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Abstract: Since the outbreak of the new
crown epidemic, it has had a far-reaching
impact on the supply-demand relationship
and the operation of the industrial chain in
China's agricultural products market. The
epidemic restricted rural labor mobility,
delaying sowing. Moreover, strict prevention
measures limited transportation, resulting in
poor circulation of agricultural products. On
the other hand, the problem of mismatch
between supply and demand has caused more
irregular changes in the price of agricultural
products, which directly affects the consumer's
purchasing behavior. Farmers and enterprises
in the market will also be subject to
information asymmetry and other problems of
interference, and thus can not make accurate
judgments about the market situation they
face. Therefore, based on the SARIMA time
series model, this paper models and predicts
the supply and demand data of China's major
agricultural markets in the year before and
after the epidemic. Specific strategies for the
integration and optimization of the
agricultural industry chain from production,
distribution and consumption are proposed,
aiming to optimize the structure of
agricultural production through accurate
forecasting, and to improve the industry's
risk-resistant ability and market adjustment
efficiency. The study provides important
theoretical support and practical reference
for the government and enterprises to deal
with emergencies.
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1. Introduction
With the rapid development of China's economy,
the market demand for agricultural products is

growing, and guaranteeing the supply and
demand balance of the agricultural products
market has become an important task of national
macro-control. Since the outbreak of the new
crown epidemic in 2020, China's agricultural
products market has suffered an unprecedented
impact, affecting the production strategy and
efficiency of the supply side. It directly affects
logistics and transportation, alters consumer
behavior, and reshapes the market structure. The
supply and demand relationship in the
agricultural market tends to be complicated. The
traditional experience-dependent static analysis
method exposes obvious limitations in terms of
response speed and forecasting accuracy.
In view of the seasonal fluctuation pattern of the
agricultural market, the SARIMA model can be
used to derive the time series data of the
agricultural market, including seasonal changes,
trends and cyclical fluctuations, while dealing
with the non-stationary and seasonal variations
of the data. However, the current research on
modeling and forecasting the supply and demand
of China's agricultural market in the context of
the epidemic still needs to effectively combine
multiple methods, especially the empirical
analysis combined with industry chain
optimization.
Therefore, this research question takes the time
of the epidemic as the basis of division, takes
Chinese cabbage as an example, and uses the
SARIMA model to model the price of Chinese
cabbage from January 2019 to June 2021, and
compares the fitted value of the output with the
actual value. Identify whether there is a potential
structural imbalance risk in Chinese cabbage. On
this basis, the supply chain optimization plan is
further proposed in combination with the results
of the supply and demand forecast. Through the
optimization of logistics, warehousing,
transportation and other links to reduce the cost
of agricultural products in the supply chain
circulation process, improve the efficiency of
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distribution, in order to ensure the stability of
market supply. The study not only enriches the
cross perspective of agricultural economic
forecasting and industry chain research, but also
provides a feasible path for building a resilient
agricultural supply system. It aims to improve
the stability of the agricultural industry chain.

2. Literature Review
At present, some scholars at home and abroad
have carried out a series of studies on the
development of the agricultural industry.Y. Liu
(2020), in the context of agricultural
modernization, in response to the problem of the
lagging development of agricultural
standardization, used agricultural production and
market data, based on the big data analysis
method, and obtained the result that agricultural
standardization can improve the quality and
market competitiveness of agricultural
products[1]. Lin Dongsheng and Wang Tong
(2022), in response to current problems in the
supply-demand interface of agricultural products,
such as the lack of close channels and low
consumer trust, and proposed strategies such as
strengthening information sharing, professional
guidance and collaboration in order to improve
the efficiency of the supply-demand interface
and the quality of circulation of agricultural
products[2]. Chen Meng and Fu Linxuan (2017)
analyzed the necessity and effect of the
construction of agricultural products information
sharing platform through game theory under the
background of "Internet +", pointing out that
information sharing can effectively solve the
problem of information asymmetry, promote the
construction of agricultural informationization
and improve the efficiency of agricultural
products circulation[3]. Kabato, W et al. ( 2025)
used precision agriculture and other ways to
predict climate change, enhance agricultural
productivity and sustainable development,
especially for developing countries' agricultural
barriers to output effective countermeasures[4].
Hua, Shuchun, et al. (2022) scholars, in the
context of the new Crown Pneumonia outbreak,
address the imbalance between supply and
demand of agricultural products, and put forward
strategies such as the implementation of health
insurance for public health events, the increase
of temporary subsidies for distribution of
agricultural products, the targeted release of
information on the risk level of the outbreak. and
the development of training for practitioners in

