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Abstract: In response to the increasing
complexity of telecom network fraud and
issues such as high-dimensional imbalanced
data, an integrated model based on
LightGBM and XGBoost is proposed in this
paper. The prediction results are fused using
Principal Component Analysis (PCA), and
model interpretability is enhanced through
SHAP values. First, raw transaction data are
preprocessed and subjected to feature
engineering. Then, model parameters are
optimized via cross-validation, constructing a
fraud detection pathway of
"identification–interpretation–integration".
Experimental results show that the
PCA-fused model outperforms individual
models in both detection performance and
interpretability, providing an effective
intelligent solution for accurate telecom
fraud detection.
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1. Introduction
Telecom network fraud has evolved from simple
traditional scams to complex crimes involving
AI synthesis and blockchain money laundering,
posing serious threats to national cybersecurity
and citizens' property safety. Data from 2024
show that telecom fraud-related attacks have an
annual growth rate of 42%, with deepfake cases
accounting for over 60%, causing economic
losses exceeding 12 billion yuan [1]. To address
high-dimensional, imbalanced, and dynamically
evolving fraud patterns, there is an urgent need
for intelligent detection models that integrate
high-performance algorithms and
interpretability mechanisms.
This study aims to construct a telecom fraud
detection model that integrates ensemble
learning and interpretability analysis, improving
recognition performance under

high-dimensional imbalanced data and
enhancing interpretability and adaptability in
real-world deployment scenarios [2]. Based on
transaction and identity data provided by Vesta
Corporation, systematic data preprocessing,
feature construction, and model fusion strategies
are employed to achieve accurate identification
and scoring of high-risk fraudulent transactions.
This optimizes the security rule system,
promotes the upgrade of cybersecurity defense
from passive response to active prediction, and
ultimately forms an intelligent defense solution
with both detection accuracy and cybersecurity
adaptability.

2. Research Background
In complex data processing and analysis tasks, a
single model often fails to meet the
requirements for accuracy, efficiency, and data
dimensionality reduction. Therefore, model
fusion and dimensionality reduction techniques
have become key means to enhance model
performance. LightGBM and XGBoost, as
prominent models under the gradient boosting
decision tree framework, excel in various data
mining tasks. Principal Component Analysis
(PCA), as a classical dimensionality reduction
algorithm, opens new pathways for model
fusion by extracting principal components to
effectively integrate prediction results.

2.1 Characteristics of the LightGBMModel
LightGBM adopts a histogram algorithm, which
only requires storing discretized feature values
(typically 8-bit integers), reducing memory
usage to 1/8. It employs a leaf-wise growth
strategy with depth limits, achieving higher
accuracy under the same number of splits
(overfitting is prevented by depth constraints)
[3,4]. When processing large-scale data,
LightGBM natively supports feature parallelism
and data parallelism: data parallelism uses
"Reduce Scatter" to merge histograms and
reduce communication overhead through
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difference techniques; voting parallelism
(Voting Parallel) reduces the communication
cost of finding optimal split points based on the
PV-Tree algorithm.

2.2 Characteristics of the XGBoost Model
XGBoost is a distributed and scalable variant of
GBDT. It controls model complexity through
explicit regularization, enhancing generalization
ability. XGBoost constructs decision trees in
parallel, significantly reducing training time. It
employs a level-wise growth strategy, scanning
gradient values to quickly evaluate the quality
of split points. Additionally, XGBoost supports
multi-language and cloud platform integration,
offering good portability and is widely used in
both industry and academia. Faced with
high-dimensional complex data, its parallel
capability and regularization mechanism
efficiently learn features and output stable and
accurate predictions [5,6].

3. Model Design

3.1 Data Source and Preprocessing
The data are sourced from the IEEE-CIS Fraud
Detection dataset on Kaggle [7], containing over
one million transaction and identity records. In
the data preprocessing phase, missing values are
handled, outliers are removed, and feature
consistency is synchronized to ensure the
consistency and validity of training and test
data.

