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Abstract: This study aims to address the
problems of low accuracy, poor adaptability
to complex faults, and slow response in
traditional fault classification methods for
Synchronous Digital Hierarchy (SDH) optical
fiber communication networks, and to
improve the efficiency and reliability of SDH
network fault diagnosis. The research adopts
the Support Vector Regression (SVR)
algorithm as the core classification tool,
combined with fault feature extraction
technology and parameter optimization
methods. First, a comprehensive SDH
network fault dataset is constructed, which
includes feature parameters of common fault
types such as signal loss (LOS), bit error rate
(BER) exceeding the standard, frame
alignment error (FAE), and path mismatch,
and the dataset is preprocessed through
normalization and outlier removal to
eliminate interference factors. Second, the
SVR model’s key parameters (including
kernel function type, penalty factor C, and
gamma coefficient) are optimized using the
grid search method combined with 5-fold
cross-validation to determine the optimal
parameter combination that balances
classification accuracy and generalization
ability. Finally, the preprocessed fault feature
data are input into the optimized SVR model
for training and testing, and the model’s
performance is compared with traditional
fault classification methods such as BP neural
network and decision tree based on
evaluation indicators including accuracy,
recall, F1-score, and processing time. The
results show that the SVR-based fault
classification method achieves an average
accuracy of over 96.5%, which is 8.2% and
11.7% higher than that of BP neural network
and decision tree respectively; its recall rate
for complex faults reaches 95.3%, and the
average processing time per sample is
reduced by 0.32s compared with traditional
methods. This method can effectively identify

various faults in SDH optical fiber
communication networks, providing a reliable
technical support for rapid fault location and
maintenance of the network.
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1. Introduction

1.1 Research Background and Significance
Synchronous Digital Hierarchy (SDH) optical
fiber communication networks serve as the core
infrastructure for high-speed data transmission in
5G networks, data centers, and national
backbone communication systems, demanding
ultra-high reliability and real-time fault handling.
However, traditional fault classification methods
for SDH networks face critical limitations: rule-
based methods rely on manual experience and
fail to adapt to complex fault scenarios (e.g.,
overlapping fault features between bit error rate
(BER) anomalies and frame alignment errors
(FAE)); shallow machine learning methods such
as BP neural networks easily fall into local
optima, leading to low classification accuracy
for rare faults; and most methods lack efficient
feature integration, resulting in prolonged
processing time that cannot meet the real-time
maintenance needs of large-scale SDH networks.
Against this backdrop, exploring a fault
classification method based on Support Vector
Regression (SVR) addresses the technical
bottlenecks of traditional approaches. This study
holds both theoretical and practical value:
theoretically, it enriches the application of SVR
in nonlinear fault pattern recognition, providing
a new perspective for the intersection of machine
learning and communication network
maintenance; practically, it improves the
accuracy and speed of SDH network fault
diagnosis, reducing maintenance costs caused by
misdiagnosis or delayed fault handling, and
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ensuring stable operation of critical
communication services.

1.2 Review of Domestic and Foreign Research
Status
Foreign research on SDH network fault
classification has focused on machine learning
applications. Early studies adopted decision trees
and k-nearest neighbors (KNN) for fault
identification, but these methods show poor
generalization when facing high-dimensional
fault features. Recent works have attempted to
use deep learning models such as CNNs, but
they require massive labeled data and complex
computing resources, which are difficult to
deploy in practical SDH network maintenance
systems. Additionally, foreign research rarely
optimizes model parameters for SDH-specific
fault characteristics, leading to suboptimal
classification performance.
Domestic research has made progress in SDH
fault mechanism analysis and feature extraction.
Scholars have identified key fault indicators (e.g.,
signal power fluctuation, frame loss rate) and
developed feature selection algorithms to reduce
data dimensionality. However, most domestic
studies use SVR in its original form without
targeted parameter tuning, resulting in low
accuracy for complex faults (e.g., concurrent
LOS and path mismatch). Existing literature also
lacks systematic comparison between SVR and
mainstream methods under unified evaluation
criteria, making it hard to verify the advantages
of SVR in SDH fault classification.

2. Relevant Theories and Technical
Foundations

2.1 Principles and Fault Types of SDH
Optical Fiber Communication Networks
SDH networks adopt a standardized frame
structure (STM-N) with a fixed frame period of
125μs, enabling synchronous transmission of
multiple services. Core technical features
include hierarchical multiplexing, built-in error
monitoring (via B1/B2/B3 bytes), and self-
healing rings, which support rapid service
recovery but increase fault feature complexity.
Common SDH network fault types are
categorized based on their causes and
manifestations:
Loss of Signal (LOS): Caused by fiber breakage
or severe signal attenuation, characterized by
sudden signal amplitude drop to zero.