the prevention of epidemiological capacity, in
order to ensure the effective functioning of the
supply chain of agricultural products and the
stabilization of the agricultural industry chain[5].
The above literature focuses on the use of
technological innovation and information
sharing to optimize the supply chain
management of agricultural products to improve
the efficiency of supply-demand matchmaking
and the quality of distribution, which can
effectively respond to the challenges in the
supply chain management of agricultural
products. However, these researches are not able
to accurately predict the data using the original
supply chain management strategy in response to
sudden situations such as global public health
events, where the structure of supply and
demand is significantly impacted. SARIMA has
good stability in price prediction due to its
strong adaptability to time trends and cyclical
fluctuations. Domestic scholars, Gong Xiao
hui(2023), used the SARIMA model to predict
the price fluctuation of hogs, and the results
show that the model has good prediction
accuracy[6]. Lin Liu(2023) predicted by
SARIMA model and concluded that the
predicted value of the wholesale price of
cucumber from January 2019 to December 2019
is very close to the real value[7]. Using the
SARIMA model for supply and demand
prediction, combining the key factors affecting
the supply and demand of the agricultural market
during the epidemic, discussing the methods of
optimizing supply chain management, and
proposing supply chain resilience management
strategies adapted to emergencies to improve the
stability of the agricultural market.

3. Research Design

3.1 Data Sources
This paper adopts the historical data published
by the National Bureau of Statistics on the price
of Chinese cabbage (yuan/kg) in China's
marketplace from January 2019 to June 2021 for
short-term forecasting, in which the data from
January 2019-December 2020 are used for
modeling, and the data from January 2021-June
2021 are used for future trend forecasting.

3.2 Research Methodology
The Seasonal Autoregressive Integrated Moving
Average (SARIMA) model is a time series
forecasting method that can deal with
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non-stationary and seasonal fluctuations at the
same time, which can accurately portray the
characteristics of the time series and realize
effective medium- and long-term forecasts.
The resulting model can be shown in equation
(1):

SARIMA(p, d, q)(P, D, Q) s​ (1)
The completed expression can be shown as
equation (2):

ΦP(Bs)ϕp(B)∇d=ΘQ(Bs)θq(B)εt (2)
Where∇d represents the non-seasonal difference
operator for removing trend;∇S

D represents the
seasonal difference operator for removing
cyclical fluctuations. d is the non-seasonal
difference order; D is the seasonal difference
order; s is the seasonal difference step. εt is the
white noise error term; ϕp(B) represents the
non-seasonal autoregressive term
polynomial; ΦP(Bs) represents the seasonal
autoregressive term polynomial of order P with
lag period s. p is the non-seasonal autoregressive
order; P is the seasonal autoregressive step.
θq(B) ���������� the non-seasonal sliding
average term polynomial;ΘQ(Bs) represents the

seasonal sliding average term polynomial of
order Q with a lag period of s. q is the sliding
average order; Q is the seasonal sliding average
order. yt observations at time t; the white noise
error term.
The SARIMA model is able to capture the trend
and seasonal structure in the non-stationary time
series at the same time, and can effectively
identify the long-term trend behind the price
fluctuations, which has a strong explanatory
power in portraying the time series
characteristics of the cabbage price before and
after the epidemic.

4. Research results

4.1 Time Series
Based on the sequence chart of Chinese cabbage
price trend from January 2019 to December
2020 (Figure 1), it can be seen that the price of
Chinese cabbage fluctuates greatly and
demonstrates a more intuitive seasonal
fluctuation characteristic. In the fall, there is a
clear downward trend in price, and in winter,
there is a clear upward trend in price.

