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Abstract: The analysis of long-term behavior
in nonlinear systems is one of the core
contents in modern applied mathematics. Its
key characteristic is dissipativity, which
implies that the system exhibits a certain
form of global boundedness or the ultimate
decay of energy, ensuring that the system
will eventually enter a globally attracting set.
Studying dissipativity is of great significance
for analyzing the stability and controllability
of nonlinear functional systems. Currently,
functional differential equations depend not
only on the current state but also on past
states. When coupled with other types of
equations, dissipativity analysis becomes
relatively difficult and extremely complex.
For such coupled systems, it is necessary to
analyze their numerical methods and
identify appropriate research tools.
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1. Introduction
In most cases, general linear methods are
employed to handle the numerical integration
framework through multi-step and multi-stage
methods, which can maintain the dissipativity
of the original system at the numerical level—
this has become a practical key in dissipativity
analysis. From a teaching perspective, students
need to understand not only the definition of
dissipativity and the construction of general
linear methods but also develop a unique
mathematical modeling mindset that transitions
from continuous to discrete systems. When
analyzing numerical methods, the ability to
preserve the geometric properties of the system
is required, which involves integrating multiple
fields such as numerical solutions of differential
equations and dynamic systems to achieve
cross-domain analysis. This places higher

demands on students' foundational knowledge
and abstract thinking. Traditional teaching
approaches that proceed from definitions and
theorems to proofs often yield poor results;
therefore, continuous exploration of teaching
strategies is imperative for current development.

2. Analysis of Core Difficulties and
Breakthrough Strategies
In the practical process of conducting
dissipativity analysis for coupled systems of
nonlinear functional equations, it is necessary
to accurately identify the pain points and
difficulties encountered by students during
learning and formulate corresponding
breakthrough strategies. The common
difficulties include the following.

2.1 Relatively Abstract Concepts
Concepts such as functional differential
equations and infinite-dimensional dynamic
systems make it difficult for students to fully
understand ordinary differential equations, let
alone establish intuitive mental models. To
address this, breakthrough strategies should
involve intuitive analogy-based teaching. For
example, through real-life analogies, functional
differential equations can be compared to
systems with memory capabilities. For instance,
a person's past decisions do not depend solely
on their current emotional state—similarly, the
current rate of change of a system depends not
only on its current state but also on experiences
from previous days, meaning the function itself
is influenced by historical states. When
analyzing coupled systems, they can be
analogized to a team: each member is part of
the team, and their individual states directly
affect the team's overall state. Similarly, in a
coupled system, each subsystem exerts an
influence on other subsystems.
Geometric intuition can also be used to guide
dissipativity teaching. When explaining
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dissipativity, teachers should avoid directly
presenting highly abstract mathematical
definitions. Instead, they should start with the
simplest autonomous ODE system (ẋ = f(x)),
and help students understand by plotting vector
fields and phase portraits. This enables students
to fully recognize that a functional differential
equation is essentially a curve of historical
functions, and its space corresponds to a
function space (e.g., C-space or L²-space). This
approach allows students to learn more clearly
and comprehensively, thereby improving their
overall learning quality.

2.2 Complex Theoretical Proofs
Dissipativity analysis involves content such as
the construction of Lyapunov functionals, and
the proof process is extremely lengthy, often
causing students to become lost in the details of
the proof. To solve this problem, teachers need
to help students focus on the core theorems in
the analysis, such as the dissipativity theorem
for continuous systems and the dissipativity
theorem for numerical methods. Before proving
these theorems, teachers can use a block
diagram to demonstrate the overall logical flow
and how the logic is derived, enabling students
to grasp the big picture first before delving into
details.
For example, when explaining Lyapunov
functionals, teachers should emphasize why the
functional adopts the form of "the squared norm
of the current state plus the integral of historical
states." This helps students understand the
content by controlling both the current and
historical energy, simplifying the originally
complex estimation process into skill-based
scaling. In this way, students can focus on the
purpose and feasibility of scaling, enhancing
their understanding of the teaching content.

3. Teaching Design and Implementation of
Core Teaching Content
To improve students' learning outcomes when
studying and discussing this content, it is
necessary to design progressive teaching
modules based on the core teaching content
outlined above.