BER Exceeding Standard: Triggered by noise
interference or equipment aging, with BER
values exceeding the threshold of 10⁻⁹.
Frame Alignment Error (FAE): Resulting from
frame header mismatch, leading to intermittent
service interruption.
Path Mismatch: Arising from incorrect service
mapping, manifested by inconsistent path
identifiers between network nodes.
Each fault type exhibits distinct feature patterns,
providing a basis for subsequent feature
extraction and classification.

2.2 Basic Principles of SVR Algorithm and
Kernel Function Selection
SVR is a supervised learning algorithm that
maps input data to a high-dimensional feature
space via kernel functions, constructing an
optimal hyperplane to minimize regression
errors. Unlike traditional regression models,
SVR introduces an ε-insensitive loss function to
tolerate minor errors, enhancing robustness to
noise.
Kernel functions determine SVR’s ability to
handle nonlinear problems, with three common
types:
Linear Kernel: Suitable for linearly separable
data, with low computational complexity but
poor performance for nonlinear faults.
Polynomial Kernel: Captures moderate nonlinear
relationships but requires tuning of multiple
parameters, increasing model complexity.
Radial Basis Function (RBF) Kernel: Maps data
to infinite-dimensional space, effectively fitting
complex nonlinear fault features with only two
key parameters (penalty factor C and gamma
coefficient), making it the optimal choice for
SDH fault classification.

2.3 Fault Feature Extraction Technology for
SDH Networks
Fault feature extraction converts raw SDH
network data into discriminative feature vectors,
laying the foundation for SVR classification.
Key technologies include:
Time-Domain Feature Extraction: Extracts
signal amplitude, pulse width, and amplitude
fluctuation frequency from real-time signal
waveforms, capturing transient features of LOS
and FAE.
Frequency-Domain Feature Extraction: Uses
Fast Fourier Transform (FFT) to obtain spectral
peaks and bandwidth, identifying BER
anomalies caused by frequency-specific noise.
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Statistical Feature Extraction: Calculates mean,
variance, and skewness of monitoring metrics
(e.g., B1 byte error count), quantifying long-
term fault trends and distinguishing path
mismatch from other faults.

3. Design of SVR-Based Fault Classification
Method for SDH Optical Fiber
Communication Networks

3.1 Construction and Preprocessing of SDH
Network Fault Dataset
The dataset is constructed by combining
simulated and real operational data to ensure
diversity. Simulated data is generated via
OPNET software, simulating 10,000 samples of
four fault types (LOS, BER, FAE, path
mismatch) with 12 feature dimensions (including
signal amplitude, BER, frame alignment success
rate). Real data is collected from a provincial
SDH backbone network, adding 5,000 samples
of rare concurrent faults to enhance
generalization.
Preprocessing steps eliminate interference and
standardize data:
Outlier Removal: Uses Z-score method to filter
samples with feature values outside the range of
[μ-3σ, μ+3σ], removing 4.8% of abnormal data
caused by sensor errors.
Normalization: Applies Min-Max scaling to map
all features to [0,1], avoiding dominance of high-
magnitude features (e.g., signal power) over
low-magnitude features (e.g., error count).

3.2 Design of SVR Model Parameter
Optimization Strategy
Parameter optimization targets two key
parameters (C and gamma) to balance
classification accuracy and generalization. The
strategy adopts grid search combined with 5-fold
cross-validation:
Parameter Range Setting: C is set to [0.1, 1, 5,
10] to adjust the penalty for misclassification;
gamma is set to [0.01, 0.1, 1, 10] to control the
influence of individual samples.
Cross-Validation Process: The dataset is divided
into 5 subsets, with 4 subsets used for training
and 1 for validation in each iteration. This
process repeats 5 times to calculate the average
accuracy for each parameter combination.

Optimal Parameter Determination: The
combination with the highest average accuracy
(C=5, gamma=0.1) is selected, avoiding
overfitting caused by excessive C or poor

generalization caused by inappropriate gamma.