Figure 1. Chinese Cabbage Price Time Series Chart

4.2 Smoothness test
Augmented Dickey-Fu¹ler Test
data:price_ts
Dickey-Fu1ler =-3.5971,Lag order =2,p-value
=0.05041
alternative hypothesis:stationary
Due to the large fluctuations in Chinese cabbage
prices and a certain trend, the ADF method is
used to verify its smoothness. Based on the
results of the above ADF test , which concluded
that the P value is greater than the significance
level of 0.05, the ADF test results show that the
Chinese cabbage is a non-stationary time series.
Augmented Dickey-Fu¹ler Test

data:diff_price_ts
Dickey-Fu11er =-5.1522,Lag order =2,p-value
=0.01
alternative hypothesis:stationary
Therefore, the first-order period-by-period
differencing was applied to cabbage, resulting in
a new ADF test result with a surface P-value =
0.01 < 0.05. This indicates that the first-order
differencing succeeded in eliminating the
fluctuating tendency in the series and making it
smooth.
Based on Table 1 yields a seasonal ADF test
statistic of -1.6159 while the 5% critical value is
-3.00, -1.6159> -3.00, therefore, the null
hypothesis cannot be rejected indicating that the
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time series is not smooth at 5% level of
significance and there may be a unit root.
Further seasonal differencing of the time series
is required to ensure smoothness.

Table 1. Seasonal ADF test
T–value significant level

1% 5% 10%
ADF text -1.6159 -3.75 -3 -2.63
Lag term test 1.7962 7.88 5.18 4.12
The following ADF seasonal first-order
differencing yields a p-value = 0.02218 < 0.05,
indicating that the first-order differencing
removes the trend of seasonal fluctuations to
make it smooth. Therefore it can be determined
that the d and D orders in the model are 1.
Augmented Dickey-Fuller Test
data:seasonal_diff
Dickey-Fu1ler = -4.0309, Lag order = 2, p-value
= 0.02218
alternative hypothesis:stationary

4.3 Model Selection
Based on the ACF-PACF plot in Figure 2 and
Table 2, both ACF and PACF values change
drastically after the lag order is 3 and gradually
converge to 0. Therefore, we can focus on p=3,
q=3. There is a small positive correlation
between the ACF and PACF plots of order 1-2
and the value is significantly non-zero, therefore,
we can also consider the model with p=2, q=2.
Model. The ACF value at lag order 12 (seasonal
cycle) is 0.143, which is a relatively low value
indicating that the autocorrelation of seasonal
variations is not too strong. At order 12, the
PACF value is -0.076, which is also a relatively
small value indicating that the seasonal

autoregressive component is similarly not strong.
Therefore, let P=0, Q=0.

Figure 2. ACF-PACF Plot
Table 2. ACF and PACFValues

(Lag) ACF value PACF value
1 0.107 0.107
2 0.082 0.071
3 −0.598 −0.625
4 −0.003 0.232
5 0.066 0.277
6 0.271 −0.374
7 −0.046 0.011
8 −0.296 −0.143
9 −0.244 −0.218
10 −0.073 0.068
11 0.244 −0.018
12 0.143 −0.076
13 0.083 0.126
Thus, we attempted to build the model
combination as described below:
SARIMA (3, 1, 3) (0, 1, 0) 12
SARIMA (3, 1, 2) (0, 1, 0) 12
SARIMA (2, 1, 3) (0, 1, 0) 12
SARIMA (2, 1, 2) (0, 1, 0) 12

Table 3. Model Comparison Result
AIC BIC Ljung-Box Q* p-value

SARIMA (3,1,3) (0,1,0)12 10.98 18.93 6.4205 0.09285
SARIMA (3,1,2) (0,1,0)12 10.51 17.33 7.0435 0.07053
SARIMA (2,1,3) (0,1,0)12 13.96 20.78 11.436 0.009588
SARIMA (2,1,2) (0,1,0)12 15.16 20.84 10.42 0.01531

As can be seen from Table 3, the statistics of
Ljung-Box Q* test for residuals of
SARIMA(2,1,3)(0,1,0)(12) and

SARIMA(2,1,2)(0,1,0)12models are 11.436
(p<0.05) and 10.42 (p<0.05), respectively, which
show strong autocorrelation, so these two
models are not considered. In the remaining two
models, Ljung-Box Q* are both close to 6 and 7,
and the p-value is greater than 0.05, which
means that there is no significant autocorrelation
of the residuals of the two models, and they both

have a relatively good fitting effect, but
SARIMA (3, 1, 2)(0, 1, 0)12has the smallest AIC
and BIC values, and therefore SARIMA (3, 1 2,0,
1, 0)12is chosen as the optimal model.