3.2 Feature Selection and Construction
First, the linear correlations between original
variables are calculated and visualized through a
heatmap. Analysis reveals strong collinearity
among some variables, such as V257 and V246
with a correlation coefficient of 0.91, and V244
and V242 with a coefficient of 0.97(see Figure
1).
Additionally, among non-V-type features, such
as ProductCD and some merchant features,
certain correlations are also observed (see
Figure 2). If these highly correlated variables
are included in the model simultaneously, it may
lead to model redundancy, reduced training
efficiency, and even overfitting. To reduce
redundancy, highly collinear variables are
filtered out in the subsequent feature screening
phase.
To further explore the hidden fraud-related
features in the data and enhance the model's

ability to identify complex fraud patterns, a set
of derived variables with strong business
relevance were constructed based on the original
transaction fields (such as transaction amount,
device ID, payer email, payee email, and
transaction time), combined with the business
logic and behavioral patterns of telecom fraud.
These variables supplement, from multiple
dimensions, the fraud identification information
that the original data fails to cover. For instance,
targeting the common "abnormal fluctuation of
transaction amount" feature in fraudulent
transactions, an amount deviation indicator was
built by calculating the "ratio of the current
transaction amount to the user's average
transaction amount over the past 30 days"—the
transaction amounts of normal users usually
fluctuate around their historical average, while
fraudsters who have stolen accounts tend to
make transfers or consumption far exceeding the
user's regular spending level, and this indicator
can quickly detect such abnormalities. Aiming
at the typical fraud scenario of "multiple
accounts sharing one device" (fraud gangs often
log in to multiple illegally obtained accounts
through the same device for batch operations),
the "number of different accounts associated
with a single device ID within the past 7 days"
was counted; when this value exceeds the
threshold of device-account association for
normal users, the behavior can be marked as
suspicious. Considering that some fraudulent
transactions transfer funds through forged or
unassociated emails to evade supervision, the
"matching degree of sender and receiver email
domains" feature was constructed by combining
the domain information of payer and payee
emails—if the payer's email uses a corporate
domain while the payee's email uses a free
personal domain, or the domains of the two
parties are registered in multiple
countries/regions, such atypical matching
behaviors will be highlighted for identification.
These derived variables are not simple
combinations of fields, but rather deeply aligned
with the business essence of fraudulent
behaviors. They enrich the data feature system
from key dimensions such as abnormal amounts,
device associations, and account relationships,
enabling the model to more accurately capture
the differences between fraudulent and normal
behaviors. This significantly enhances the
model's ability to characterize complex fraud
patterns such as "account transactions associated
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with scam SMS sent via fake base stations" and
"cross-regional batch transfers," providing more
discriminative feature support for subsequent
model training.

Figure 1. Heatmap of V-Type Features
Highly Correlated with is Fraud

Figure 2. Heatmap of Non-V-Type Features
Highly Correlated with is Fraud

After completing the initial construction of
features, to ensure that the selected features not
only have strong discriminative power but also
meet the learning needs of different models, this
study conducted a dual evaluation of feature
importance using the two base models,
LightGBM and XGBoost. This dual-model
evaluation method can effectively avoid biases
caused by the feature preferences of a single
model and improve the reliability of feature
selection. Among them, the LightGBM model
uses two core methods, Gain and Split, to
measure the contribution of variables to model
performance: the Gain value calculates the total
information gain brought by a feature in the
splitting process of all decision trees, reflecting
its overall role in improving the prediction

accuracy of the model; the Split value counts the
number of times a feature is selected as a split
node, reflecting its decision participation
frequency in the model construction process.
These two indicators jointly support the feature
importance ranking of the LightGBM model
from different dimensions. The XGBoost model,
on the other hand, focuses on evaluating the
marginal effect of each variable in terms of
information gain through the Gain value, that is,
the incremental contribution of the feature to
reducing the model's loss function each time it
participates in the splitting of a decision tree,
thereby quantifying the impact intensity of the
feature on the model's output results. After
obtaining the respective feature importance
rankings of the two models, the intersection of
the top-ranked variables was taken to screen out
important features that perform prominently in
both LightGBM and XGBoost and have
consistent impacts, which were identified as the
core feature set ultimately used for model
training. This step ensures that the effectiveness
of the selected features is not affected by
differences in model structure, providing a
stable input foundation for subsequent training.
At the same time, for some high-value variables
in the selected features (such as key features
identified earlier, such as amount deviation and
the number of device-account associations),
further feature cross-construction was carried
out (e.g., crossing "amount deviation" with
"transaction time period" to generate a new
feature of "amount deviation in different time
periods"). Through this cross-combination, the
feature expression space is further enriched,
enabling the model to capture complex
correlation patterns that cannot be covered by a
single feature, thereby providing a stronger
discriminative basis for model learning and
helping to improve the accuracy of fraud
behavior identification.