3.1 Theoretical Foundation Module
he teaching content of this module focuses on
analyzing the dissipativity of coupled systems
from ordinary differential equations (ODEs) to
functional differential equations (FDEs). By

reviewing the dissipativity theory of ODEs and
the Lyapunov function method, FDEs and their
coupled systems are gradually introduced. The
selection of phase spaces (e.g., C-space or L²-
space) is explained, with emphasis on
introducing the one-sided Lipschitz condition
as a key assumption for dissipativity analysis
and providing a rigorous mathematical
definition of dissipativity for coupled systems.
In practical teaching, case-driven analysis is
adopted. A specific coupled system is used as
an example, such as:
{ẋ(t)=f(x(t),y(t),y(t-τ)), (ODE component)

{y(t)=g(x(t),y(t), ∫ _{t- τ }^t h(y(s))ds),
(functional equation component)
Teachers should guide students to verify step-
by-step whether this system satisfies the one-
sided Lipschitz condition and attempt to
construct a simple Lyapunov functional. Visual
teaching tools can also be used for assistance:
MATLAB or Python are employed to plot the
solution trajectories and phase portraits of
simple delayed systems (e.g., the Hutchinson
equation), helping students develop an initial
understanding of "absorbing sets" and "global
attractors."

3.2 Numerical Methods Module
The teaching content of this module covers the
construction and properties of general linear
methods (GLMs). The focus is on
systematically introducing the formulas,
structure, order conditions, and stability theory
of GLMs, with key explanations of their
essence as "one-step multi-stage" methods and
how to interpret the stage values of Runge-
Kutta (RK) methods and the historical
information of linear multi-step methods.
A "Transformer-style" explanation approach is
used to demonstrate from multiple perspectives
how to "transform" the classic 4-stage 4th-order
RK method and the 2-step Adams-Bashforth
method into GLM formats. By filling in their
respective (A, U, B, V) matrices, students can
understand the physical meaning of the GLM
coefficient matrices. A group teaching model is
adopted: students are divided into groups, and
instead of analyzing the content independently,
they are required to gradually rewrite a familiar
numerical method into a GLM form and present
it in class. This approach significantly deepens
their understanding of the GLM framework.
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3.3 Coupling Breakthrough Module
Establishing an analytical framework for
numerical dissipativity theory is the core
content of analyzing the dissipativity of general
linear methods for coupled systems of nonlinear
functional differential and functional equations.
Through this content, the algebraic conditions
that enable GLMs to preserve the dissipativity
of coupled systems can be derived, which
typically involves concepts such as algebraic
stability and diagonal stability of numerical
methods.
Learning is conducted using a "three-step"
derivation method:
Review of continuous problems: Write down
the key inequality for the dissipativity of
continuous systems (dV/dt ≤ α - βV).
Construction of numerical discretization: Apply
the GLM format to the test system and assume
that the numerical solution satisfies a similar
discrete inequality (Vₙ₊₁ ≤ (1 - βΔt)Vₙ + αΔt).
Building the bridge: Through complex
calculations and scaling, prove that for the
discrete inequality to hold, the coefficient
matrix of the GLM must satisfy certain specific
relationships (e.g., B is positive definite, A
satisfies a certain condition, etc.). The details of
this step can be appropriately simplified, but the
logical chain must be clear.
To facilitate analysis, "mnemonics" can be
refined: complex algebraic conditions are
summarized into easy-to-remember
"mnemonics" or "checklists." For example: "To
achieve numerical dissipativity, first check if
matrix B is positive definite, then verify the
conditions for matrix A, and never forget the
relationship between V and U."

3.4 Practical Application Module
Through numerical experiments and error
analysis, students can better understand the
dissipativity of general linear methods for
coupled systems of nonlinear functional
differential and functional equations. The focus
is on helping students program and implement a
specific GLM that satisfies dissipativity
conditions and apply it to the coupled system
example in Module 1. Long-term integration is
performed to verify the boundedness of the
numerical solution, and comparisons are made
with formats that do not meet the conditions.
Meanwhile, the long-term behavior of
numerical errors is analyzed.
Project-based learning is adopted: this module

is designed as a small-scale research project
lasting 2–3 weeks. Students are required to
complete a task book including algorithm
implementation, numerical simulation,
graphical presentation, result analysis, and
report writing. Open-ended questions are
designed to guide students: for example, "How
does the size of the system's attracting set
change when the coupling strength τ is
modified? Can the numerical method capture
this change?" and "When the step size h is too
large, will even a GLM that theoretically
satisfies the conditions fail? Why?" These
questions aim to cultivate students' research
capabilities.

4. Conclusion
In summary, the teaching and analysis of
dissipativity for coupled systems of nonlinear
functional differential and functional equations
is an extremely challenging task. In education
and teaching, a student-centered approach
should be adopted to help students intuitively
understand the relevant content. With numerical
practice as the foundation, students' abilities are
cultivated, their comprehensive problem-
solving strategies are improved, and their
anxiety during learning is reduced—thereby
stimulating their intrinsic motivation to learn.
Additionally, advanced knowledge can be
gradually transformed into tangible,
implementable, and investigable teaching
content, helping students effectively master the
knowledge related to the topic of this course
and enhance their comprehensive
computational literacy when facing complex
scientific problems, laying a solid foundation
for their future studies.
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