4.4 Model Testing
The Ljung-Box test is used to ensure that the
residual series are white noise and SARIMA (3,
1, 2) (0, 1, 0)12is the optimal model selected.
Ljung-Box test statistic = 7.0435, corresponding
to p-value = 0.07053> 0.05. Having a small
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Q-value and p> 0.05 means that the residuals of
the model are consistent with white noise and
there is no significant autocorrelation. It shows
that the model fits well and can be judged as
significantly valid.

4.5 Model Prediction
SARIMA (3, 1, 2) (0, 1, 0)12was used to compare
the actual and fitted values for January
2019-December 2020, as shown in Figure 3, and
the overall fit is good.

Figure 3. Comparison of the Real Value from
January 2019 to December 2020 and the
SARIMA (3.1.2) (0.1.0) Fitted Value

Figure 4. Price Forecast of Cabbage from
January to June 2021 (Based on SARIMA

Model)
Table 4. Comparison of Predicted andActual

Values of Cabbage Prices for January
2021-June 2021

Time Predictive_ValueActual_ValueRelative_Error
2021—01 3.388958 3.40 0.33%
2021—02 4.332434 3.02 43.63%
2021—03 4.414322 3.01 46.69%
2021—04 4.126807 2.93 40.66%
2021—05 3.247522 2.82 15.21%
2021—06 3.684619 2.94 25.33%
RMSE=0.99 MAE=0.85 MAPE=28.63%
Figure 4. shows the model prediction of the price
output of Chinese cabbage from January
2021-June 2021 based on SARIMA (3, 1, 2) (0,
1, 0)12. Using the real value of the price of
cabbage in January-June 2021 published by the

National Bureau of Statistics, as shown in Table
4, in which the predicted value and the actual
value of the RMSE = 0.99, MAE = 0.85, which
belongs to the lower standard, MAPE = 28.63%,
the model's predicted value and the actual value
of the deviation, which belongs to the range of
20% to 50%, which only indicates that the
prediction is reasonable (Yang Zhenhao
2021)[8].

5. Supply Chain Optimization
In this study, cabbage prices before and after the
epidemic were forecasted based on the SARIMA
(3,1,2)(0,1,0)₁₂ model. Although the model
performs well in trend capture, the MAPE value
is 28.63%, indicating that the supply and
demand fluctuations triggered by the epidemic
have disrupted the original supply and demand
rhythms, resulting in untimely information
transfer generating an information lag (the
market change has already occurred, and the
data is only delayed in reflecting it). This has
resulted in logistics and production adjustments
not being able to keep up, thus hindering and
deviating from actual and forecast prices. This,
combined with factors such as changes in
consumption patterns, weakens the overall
forecasting accuracy of the model. To deal with
this problem, it is necessary to reduce the
interference of external shocks on prices through
supply chain co-optimization schemes after price
forecasting, so as to effectively reduce the
forecasting error. Therefore, the core logic of
supply chain optimization is to reduce the
information lag, shorten the response time, and
increase the redundancy capacity, so as to reduce
the uncertainty of market fluctuations, and make
the prediction model closer to the real trend.

5.1 Information Transparency
First of all, it is necessary to detect changes in
supply and demand in advance by improving
information transparency (letting models and
decision makers know earlier that the market is
going to change). It can be used to build a
national agricultural supply and demand
information platform, integrating multiple
sources of information such as wholesale market
prices, sowing area of origin, agricultural
progress, logistics status, epidemic risk level,
weather data, and so on. Reduce the information
lag, so that the prediction is based on the "latest
real market state". The introduction of
blockchain and IoT technology enables real-time
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tracking of the circulation chain of Chinese
cabbage from origin to retail, ensuring the
integrity and reliability of the data, and at the
same time enhancing the trust of market
participants in the information, providing
real-time and verifiable data sources for the
prediction model. If the impact and sealing
control generated by the epidemic leads to the
obstruction of logistics in a certain production
area, the platform will monitor the reduction of
transportation vehicles in real time, and the
prediction system will instantly adjust the
parameters of supply in the area, and correct the
predicted price through the relationship between
supply and demand.

