L, Peng Y. Potato Leaf Disease
Detection Algorithm Based on Improved
YOLOVS. Journal of Luoyang Institute of
Science and Technology (Natural Science
Edition), 2024, 34(03): 62-69.

[8] Gao X, Zhang Y. Detection of Fruit using
YOLOvS8-based Single Stage Detectors.
International ~ Journal of  Advanced
Computer Science and Applications
(IJACSA), 2023, 14(12).

[9] Zhang X, Liu C, Yang D, et al. RFAConv:
Innovating spatial attention and standard
convolutional operation. arXiv preprint
arXiv:2304. 03198, 2023.

[10]Q. W, B. W, P.Z, et al. ECA-Net: Efficient
channel attention for deep convolutional
neural networks. Proceedings of the IEEE
Computer  Society  Conference  on
Computer Vision and Pattern
Recognition,2020,11531-11539.

[11]Huajun L, Fugiang L, Xinyi F, et al.
Polarized self-attention: Towards high-
quality pixel-wise mapping.
Neurocomputing, 2022, 506158-167.

[12]Zhong T. Research on Methods for Crop
Leaf Disease Type Identification and
Detection Based on Deep Learning.
Tianjin University of Technology, 2024.
DOI: 10.27360/d.cnki.gtlgy.2024.001314.

[13]Zhou Y F, Liu D Y, Zhou Y P. Crop
Disease Leaf Detection Based on
Multimodal Feature Alignment. Journal of
Chinese Agricultural Mechanization, 2024,
45(07): 180-187. DOLI:
10.13733/j.jcam.issn.2095-
5553.2024.07.027.

[14]Woo S, Park J, Lee J Y, et al. CBAM:
convolutional block attention module
//Lecture Notes in Computer Science.
Cham: Springer International Publishing,
2018: 3-19.

[15]Wang Z T, Zou Y B, Wu C L, et al.
Beyond Single Perception: An
Agricultural Pest Detection Algorithm
MRA-YOLOX. Computer Engineering
and Applications, 2024, 60(16): 206-216.

[16]Li X, Hu X, Yang J. Spatial Group-wise
Enhance: Improving Semantic Feature
Learning in Convolutional Networks.

http://www.stemmpress.com



10 Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 3 No. 4, 2025

CoRR, 2019, abs/1905.09646 [18]Nagachandrika B, Prasath R, Joe P I. An
[171Y. Li, Q. Hou, Z. Zheng, M. -M. Cheng, J. automatic classification framework for

Yang and X. Li, "Large Selective Kernel
Network for Remote Sensing Object
Detection," 2023 IEEE/CVF International
Conference on Computer Vision (ICCV),
Paris, France, 2023, pp. 16748-16759,
DOI: 10.1109/ICCV51070.2023.01540.

http://www.stemmpress.com

identifying type of plant leaf diseases
using multi-scale feature fusion-based
adaptive deep network. Biomedical Signal
Processing and Control, 2024, 95(PA):
106316-.

Copyright @ STEMM Institute Press