3.3 Construction of SVR-Based Fault
Classification Process
The classification process forms a closed loop
from data input to result output, with clear
logical links:
Data Acquisition: Collect real-time monitoring
data (e.g., signal waveform, error byte count)
from SDH network nodes via SNMP protocol.
Feature Extraction: Apply time-domain,
frequency-domain, and statistical extraction
methods to generate 12-dimensional feature
vectors.
Data Preprocessing: Execute outlier removal and
normalization to obtain standardized feature data.
Model Training: Input preprocessed data into the
optimized SVR model for training, generating a
fault classification model.
Fault Classification: Input real-time test data into
the trained model, outputting fault type and
confidence level (e.g., 98.5% confidence for
LOS).

4. Experimental Verification and
Performance Analysis

4.1 Experimental Environment Construction
and Parameter Setting
The experimental environment is configured to
ensure reproducibility:
Hardware: Intel Core i7-12700K CPU (3.6GHz),
NVIDIA RTX 3060 GPU (12GB), 32GB DDR4
RAM, ensuring efficient model training and data
processing.
Software: Python 3.9, Scikit-learn 1.2.2 (for
SVR implementation and parameter
optimization), Matplotlib 3.7.1 (for result
visualization).
Parameter Setting: The dataset is split into
training set (70%) and test set (30%); the SVR
model uses RBF kernel with optimized
parameters (C=5, gamma=0.1); comparison
models (BP neural network, decision tree) use
default parameters from Scikit-learn for fair
comparison.

4.2 Experimental Data Source and
Preprocessing Implementation
Experimental data combines simulated and real
data:
Simulated Data: Generated via OPNET,
covering 4 single fault types with 10,000
samples, each with 12 feature dimensions.

Journal of Higher Vocational Education (ISSN: 3005-5784) Vol. 2 No. 5, 2025 31

Copyright @ STEMM Institute Press http://www.stemmpress.com



Real Data: Collected from a provincial SDH
backbone network, including 5,000 samples
(3,000 single faults, 2,000 concurrent faults),
ensuring consistency with actual operational
scenarios.
Preprocessing is implemented via Python:
Outlier removal uses Z-score calculation,
filtering 480 simulated samples and 240 real
samples.
Normalization applies Min-Max scaling, with
code implementing feature-wise scaling to
ensure each feature is mapped to [0,1].

4.3 Determination of Classification
Performance Evaluation Indicators and
Comparative Analysis
Four evaluation indicators are selected to
comprehensively assess performance:
Accuracy: Ratio of correctly classified samples
to total samples, reflecting overall classification
ability.
Recall: Ratio of correctly classified samples of a
specific fault type to all actual samples of that
type, evaluating recognition ability for rare faults.
F1-Score: Harmonic mean of precision and
recall, balancing accuracy and completeness.
Processing Time: Average time to classify a
single sample, reflecting real-time performance.
Experimental results show the SVR-based
method outperforms BP neural network and
decision tree in all indicators.
The SVR-based method achieves higher
accuracy and recall due to the RBF kernel’s
ability to fit nonlinear fault features and
optimized parameters that enhance
generalization. Its shorter processing time stems
from SVR’s reliance on support vectors (only
12% of training samples), reducing
computational complexity compared to BP
neural network’s full-sample training.

5. Conclusion
This study achieves three key results: First, it
designs a SVR-based fault classification method
for SDH optical fiber communication networks,
addressing the limitations of traditional methods
by integrating targeted feature extraction and
parameter optimization. Second, it verifies the
method’s superiority through experiments—
achieving 96.5% accuracy, 95.3% recall for rare
faults, and 0.18s per-sample processing time,
outperforming BP neural network and decision
tree in all indicators. Third, it constructs a
standardized dataset and preprocessing

workflow, providing a replicable experimental
framework for subsequent SDH fault
classification research.
This study has two limitations: One is the
limited fault type coverage—focusing on single
and dual concurrent faults, while lacking
analysis of multi-fault fusion scenarios (e.g.,
simultaneous LOS, BER, and path mismatch)
common in large-scale networks. The other is
the lack of edge deployment testing—the
method is verified in a laboratory environment,
and its performance in resource-constrained edge
devices (e.g., SDH node controllers) remains
untested.
Future research will expand in two directions:
On one hand, it will integrate multi-label
classification algorithms to handle multi-fault
fusion scenarios, enriching the fault type
coverage. On the other hand, it will lightweight
the SVR model via model compression
techniques (e.g., support vector pruning),
enabling deployment on edge devices and
further improving the practicality of the method
in real SDH network maintenance.
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