5.2 Supply Chain Layered Management and
Full Collaboration
Li Yixin (2024) emphasizes that the supply chain
of agricultural products is a complex network
from the production of raw materials to the final
consumer, which is affected by seasonality and
involves production, processing, storage,
transportation, wholesale, retail and other
links[9]. Agricultural products are usually fresh
products, which are prone to decay and spoilage.
Particular attention needs to be paid to the
storage, transportation and handling of products
to ensure freshness and quality.
Therefore, in the case of an epidemic, it is
necessary to ensure the smooth flow of
information, logistics and capital through supply
chain hierarchical management
(origin-transit-marketing) and the whole
collaborative mechanism, so as to realize the
synchronous adjustment of each link and avoid
the overall imbalance due to the interruption of
local links.
5.2.1 (Production-marketing synergy)
Production-Sales Coordination
(Production-Sales Coordination) refers to the
information sharing and action synchronization
between the production link and the sales link in
terms of time, quantity, variety and quality, etc.
Through contractualization, informatization and
organization, order agriculture is implemented in
the field of agricultural products: orders are
placed by enterprises and others before the
planting season according to the forecasted
demand, and contracts are signed with producers
to specify the planting area, variety and quality.,
specifying the planting area, varieties, quality
standards, delivery time and price range. For
example, enterprises based on SARIMA cabbage

price forecasts and historical sales data, calculate
the demand for cabbage in each sales cycle, can
be passed to the production side of the cabbage
will be in the next cycle of the price and demand
is how much for the planting program as a
reference. Therefore, the production side can be
planted in the previous planting season more or
less cabbage supply to stabilize prices.
5.2.2 (Cold chain and transportation
optimization)
Cold Chain Optimization (Cold Chain
Optimization) refers to the introduction of
low-temperature control and information
management tools in the whole process of
production, storage, transportation and
distribution of agricultural products to precisely
regulate the temperature and humidity, logistic
paths, inventory status, etc., so as to prolong the
freshness period of perishable agricultural
products, reduce losses, and maintain a stable
supply capacity in the event of changes in
market demand or unforeseen events. The
following are some examples of perishable
agricultural products that can be stored for a
longer period of time. Examples include fresh
fruits, vegetables and meats such as cabbage.
Maintaining proper temperature and humidity
levels is critical to maintaining product quality.
In the supply chain of such perishable
agricultural products, distributed cold chain
storage nodes should be laid out between the
main production areas, wholesale markets and
core consumption areas, and combined with
SARIMA forecasts, inventory can be transferred
to cold storage near consumption areas in
advance of the peak demand period to shorten
the transportation time; IoT sensors can be
introduced to monitor the temperature, humidity
and location of the goods in real time during the
transportation and storage process, and the
transportation routes and storage conditions can
be optimized through the cold chain
management platform dynamically; in addition,
the temperature and humidity levels of fresh
fruits, vegetables and meats should be
maintained to maintain product quality. In
addition, the cold chain optimization plan should
be formulated in parallel with the order
agriculture and production and marketing
alliance, so as to increase the capacity and
storage capacity of the cold chain in advance
when the forecast shows that the demand surge
or the epidemic may lead to the interruption of
logistics, and to open up the "green channel" for
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the perishable agricultural products in order to
guarantee the smooth transportation. In the
off-season, the transportation capacity and
storage capacity should be reduced in order to
lower the cost.
5.2.3 (Inventory management)
Inventory Management (Inventory Management)
refers to the process of regulating supply and
demand, smoothing price fluctuations, reducing
storage costs, minimizing losses and smoothing
market fluctuations in the supply chain by
rationally controlling the quantity, structure and
flow rate of inventory. And it should adopt the
forecast data as the basis, combined with the
demand cycle, seasonal characteristics and
storage conditions, to dynamically adjust the
inventory level. For example, establishing safety
stock before the peak season and moderately
reducing inventory occupancy in the off-season
to reduce capital deposition and resource waste.
Such changes can be predicted by using the
SARIMAmodel to forecast the demand trend. At
the same time , they can rely on cold chain
preservation technology, the inventory of
cabbage according to the maturity of graded
storage, and expected sales time in batches out
of the warehouse, to extend the sales cycle, to
mitigate the impact of centralized listing on the
price. Finally, distributed inventory nodes
covering the major consumption areas of such
agricultural products based on the domestic
spatial dimension can be formed to form a
cross-regional adjustment mechanism for rapid
replenishment in the event of localized demand
surges or supply disruptions.