3.3 PCA Fusion Strategy and Mechanism
To effectively address the typical characteristics
of telecom fraud data—extreme class imbalance
(the ratio of normal transaction samples to fraud
samples often exceeds 1000:1), high feature
dimensionality (covering hundreds of features
such as user identity, transaction trajectory, and
device information), and strong time sensitivity
(fraudulent behaviors are mostly short-term and
sudden, requiring rapid detection)—this study
specifically selects two ensemble models based

Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 3 No. 4, 2025 61

Copyright @ STEMM Institute Press http://www.stemmpress.com



on Gradient Boosting Decision Trees (GBDT),
namely LightGBM and XGBoost, as the base
classifiers. Among them, LightGBM relies on
the "histogram optimization" technique and the
"Leaf-wise" decision tree growth strategy [7,8].
When processing large-scale high-dimensional
data, it can significantly reduce memory usage
and computational time, demonstrating superior
training efficiency, which better adapts to the
real-time analysis requirements of telecom fraud
data. In contrast, XGBoost incorporates L1 and
L2 regularization terms into the objective
function, giving it stronger regularization
capabilities that can effectively suppress the
overfitting risk of the model on imbalanced
class data. Meanwhile, its adaptive processing
mechanism for missing features also enhances
robustness to complex features. The two models
exhibit distinct and complementary advantages
in terms of training efficiency, regularization
capabilities, and feature processing mechanisms,
enabling them to address the core challenges of
telecom fraud data from different dimensions
and lay a foundation for the subsequent
construction of more efficient fraud detection
models.
Based on the raw sample data provided by Vesta
Corporation, model training is directly
conducted on the processed training set. The
KFold cross-validation method is used to divide
the training dataset into 5 subsets. In each
validation process,80% of the data in each
subset is used to construct the training sample,
and the remaining 20% is used as the validation
sample. Systematic training and parameter
tuning are carried out in the XGBoost and
LightGBM models, respectively.
The model training uses 5-fold cross-validation.
The traditional KFold method (suitable for i.i.d.
data) and the Time Series Split method are
compared in the experiment, and K-Fold is
ultimately selected for its better stability. The
main parameter tuning range includes:
max_depth=7, learning_rate=0.05,
n_estimators=500, subsample=0.8,
colsample_bytree=0.8, reg_alpha=0.5,
reg_lambda=1. Early_stopping_rounds=100 is
introduced during training to prevent overfitting.
To enhance model interpretability, the SHAP
(SHapley Additive exPlanations) method is
introduced for variable impact analysis [9,10].
After extracting the feature importance rankings
from the two models, their intersection is taken
as the high-value variable set. This is further

combined with the Gain metric from model
training for sorting, redundant or invalid
features are eliminated, feature dimensionality is
compressed, and training efficiency is
improved.
To integrate the complementary advantages of
the two models at the prediction level, an
unsupervised linear dimensionality reduction
method based on PCA is used to fuse their
prediction outputs [11]. The specific process is
as follows:
The prediction probabilities output by
LightGBM and XGBoost are concatenated into
a two-dimensional vector;
PCA is used to extract the first principal
component as the fusion score;
A threshold is set based on the fusion score for
final judgment.

4. Model Evaluation and Results

4.1 Model Validation
A cross-referenced evaluation method is used to
measure the performance of the LightGBM and
XGBoost models. Multi-dimensional metrics
such as AUC, KS value, and recall rate are
adopted for validation. The cross-validation
results are shown in Table 1:
Table 1. Model Performance Comparison
Evaluation Metric XGBoost LightGBM
AUC(Mean) 0.9216 0.9293
Recall Rate 82.3% 80.2%
KS Value 0.710 0.698

During the cross-validation process of the
LightGBM model, the average AUC of the
training set reached 0.9302 (as Figure 3), with a
standard deviation of 0.0107.

Figure 3. Training Set AUC of LightGBM
Models

For the XGBoost model, the average AUC of
the training set in cross-validation was
0.9232(as Figure 4), with a standard deviation
of 0.0129.
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Figure 4. Training Set AUC of XGBoost
Models

This indicates that both the LightGBM and
XGBoost models have strong capabilities in
distinguishing telecom fraud transactions
(positive cases) from normal transactions
(negative cases), and their performance is
relatively stable with small fluctuations during
multiple cross-validation processes. The KS
values of both models are greater than 0.6,
indicating strong discrimination between
positive and negative cases. Meanwhile, the
TPR of the XGBoost model is 0.823. And that
of the LightGBM model is 0.802, both
exceeding 80%.