5.3 Risk Management and Sustainable
Development
Uncertainties arising from facing emergencies
such as epidemics, extreme weather, and market
fluctuations will largely affect the supply and
demand situation and price fluctuations of
agricultural products. Therefore, it is necessary
to adopt risk management to identify, assess and
reduce the uncertainty, and transform the
prediction results into a response plan, so as to
enhance the resilience and flexibility of the
supply chain.
First of all, a multi-dimensional risk monitoring
system can be established to integrate and
analyze data on weather, epidemic dynamics,
market prices, traffic conditions, etc. with
SARIMA forecasts to identify potential supply
and demand imbalance signals. Emergency

response is automatically triggered when price
fluctuation magnitude or inventory change rate
exceeds the forecast interval. For example, when
epidemics or natural disasters affect
transportation, priority is given to ensuring
smooth transportation of perishable agricultural
products and shortening transportation delays. It
also adjusts inventory distribution and
transportation priorities according to real-time
risk levels to ensure that demand in key areas is
met. At the same time, risk diversification and
buffer measures can be used to set up
government- or industry-led emergency
stockpiles in producing and consuming areas,
and then determine the amount of stockpiles
based on predicted demand peaks and risk
assessment levels. When the market price
exceeds the upper limit, put reserves into the
market, and when the price is lower than the
lower limit, collect and store to protect the
interests of farmers. In addition, diversified
cultivation and eco-friendly agricultural models
are promoted on the production side to reduce
the vulnerability of single-producing areas to
disasters or epidemics; and the concept of a
green supply chain is introduced into the
distribution chain to realize both environmental
and economic benefits through energy-saving
transportation, reducing packaging waste and
lowering carbon emissions. These measures can
not only buffer the supply-demand imbalance
caused by sudden shocks in the short term, but
also build a long-term stable operating
foundation for the supply chain, thus providing
sustainable external conditions for the price
forecasting model, reducing the MAPE value
under extreme events such as epidemics and
enhancing the resilience of the supply chain.

6. Summary
Taking the Chinese cabbage market as an
example, this study discusses the changes in the
supply and demand relationship of agricultural
products before and after the epidemic, and on
the basis of which it proposes a future-oriented
supply chain optimization path. It is pointed out
that the response lag and information asymmetry
of the traditional supply and demand adjustment
mechanism are particularly prominent under the
impact of sudden public events. Subsequently,
based on the cabbage price data from January
2019 to June 2021, a SARIMA model is
constructed and validated to fit and predict the
price trend before and after the epidemic. The
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rise of MAPE to 28.63% directly reflects the
inadequacy of relying solely on prediction
models, which highlights the necessity of supply
chain optimization to reduce information lag and
enhance market responsiveness.
In response to this challenge, this paper proposes
an agricultural supply chain optimization scheme
with "prediction-driven decision-making and
collaboration to enhance resilience" as the core
idea, including three major sections: information
transparency, supply chain hierarchical
management and whole process collaboration,
risk management and sustainable development.
In terms of specific strategies, it covers measures
such as production and marketing synergy and
cold chain layout optimization, aiming to shorten
response time through information sharing,
reduce mismatch between supply and demand
through structural optimization, and smooth
price fluctuations through risk buffer. These
measures not only serve to respond to extreme
scenarios such as epidemics, but also provide a
technologized adjustment tool for daily market
fluctuations.
This study combines time series forecasting with
supply chain optimization, which not only
reveals the impact mechanism of emergencies on
forecasting accuracy, but also provides a feasible
path to optimize the supply chain based on the
forecasting results in a reverse direction. In the
future, the study can be further extended to the
comparative analysis of multi-category
agricultural products and cross-regional markets,
and combined with machine learning methods to
improve the real-time and adaptive nature of
forecasting and decision-making, in order to
promote a higher level of stability and
sustainable development of China's agricultural
products market under the uncertainty
environment.
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