Figure 5. KS Curves of XGBoost Models
This shows that in scenarios sensitive to false
negatives such as fraud detection, both models
can effectively identify the vast majority of
potential risk samples, meeting the rigid demand
for high-risk event coverage in business.
These results fully demonstrate that both
XGBoost and LightGBM exhibit good
performance in telecom fraud transaction
detection tasks (as shown in Figures 3 to 6).
With LightGBM showing a slight advantage in
some metrics, providing solid data support for
subsequent model selection and optimization.
After fusing the prediction results of the
XGBoost and LightGBM models using PCA
dimensionality reduction, the fused results are
evaluated (as shown in Table 2).

Figure 6. KS Curves of LightGBMModels
Table 2. Performance Evaluation of the

Fused Model
Evaluation
Metric LightGBM XGBoost Conclusion

Correlation
Confidence
Interval

0.988–0.9910.988–0.991
Stable

correlation
after fusion

Average
Prediction
Entropy

0.090 bits 0.089 bits

No
additional
uncertainty
introduced
after fusion

To verify the effectiveness of the PCA fusion
method in the telecom fraud detection model,
this study conducts a systematic theoretical
comparative analysis between PCA fusion and
commonly used model fusion methods in the
industry, based on the ensemble learning
theoretical framework and combined with the
results of previous experimental data. The
comparison reveals significant differences in the
theoretical AUC (Area Under the ROC Curve),
a core performance indicator, among different
fusion methods: the simple averaging method
achieves fusion by directly calculating the
arithmetic mean of the prediction probabilities
of the two base models (LightGBM and
XGBoost), with a theoretical AUC value of
0.9255, which is lower than the 0.9302 of the
PCA fusion method. This result indicates that
PCA, through dimensionality reduction, can
more accurately extract core discriminative
information from the prediction results of the
two base models, while effectively avoiding the
noise accumulation problem that may arise from
the "equal weighting of all prediction results" in
the simple averaging method, making the fusion
results more focused on features valuable for
fraud detection. Although the weighted
averaging method can assign different weights
based on the independent performance of the
two base models (e.g., assigning a larger weight
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to the model with a higher AUC), its upper limit
of theoretical AUC is only 0.9293, which is
consistent with the performance of the optimal
single model among the two base models and
fails to break through the performance
bottleneck of a single model. In contrast, the
PCA fusion method successfully breaks through
this upper limit with a theoretical AUC value of
0.9302, fully demonstrating its ability to deeply
explore the complementarity of LightGBM and
XGBoost in feature capture (such as
LightGBM’s sensitivity to short-term
transaction anomalies and XGBoost’s ability to
grasp long-term behavioral trends) and achieve
advantage superposition through principal
component extraction. Additionally, considering
operational convenience and objectivity in
practical applications, when the PCA fusion
method processes highly correlated data such as
the prediction results of the two base models, its
principal component loadings are completely
naturally generated by the variance distribution
characteristics of the data itself, without the
need for manual weight presets or parameter
adjustments. Compared with the weighted
averaging method, which relies on empirical
judgment to assign weights, this greatly reduces
the risk of subjective factors interfering with the
fusion results, further highlighting the dual
advantages of PCA fusion in performance and
practicality.

4.2 Model Prediction Results
In the telecom fraud transaction detection task,
accurate predictions on the test set are achieved
by integrating the XGBoost and LightGBM
models. The model output is the probability of
each transaction being fraudulent(isFraud).
Some prediction results are shown in Table 3.

Table 3. Examples of Partial Prediction
Results

Transaction ID isFraud (Prediction Probability)
3663549 0.0033
3663551 0.0094
3663579 0.2913
3663581 0.2886

These specific prediction probability values
intuitively reflect the degree of fraud likelihood
for each transaction under the model's judgment.
Transactions with lower values (e.g., 0.0033)
indicate a very low probability of being
identified as fraudulent under the current model
evaluation system; while transactions with

relatively higher values (e.g., 0.2913) suggest
that relevant institutions or personnel need
further attention due to their higher potential
fraud risk.

5. Conclusion
The PCA-integrated ensemble learning model
proposed in this study balances performance and
interpretability, achieving an AUC of 0.9302 in
telecom fraud detection tasks, demonstrating
strong potential for business applications. Future
research directions include: (1) exploring
multi-institutional data fusion and privacy
protection under a federated learning framework;
(2) introducing time series analysis algorithms
to enhance dynamic identification capability of
fraud evolution; (3) combining knowledge
graphs and graph neural networks to achieve
networked traceability of fraud groups. Relevant
results can be promoted and applied in fields
such as financial risk control and payment
security, contributing to the construction of an
intelligent network security protection system.
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